

MANAGING CYBER THREATS

Issues, Approaches, and Challenges

MANAGING CYBER THREATS

Issues, Approaches, and Challenges

Edited by

VIPIN KUMAR
University of Minnesota, U.S.A.

JAIDEEP SRIVASTAVA
University of Minnesota, U.S.A.

ALEKSANDAR LAZAREVIC
University of Minnesota, U.S.A.

Springer

Library of Congress Cataloging-in-Publication Data

Managing cyber threats : issues, approaches, and chalienges / edited by Vipin Kumar,
jaideep Srivastava, Aleksandar Lazarevic.

p. cm. — (Massive computing)
Includes bibliographical references and index.
ISBN 0-387-24226-0 (alk. paper)
1. Computer networks—Security measures. 2. Computer security. 3. Data

mining. 4. Computer crimes—Investigation. I. Kumar, Vipin, 1956- II.
Srivastava, jaideep. III. Lazarevic, Aleksandar. IV. Series.

TK5105.59.M368 2005
305.8-dc22 2005041303

ISBN-10: 0-387-24226-0 ISBN-13: 978-0387-24226-2
e-ISBN-10: 0-387-24230-9 e-ISBN-13: 978-0387-24230-9

Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now know or hereaftei
developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even ii
the are not identified as such, is not to be taken as an expression of opinion as to whether or noi
they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11367147

springeronline.com

TABLE OF CONTENTS

Contributing Authors

Preface

IX

Xl l l

PART I OVERVIEW

1 MANAGING THREATS TO WEB DATABASES
AND CYBER SYSTEMS
Bhavani Thuraisingham 3

2 INTRUSION DETECTION: A SURVEY
Aleksandar Lazarevic, Vipin Kumar, and Jaideep
Srivastava 19

PART II DATA MINING BASED ANALYSIS OF
COMPUTER ATTACKS

3 LEARNING RULES AND CLUSTERS FOR
ANOMALY DETECTION IN NETWORK
TRAFFIC
Philip Chan, Matthew Mahoney, and Muhammad Arshad 81

vi Table of Contents

4 STATISTICAL CAUSALITY ANALYSIS OF
INFOSEC ALERT DATA
Wenke Lee andXinzhou Qin 101

5 UNDERSTANDING NETWORK SECURITY
DATA: USING AGGREGATION, ANOMALY
DETECTION, AND CLUSTER ANALYSIS FOR
SUMMARIZATION
DaveDeBarr 129

PART III TECHNIQUES FOR MANAGING CYBER
VULNERABILITIES AND ALERTS

6 EARLY DETECTION OF ACTIVE INTERNET
WORMS
Vincent H. Berk, George Cybenko, and Robert S. Gray 147

7 SENSOR FAMILIES FOR INTRUSION
DETECTION INFRASTRUCTURES
Richard Kemmerer and Giovanni Vigna 181

8 ENCAPSULATION OF USER'S INTENT: A NEW
PROACTIVE INTRUSION ASSESSMENT
PARADIGM
Shambhu Upadhyaya, Ramkumar Chinchani, Kiran Mantha,
and Kevin Kwiat 221

9 TOPOLOGICAL ANALYSIS OF NETWORK
ATTACK VULNERABILITY
Sushil Jajodia, Steven Noel, and Brian O'Berry 247

10 ANALYZING SURVIVABLE COMPUTATION IN
CRITICAL INFRASTRUCTURES
Yvo Desmedt 267

11 ALERT MANAGEMENT SYSTEMS: A QUICK
INTRODUCTION
Robert Grossman 281

Table of Contents vii

PART IV CYBER FORENSICS

12 CYBER FORENSICS: MANAGING, MODELING,
AND MINING DATA FOR INVESTIGATION
Erin Kenneally, and Tony Fountain 295

13 CYBER FORENSICS: ISSUES AND
APPROACHES
Jau-Hwang Wang 313

CONTRIBUTING AUTHORS

Name Affiliation E-mail address

Muhammad Arshad Department of Computer Sciences

Florida Institute of Technology

Melbourne, FL 32901

marshad@cs.fit.edu

Vincent H. Berk Institute for Security Technology

Studies, Dartmouth College,

Hanover, NH 03755

Vincent.Berkf^dartmouth.edu

Philip Chan Department of Computer Sciences

Florida Institute of Technology

Melbourne, FL 32901

Laboratory for Computer Science

Massachusetts Institute of

Technology, Cambridge, MA 02139

pkc@cs.fit.edu

Ramkumar Chinchani Department of Computer Science and rc27@cse.buffalo.edu

Engineering, University at Buffalo,

Buffalo, NY 14260

George Cybenko Institute for Security Technology

Studies, Dartmouth College,

Hanover, NH 03755

gvc@dartmouth.edu

Dave DeBarr The MITRE Corporation

Bedford, MA 01730

Contributing Authors

debarr@mitre.org

Yvo Desmedt Computer Science Department,

Florida State University,

Tallahassee, Florida FL 32306-4530

desmedt@cs.fsu.edu

Tony Fountain San Diego Supercomputer Center,

University of California San Diego

La JoUa, CA 92093-0505

fountain@sdsc.edu

Robert S. Gray Institute for Security Technology

Studies, Dartmouth College,

Hanover, NH 03755

Robert, Gray @dartmouth. edu

Robert Grossman Laboratory for Advanced Computing, grossman@uic.edu

University of Illinois at Chicago

Chicago, IL 60607

Open Data Partners

Sushil Jajodia Center for Secure Information

Systems, George Mason University

Fairfax, VA 22030-4444

jajodia@gmu.edu

Richard Kemmerer Department of Computer Science,

University of California, Santa

Barbara, Santa Barbara, CA 93106

kemm@cs .ucsb. edu

Erin Kenneally San Diego Supercomputer Center,

University of California San Diego

La Jolla, CA 92093-0505

erinf^sdsc.edu

Vipin Kumar Department of Computer Science and kumar@cs.umn.edu

Engineering, Army High Performance

Computing Research Center,

University of Minnesota

Minneapolis, MN 55415

Kevin Kwiat Air Force Research Laboratory

525 Brooks Road, Rome, NY 13441

kwiatk@afrl.mil

Contributing Authors XI

Aleksandar Lazarevic Army High Performance Computing aleks@cs.umn.edu

Research Center, University of

Minnesota, Minneapolis, MN 55415

Wenke Lee College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

wenke@cc.gatech.edu

Matthew V. Mahoney Department of Computer Sciences

Florida Institute of Technology

Melbourne, FL 32901

mmahoney @cs.fit.edu

Kiran Mantha Department of Computer Science and kmantha@cse.buffalo.edu

Engineering, University at Buffalo

Buffalo, NY 14260

Steven Noel Center for Secure Information

Systems, George Mason University

Fairfax, VA 22030-4444

snoel@gmu.edu

Brian O'Berry Center for Secure Information

Systems, George Mason University

Fairfax, VA 22030-4444

boberry@gmu.edu

Xinzhou Qin College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

xinzhou@cc.gatech.edu

Jaideep Srivastava Department of Computer Science and srivasta@cs.umn.edu

Engineering, Army High Performance

Computing Research Center,

University of Minnesota

Minneapolis, MN 55415

Bhavani

Thuraisingham

National Science Foundation

Arlington, Virginia 22230

The MITRE Corporation

Bedford, MA 01730

bthurais@nsfgov

Giovanni Vigna Department of Computer Science,

University of Califomia, Santa

Barbara, Santa Barbara, CA 93106

vigna@cs.ucsb.edu

xii Contributing Authors

Shambhu Upadhyaya Department of Computer Science and shambhu@cse.buffalo.edu

Engineering, University at Buffalo,

Buffalo, NY 14260

Jau-Hwang Wang Dept. of Information Management jwang@sun4.cpu.edu.tw

Central Police University

Tao-Yuan, Taiwan, ROC 333

Preface

Information technology (IT) has become the engine that drives our
modem enterprises within the public and private sectors. Government
agencies and businesses have become increasingly reliant on IT systems to
carry out important missions and functions and to increase their productivity.
However, the very same information infrastructure that has brought a high
degree of agility to our society has also created a degree of fragility —
which if not remedied can cause serious damage to societal and economic
well-being. For example, there have been several incidents (e.g., Code-Red I
& II, Nimda, and more recently the SQL Slammer and Blaster worm attacks)
of large-scale, distributed denial-of-service attacks in just the last two or
three years. The intention of these attacks was not simply to infect a few
machines, but to affect large portions of the Internet by shutting down
millions of servers and clogging the information "superhighways."

The brunt of these attacks has been borne by those responsible for
computer security, and the security research and development community
has come to their aid — developing a number of techniques to make it
harder to launch attacks. However, this battle is becoming increasingly
difficuh as a number of factors are aiding the attackers as well. First, the
wide adoption of the Internet by the society at large has increased the
number of organizations that can be accessed through a network, making
them vulnerable to attacks from anywhere in the world. Second, information
systems have become significantly more powerful and more complex during
the past decade with an exponential growth in features and associated
capabilities. The more complex systems are, the more difficult it is to
thoroughly review all of their components and ensure the absence of security
holes in them. Finally, since September 11*, 2001, we have discovered that

xiv Preface

there are well-organized groups — backed by the resources of certain
govemments — whose express purpose is to cripple the society's
information infrastructure.

Against the backdrop described above, there is a need to have a
systematic and comprehensive approach to securing the society's
information infrastructure, also called the ''cyber infrastructure". Thus, we
define cyber threat management (CTM) as the collection of tools,
techniques, policies, processes, and practices that are aimed at protecting
the cyber infrastructure, and thwarting — both retro- and proactively —
attacks against it,

There are a number of challenges to existing tools and techniques for
cyber threat management. First, the amount of data being generated from
various network-monitoring devices is at a scale that makes human analysis
essentially impossible. This requires some form of automated analysis to
extract higher-level information from the monitored system, in a form and
scale comprehensible to a human analyst. Second, escalating importance of
cyber security in our society creates the need for new techniques for
managing cyber vulnerabilities and cyber alerts that will help to improve
general computer security. Finally, by integrating these new techniques with
other security disciplines such as cyber forensics, more complete and
comprehensive systems for cyber threat management can be achieved.

The research community must address these and various other issues, to
develop tools, techniques, policies, processes, and practices, that will contain
the threat against the society's cyber infrastructure, and ensure its smooth
functioning. Towards this, there is a need for in-depth analyses and surveys
of existing literature — a significant fraction of it carried out by universities
and national laboratories, and sponsored by the defense and intelligence
communities — which will help refine the societal research agenda in the
area of cyber threat management. This book is one such effort towards this
goal.

The contributed chapters have been organized into four parts that focus
on: (i) overviews of specific sub-areas, (ii) application of data mining to
cyber threat management, (iii) techniques for managing cyber vulnerabilities
and alerts, and (iv) cyber forensics techniques.

The first part provides two overview articles covering the topics of cyber
threats and intrusion detection systems. In Chapter 1, Thuraisingham
provides an overview of various cyber threats to information systems as well
as to data management systems. These threats include access control
violations, unauthorized intrusions, and inference and aggregation. In
addition, the chapter also discusses potential solutions and challenges in
detecting such cyber threats, which include role-based access control, data
mining techniques, and security constraint processing. In Chapter 2,

Preface xv

Lazarevic, Kumar, and Srivastava provide a detailed survey of contemporary
intrusion detection techniques. They first provide a taxonomy of computer
attacks and describe basic characteristics of specified attack categories.
Then, they present a general architecture of intrusion detection systems and
give their taxonomy, together with a short description of significant
approaches belonging to different intrusion detection categories.

The second part of the book focuses on the applications of data mining
techniques for handling cyber attacks. In Chapter 3, Chan, Mahoney, and
Arshad propose two anomaly detection techniques that use machine learning
models for characterizing normal network behavior. The first method, called
LERAD (Learning Rules for Anomaly Detection) is based on a rule learning
algorithm that characterizes normal behavior in the absence of labeled attack
data. The second method, named CLAD (Clustering for Anomaly
Detection), uses a clustering algorithm to identify outliers in network traffic
data. In Chapter 4, Lee and Qin describe a novel method for security alert
correlation that is based on clustering algorithm followed by causal analysis.
This method is used to discover new relationships among attacks. High
volume of raw alerts is first reduced by combining low level alerts based on
alert attributes, and then clustering techniques are used to group these low-
level alert data into high-level alerts. The method is validated on several data
sets including DARPA's Grand Challenge Problem (GCP) datasets, the 2000
DARPA Intrusion Detection Scenario datasets, and the DBF CON 9 datasets.
DeBarr, in Chapter 5, focuses on the use of data mining/analysis techniques
for effective summarization and prioritization of network security data.
Event records are aggregated by source address and period of activity in
order to reduce the number of records that must be reviewed. Anomaly
detection is used to identify obvious host, port, and vulnerability scans,
association discovery is used to recognize common sets of events, and
cluster analysis is employed to provide a synopsis of distinctive behaviors
within a group of interest.

The third part provides different practical and theoretical issues of
managing cyber vulnerabilities and alerts. In Chapter 6, Berk et al. present
an automated system for early detection of active scanning Internet worms,
soon after they begin to spread. The implemented system collects ICMP-T3
(Destination Unreachable) messages from instrumented routers, identifies
message patterns that indicate malicious scanning activities, and then
identifies scan patterns that indicate a propagating worm. The chapter also
examines an epidemic model for worm propagation and presents simulation
results that illustrate detection capabilities. In Chapter 7, Kemmerer and
Vigna present STAT framework for the development of new intrusion
detection functionality in a modular fashion. In the STAT framework,
intrusion detection sensors are built by dynamically composing domain-

xvi Preface

specific components with a domain-independent runtime. Each sensor has
the ability to reconfigure its behavior dynamically. Dynamic reconfiguration
and development of deployed STAT sensors is supported by a component
model, called MetaSTAT sensor control infrastructure. The final product of
the STAT framework is a highly-configurable, well-integrated intrusion
detection infrastructure. Upadhyaya et al. in Chapter 8, propose a novel
intrusion detection system that encapsulates the user's intent by querying her
or him in a proactive manner. The encapsulated intent serves the purpose of
a certificate based on which more accurate intrusion detection decision can
be made. The authors present the working system implemented in a
university environment. In Chapter 9, Jajodia, Noel, and O'Berry describe a
Topological Vulnerability Analysis (TVA) prototype tool that implements an
integrated, topological approach to network vulnerability analysis. This tool
automates the labor-intensive analysis that is usually performed by
penetration-testing experts. The TVA prototype includes modeling of
network security conditions and attack techniques (exploits). It also
generates a graph of dependencies among exploits, which represents all
possible attack paths without having to explicitly enumerate them. In
Chapter 10, Desmedt describes a novel methodology to model computer
networks as well as information infrastructures. The chapter further proposes
techniques that may be used to determine which infrastructures are critical
and most vulnerable. The employed methodology is based on the PERT
directed graphs. Grossman, in Chapter 11, provides a short overview of alert
management systems (AMSs), which are designed to screen events, build
profiles associated with the events, and send alerts based upon the profiles
and events. This chapter provides a brief overview of the basic AMS
architecture, as well as a few examples of such systems.

The last part of the book discusses both legal and technical aspects of
employing cyber forensics in real life applications. In Chapter 12, Kenneally
and Fountain describe the ongoing project P^ELE (Public-Private-
Partnership Enabling Law Enforcement) at the San Diego Supercomputer
Center. This project represents a research infrastructure for the management,
analysis, and visualization of public and private multidimensional data. In
addition, it also covers general legal (federal, law, govemmental) aspects of
law enforcement process. Finally, in Chapter 13, Wang introduces the basic
terms of cyber forensics to the reader. First, this chapter provides an
introduction and motivation for development of this field, and then it
introduces the computer forensics process as well as the digital evidence in
the computer systems and computer networks.

Threats to the society's cyber infrastructure, and thus to the society as a
whole, have never been clearer than they are today. Equally clear are the
gaps that exist in the society's ability to protect against them. However, there

Preface xvii

is a need to take stock of what our current level of understanding of the
issues is. Specifically, what issues have been addressed, and to what degree
have they been successful and unsuccessful?

A book such as this would certainly not be possible without the efforts of
a number of people. First, we would like to thank the authors of the chapters
for accepting our invitations to present their recent research work in cyber
threat management and for adhering to a tight publication schedule. We
would also like to thank Angela Burke and Deborah Doherty of Springer for
their continuous support throughout this project. Finally, we would like to
thank the National Science Foundation, the Army Research Laboratory, and
the Rome Labs for supporting the research on cyber security for the editors
of this book.

PARTI

OVERVIEW

Chapter 1

MANAGING THREATS TO WEB DATABASES
AND CYBER SYSTEMS

Bhavani Thuraisingham
The National Science Foundation and The MITRE Corporation

Abstract: This chapter provides an overview of some of the cyber threats information
systems as well as data management systems and then discusses potential
solutions and challenges. The threats include access control violations,
unauthorized intrusions and inference and aggregation. Solutions include role-
based access control, data mining techniques and security constraint
processing.

Keywords: Web Databases, Cyber Threats, Data Mining, Access Control, Security,
Privacy.

1. INTRODUCTION

Recent developments in information systems technologies have resulted
in computerizing many applications in various business areas. Data has
become a critical resource in many organizations, and therefore, efficient
access to data, sharing the data, extracting information from the data, and
making use of the information has become an urgent need. As a result, there
have been many efforts on not only integrating the various data sources
scattered across several sites, but extracting information from these
databases in the form of patterns and trends has also become important.
These data sources may be databases managed by database management
systems, or they could be data warehoused in a repository from multiple data
sources.

The advent of the World Wide Web (WWW) in the mid 1990s has
resulted in even greater demand for managing data, information and

4 Chapter 1

knowledge effectively. There is now so much data on the web that managing
it with conventional tools is becoming almost impossible. New tools and
techniques are needed to effectively manage this data. Therefore, to provide
interoperability as well as warehousing between the multiple data sources
and systems, and to extract information from the databases and warehouses
on the web, various tools are being developed.

As the demand for data and information management increases, there is
also a critical need for maintaining the security of the databases, applications
and information systems. Data and information have to be protected from
unauthorized access as well as from malicious corruption. With the advent of
the web it is even more important to protect the data and information as
numerous individuals now have access to this data and information.
Therefore, we need effective mechanisms for securing data and applications.

This paper will review the various threats to information systems on the
web with a special emphasis on threats to database security. Then it will
discuss some solutions to managing these threats. The threats include access
control violations, integrity violations, unauthorized intrusions and sabotage.
The solutions include data mining techniques, cryptographical techniques
and fault tolerance processing techniques.

The organization of this paper is as follows. In Section 2 we provide an
overview of some of the cyber threats. Much of our focus will be on threats
to the public and private databases on the web. In Section 3 we discuss
potential solutions. Directions are given in Section 4.

2. CYBER THREATS

2.1 Overview

In recent years we have heard a lot about viruses and Trojan horses on
the web. These security violations are costing several millions of dollars to
businesses. Identity thefts are quite rampant these days. Furthermore
unauthorized intrusions and inference problem and privacy violations are
also occurring frequently. In this section we provide an overview of some of
these threats. A very good overview of some of these threats has also been
provided in [5]. We also discuss some additional threats such as threats web
databases and information systems.

We have grouped the threats into two. One group consists of some vemal
cyber threats, which may include threats to web databases. The second group
of threats focuses more on threats to web databases. Note that we have only
provided a subset of all possible threats. There are many more threats such
as threats to networks, operating systems, middleware, electronic payment

Managing Threats to Web Databases and Cyber Systems 5

systems including spoofing, eavesdropping, cover channels and other
malicious techniques. Section 2.2 focuses on some general cyber threats
while section 2.3 discusses threats specific to web databases. It should be
noted that it is difficult to group the threats so that one threat is exclusive for
web databases while another is relevant only for operating systems. Threats
such as access control violations are applicable both for databases and
operating systems. However with databases due to complex relationships,
access controls are much harder to enforce while for operating systems
access controls are granted or denied at the file level. Another example is
natural disasters as well as attacks to infrastructures. These attacks and
disasters could damage the networks, databases and operating systems.

2.2 General Cyber Threats

In this section we discuss some general cyber threats, which are
applicable to information systems including data management systems,
operating systems, networks and middleware.

Authentication Violations: Passwords could get stolen and this could
result in authentication violations. One may need to have multiple passwords
and additional information about the user to solve this problem. Biometrics
and other techniques are also being examined to handle authentication
violations.

Nonrepudiation: Sender of a message could very well deny that he has
sent the message. Nonrepudiation techniques will ensure that one can track
the message to the sender. Today it is not difficult to track the owner of the
message. However it is not easy to track the person who has accessed the
web page. That is, while progress has been made to analyze web logs, it is
still difficult to determine the exact location of the user who has accessed a
web page.

Trojan Horses and Viruses: Trojan horses and viruses are malicious
programs that can cause all sorts of attacks. In fact, many of the threats
discussed in this section could be caused by Trojan horses and viruses.
Viruses can spread from machine to machine and could erase files in various
computers. Trojan horses could leak information from a higher level to a
lower level. Various virus protection packages have been developed and are
now commercially available.

Sabotage: We hear of hackers breaking into systems and posting
inappropriate messages. For example, some information on the sabotage of
various government web pages is reported in [5]. One only needs to corrupt
one server, client or network for the problem to cascade to several machines.

Fraud: With so much of business and commerce being carried out on the
web without proper controls, Internet fraud could cause businesses to loose

6 Chapter 1

millions of dollars. Intruder could obtain the identity of legitimate users and
through masquerading may empty the bank accounts.

Denial of service and infrastructure attacks: We hear about
infrastructures being brought down by hackers. Infrastructures could be the
telecommunication system, power system, and the heating system. These
systems are being controlled by computers and often through the Internet.
Such attacks would cause denial of service.

Natural Disasters: In addition to terrorism, computers and networks are
also vulnerable to natural disasters such as hurricanes, earthquakes, fire and
other similar disasters. The data has to be protected and databases have to be
recovered from disasters. In some cases the solutions to natural disasters are
similar to those for threats due to terrorist attacks. For example, fault tolerant
processing techniques are used for recovering databases from damage. Risk
analysis techniques may contain the damage. In section 3 we discuss some of
the solutions.

23 Threats to Web Databases

This section discusses some threats to web databases. Note that while
these threats are mainly appHcable to data management systems, they are
also relevant to general information systems.

Access Control Violations: The traditional access control violations
could be extended to the web. User may access unauthorized data across the
web. Note that with the web there is so much of data all over the place that
controlling access to this data will be quite a challenge.

Integrity Violations: Data on the web may be subject to unauthorized
modifications. This makes it easier to corrupt the data. Also, data could
originate from anywhere and the producers of the data may not be
trustworthy. Incorrect data could cause serious damages such as incorrect
bank accounts, which could result in incorrect transactions

Confidentiality Violations: Security includes confidentiality as well as
integrity. That is confidential data has to be protected from those who are
not cleared. Lot of work has been carried out on multilevel security where
users access only the information at or below their clearance levels [1].
Statistical database techniques have also been developed to prevent
confidentiality violations.

Authenticity Violations: This is a form of data integrity violation. For
example consider the case of a publisher, subscriber and the owner. The
subscriber will subscribe to various magazines and the owner publishers the
magazines (in electronic form) and the publisher who is the third party will
publish the magazines. If the publisher is not trusted, he could alter the
contents of the magazine. This violates the authenticity of the document.

Managing Threats to Web Databases and Cyber Systems 7

Various solutions have been examined to determine the authenticity of
documents (see for example, [2]). These include cryptography and digital
signatures.

Privacy Violations: With the web one can obtain all kinds of
information collected about individuals. Also, data mining tools and other
analysis tools one can make all kinds of unauthorized associations about
individuals

Inference problem: Inference is the process of posing queries and
deducing unauthorized information from the legitimate responses. In fact we
consider the privacy problem to be a form of inference problem (see for
example, [14]). Various solutions have bee proposed to handle the inference
problem including constraint processing and the use of conceptual structures.
We discuss some of them in the next section.

Identity Theft: We are hearing a lot about identity theft these days. The
thief gets hold of one's social security number and from there can wipe out
the bank account of an individual. Here the thief is posing legitimately as the
owner and he now has much of the critical information about the owner.
This is a threat that is very difficult to handle and manage. Viable solutions
are yet to be developed. Data mining offers some hope, but may not be
sufficient.

Insider Threats: Insider threats are considered to be quite common and
quite dangerous. In this case one never knows who the terrorists are. They
could be the database administrators or any person who may be considered
to be trusted by the corporation. Background checks alone may not be
sufficient to detect insider threats. Role-based access controls as well as data
mining techniques are being proposed. We will examine these solutions in
the next section.

The above are some of the threats. All of these threats collectively have
come to be known as cyber terrorism. Essentially cyber terrorism is about
corrupting the web and all of its components so that the enemy or
adversary's system collapses. There is currently lot of funds being invested
by the various govemments in the US and Westem Europe to conduct
research on protecting the web and preventing cyber terrorism. Note that
Terrorism includes cyber terrorism, bioterrroism, and violations to physical
security including bombing buildings and poisoning food supplies and water
supplies. In our recent book [15] we discuss terrorism and data mining
solutions to counter-terrorism. In the next section we discuss data mining for
detecting cyber terrorism. We also discuss some other solutions.

8 Chapter 1

3. SOLUTIONS TO CYBER THREATS

3.1 Overview

This section will discuss various solutions to handle the threats
mentioned in section 2. The goals are to prevent as well as detect security
violations and mitigate risks. Furthermore, damage has to be contained and
not allowed to spread further. Essentially we need effective damage control
techniques. The solutions discussed include securing components,
cryptography, data mining, constraint processing, role-based access control,
risk analysis and fault tolerance processing.

In section 3.2 we discuss solution for some generic threats. These
solutions include firewalls and risk analysis. In section 3.3 we will discuss
solutions for some of the threats to web databases. Note that while the
solutions for generic threats are applicable for threats to web databases, the
solutions for threats to web databases are also applicable for the generics
threats. For example, risks analysis has to be carried out for web databases as
well as for general information systems Furthermore, data mining is a
solution for intrusion detection and auditing both for web databases as well
as for networks. We have included them in the section on solutions for web
databases, as data mining is part of data management and may be used for
various threats to databases in addition to intrusions.

3.2 Solutions for General Threats

3.2.1 Securing Components and Firewalls

Various components have to be made secure to get a secure web. We
need end-end-end security and therefore the components include secure
clients, secure servers, secure databases, secure operating systems, secure
infrastructures, secure networks, secure transactions and secure protocols.
One needs good encryption mechanisms to ensue that the sender and
receiver communicate securely. Ultimately whether it be exchanging
messages or carrying out transactions, the communication between sender
and receiver or the buyer and the seller has to be secure. We discuss
encryption in more detail in section 3.2. Secure cHent solutions include
securing the browser, securing the Java virtual machine, securing Java
applets, and incorporating various security features into languages such as
Java. Note that Java is not the only component that has to be secure.
Microsoft has come up with a collection of products including ActiveX and

Managing Threats to Web Databases and Cyber Systems 9

these products have to be secure also. Securing the protocols include
securing HTTP (hypertext transfer protocol) and the secure socket layer
(SSL). Securing the web server means the server has to be installed securely
as well as it has to be ensured that the server cannot be attacked. Various
mechanisms that have been used to secure operating systems and databases
may be applied here. Notable among them are access control lists, which
specify which users have access to which web pages and data. The web
servers may be connected to databases at the backend and these databases
have to be secure. Finally various encryption algorithms are being
implemented for the networks and groups such as OMG (Object
Management Group) are envisaging security for middleware such as ORB
(Object Request Broker).

One of the challenges faced by the web mangers is implementing security
policies. One may have policies for clients, servers, networks, middleware,
and databases. The question is how do you integrate these policies? That is
how do you make these policies work together? Who is responsible for
implementing these policies? Is there a global administrator or are there
several administrators that have to work together? Security policy integration
is an area that is being examined by researchers.

Finally, one of the emerging technologies for ensuring that an
organization's assets are protected is firewall. Various organizations now
have web infrastructures for internal ad external use. To access the external
infrastructure one has to go through the firewall. These firewalls examine
the information that comes into and out of an organization. This way, the
internal assets are protected and inappropriate information may be prevented
from coming into an organization. We can expect sophisticated firewalls to
be developed in the future.

3.2.2 Cryptography

Numerous texts and articles have been published on cryptography (see
for example [3]). In addition, annual cryptology conferences also take place.
Yet cryptography is one of the areas that needs continuous research as the
codes are being broken with powerful machines and sophisticated
techniques. There are also many discussions on export/import controls on
encryption techniques. This section will briefly provide an overview of some
of the technical details of cryptography relevant to the web and therefore to
e-commerce. Cryptography is the solution to various threats including
authenticity verification as well as ensuring data integrity. It is also useful
for ensuring privacy.

The main issue with cryptology is ensuring that a message is sent
properly. That is, the receiver gets the message the way it was intended for

10 Chapter 1

him to receive. This means that the message should not be intercepted or
modified. The issue can be extended to transactions on the web also. That is,
transactions have to be carried out in the way they were intended to.
Scientists have been working on cryptography for many decades. We hear
about codes being broken during World War 11. The study of code breaking
has come to be known as cryptanalysis. In cryptography, essentially the
sender of the message encrypts the message with a key. For example he
could use the letter B for A, C for, A for Z. If the receiver knows the
key, then he can decode this message. So a message with the work
COMPUTER would be DPNQVUFS. Now this code is so simple and will be
easy to break. The challenge in cryptography is to find a code that is difficult
to break. Number theorists have been conducting extensive research in this
area.

Essentially in cryptography encryption is used by the sender to transform
what is called a plaintext message into cipher text. Decryption is used by the
receiver to obtain the plaintext from the cipher text received. Two types of
cryptography are gaining prominence; one is public key cryptography where
there are two keys involved for the sender and the receiver. One is the public
key and is visible to everyone and other is the private key. The sender
encrypts the message with the recipient's public key. Only the recipient can
decode this message with his private key. The second method is private key
cryptography. Here both users have a private key. There is also a key
distribution center involved. This center generates a session key when the
sender and receiver want to communicate. This key is sent to both users in
an encrypted form using the respective private keys. The sender uses his
private key to decrypt the session key. The session key is used to encrypt the
message. The receiver can decrypt the session key with his private key and
then use this decrypted session key to decrypt the message.

In the above paragraphs we have discussed just cryptography. The
challenge is how to ensure that an intruder does not modify the message and
that the desirable security properties such as confidentiality, integrity,
authentication, and nonrepudiation are maintained? The answer is in
message digests and digital signatures. Using hash functions on a message, a
message digest is created. If good functions are used, each message will
have a unique message digest. Therefore, even a small modification to the
message will result in a completely different message digest. This way
integrity is maintained. Message digests together with cryptographic
receipts, which are digitally signed, ensure that the receiver knows the
identity of the sender. That is, the sender may encrypt the message digests
with the encryption techniques described in the previous paragraphs. In some
techniques, the recipient may need the public key of the sender to decrypt
the message. The recipient may obtain this key with what is called a

Managing Threats to Web Databases and Cyber Systems 11

certificate authority. The certificate authority should be a trusted entity and
must make sure that the recipient can legitimately get the public key of the
sender. Therefore, additional measures are taken by the certificate authority
to make sure that this is the case.

3.2.3 Risk Analysis

Before developing any computer system for a particular operation, one
needs to study the security risks involved. The goal is to mitigate the risks or
at least limit and contain them if the threats cannot be eliminated. Several
papers have been published on risk analysis especially at the National
Computer Security Conference Proceedings in the 1990s (see [7]). These
risk analysis techniques need to be examined for cyber threats.

The challenges include, identifying all the threats that are inherent to a
particular situation. For example, consider a banking operation. The bank
has to employ security experts and risk analysis experts to conduct a study of
all possible threats. Then they have to come up with ways of eliminating the
threats. If that is not possible, they have to develop ways of containing the
damage so that it is not spread further.

Risk analysis is especially useful for viruses. Once a virus starts
spreading, the challenge is how do you stop it? If you cannot stop it, then
how do you contain it and also limit the damage that is caused. Running
various virus packages on one's system will perhaps limit the virus from
affecting the system or causing serious damage. The adversary will always
find ways to develop new viruses. Therefore, we have to be one step or
many steps ahead of the enemy. We need to examine the current state of the
practice in risk analysis and develop new solutions especially to handle the
new kinds of threats present in the cyber world.

3.2.4 Biometrics, Forensics and Other Solutions

Some of the recent developments in computer security are tools for
biometrics and forensic analysis. Biometrics tools include understanding
handwriting and signatures as well as recognizing people from their features
and eyes including the pupils. While this is a very challenging area, much
progress has been made. Voice recognition tools to authenticate users are
also being developed. In the future we can expect many of us to use these
tools.

Forensic analysis essentially carries out post mortems just as they do in
medicine. Once the attacks have occurred then how do you detect these
attacks? Who are the enemies and perpetrators? While progress has been
made, there are still challenges. For example, if one accesses the web pages

12 Chapter 1

and uses passwords that are stolen, then it will be difficult to determine from
the web logs who the culprit is. That is, we still need a lot of research in the
area.

Biometrics and Forensics are just some of the new developments. Other
solutions being developed include smart cards, tools for detecting spoofing
and jamming as well as tools to carry out sniffing. A discussion of all of
these solutions is beyond the scope of this paper.

3.3 Solutions for Threats to Web Databases

3.3.1 Data Mining

Data mining is the process of posing queries and extracting patterns,
often previously unknown from large quantities of data using pattern
matching or other reasoning techniques (see [13]). In [15] we devote an
entire book to data mining for counter-terrorism. We discus various types of
terrorist attacks including information related terrorism. As mentioned in
[15], by information related terrorism we essentially mean cyber terrorism.
Cyber security is the area that deals with cyber terrorism. We listed various
cyber attacks including access control violations, unauthorized intrusions,
and denial of service in section 2 as well as in [14]. We are hearing that
cyber attacks will cause corporations billions of dollars. For example, one
could masquerade as a legitimate user and swindle say a bank of billions of
dollars.

Data mining and web mining may be used to detect and possibly prevent
cyber attacks. For example, anomaly detection techniques could be used to
detect unusual patterns and behaviors. Link analysis may be used to trace the
viruses to the perpetrators. Classification may be used to group various cyber
attacks and then use the profiles to detect an attack when it occurs.
Prediction may be used to determine potential future attacks depending in a
way on information learnt about terrorists through email and phone
conversations. Also, for some threats non real-time data mining may suffice
while for certain other threats such as for network intrusions we may need
real-time data mining.

Many researchers are investigating the use of data mining for intrusion
detection. While we need some form of real-time data mining, that is, the
results have to be generated in real-time, we also need to build models in
real-time. For example, credit card fraud detection is a form of real-time
processing. However, here models are built ahead of time. Building models
in real-time remains a challenge.

Managing Threats to Web Databases and Cyber Systems 13

Data mining can also be used for analyzing web logs as well as analyzing
the audit trails. Based on the results of the data mining tool, one can then
determine whether any unauthorized intrusions have occurred and/or
whether any unauthorized queries have been posed. There has been much
research on data mining for intrusion detection and reported at the IFIP
Database Security Conferences (see [6]). This is an area we can expect to see
much progress. Some interesting work on data mining for intrusion detection
is given in [4].

3,3,2 Constraint Processing

We introduced the idea of security constraint processing for the inference
problem. Here we define security constraints to assign security levels to the
data and then developed a system to process the constraints (see [12]). We
have now adapted these techniques for privacy. In a recent paper we have
elaborated on privacy constraint processing [15]. Essentially privacy
constraints are rules that are enforced on the data. These rules determine the
level of privacy of the data. Our definition of privacy constraints follow
along the lines of our work on security constraints discussed in [10]. Privacy
values of the data could take a range of values including public, semi-public,
semi-private, and private. Even within a privacy value we could have
different levels of privacy including low-private, medium-privacy and high-
private.

We have defined various types of privacy constraints. We give examples
using a medical informatics database. The constraints we have identified
include simple constraints, content-based constraints, context or association
based constraints, release constraints and event constraints. While we use a
relational database to illustrate the concepts, constraints can be defined on
object as well as on XML databases.

Simple constraints assign privacy values to attributes, relations or even a
database. For example, all medical records are private. Content-based
constraints assign privacy values to data depending on content. For example,
all financial records are private except for those who are in public office (e.g.
president of the United States). Association based constraints assign privacy
values to collections of attributes taken together. For example, names and
medical records are private, individually they are public. That is, one can
release names and medical records separately; but one cannot release them
together. Furthermore, one has to be careful so that the public user cannot
infer medical records for a particular person by posing multiple queries.
Event constraints are constraints that change privacy values after an event
has occurred. For example, after a patient has been released, some
information about him or her could be made public, but while he is in the

14 Chapter 1

hospital information abut him or her is private. A good example was the
sniper shootings that occurred in the Washington DC area in the Fall of
2002. After the victim dies, information about him or her was released. Until
then the identity of the person was not available to the public. Finally release
constraints assign privacy values to the data depending on what has already
been released. For example, after the medical records have been released,
one cannot release any information about the names or social security
numbers that can form a link to the medical information.

One could define many more types of privacy constraints. As we explore
various applications, we will start defining various classes of constraints.
Our main purpose in [16] is to show how privacy constraints can be
processed in a database management system. We call such a system a
privacy enhanced database system. Our approach is to augment a database
management system (DBMS) with a privacy controller. Such a DBMS is
called a privacy enhanced DBMS, a high level overview of a privacy-
enhanced DBMS which we well refer to as a PE-DBMS. The privacy
controller will process the privacy constraints. The question is what are the
components of the privacy controller and when do the constraints get
processed? We take an approach similar to the approach proposed in [11] for
security constraint processing. In our approach, some privacy constraints are
processed during database design and the database is partitioned according
to the privacy levels. Then some constraints are processed during database
updates. Here, the data is entered at the appropriate privacy levels. Because
the privacy values change dynamically, it is very difficult to changes then
privacy levels of the data in the database in real-time. Therefore, some
constraints are processed during the query operation.

The modules of the privacy controller include the constraint manager,
query manager, database design tool and the update manager. The constraint
manager manages the constraints. The database design tool processes
constraints during database design and assigns levels to the schema. The
query processor processes constraints during the query operation and
determines what data is to be released. The update processors processed
constraints and compute the level of the data. Details of our approach are
given in [16].

3.3.3 Role-based Access Control

One of the popular access control techniques is role-based access control.
The idea here is for users based on their roles are given access to certain
data. For example, the engineer has access to project data while the
accountant has access to financial data. The challenges include handling
multiple roles and conflicting roles. For example, if one is an engineer and

Managing Threats to Web Databases and Cyber Systems 15

he cannot have access to financial data and if he also happens to be an
accountant, then how can the conflict be resolved? Maintaining the
consistency of the access control rules is also a challenge.

Many papers have been published on role-based access control. There is
also now a conference devoted entirely to role base access control called
SACMAT (see [9]). Also papers relevant to role based access control on
databases have been presented at the IFIP database security conferences. It is
also being examined for handling insider threats. That is, using a
combination of data mining techniques to find out information about
employees and granting them roles depending on their trustworthiness, one
could perhaps manage the insider threat analysis problem. More work needs
to be done in this area.

3.3.4 Fault Tolerant Processing Recovery and Replication

As stated earlier, the databases could be national databases that contain
critical information about individuals or private corporate databases or bank
databases that contain financial information. They could also be agency
databases that contain highly sensitive information. When such databases are
attacked, it is then possible for the enemy to obtain classified information or
wipe out bank accounts. Furthermore, even if the enemy does not do
anything with the data, just by corrupting the databases, the entire operation
could be thwarted. Today computer systems are controlling the operation of
manufacturing plants, process control plants and many critical
infrastructures. Corrupting the data could be disastrous.

The fault tolerance computing community has come up with several
algorithms for recovering databases and systems from failures and other
problems. These techniques include acceptance testing and check pointing.
Sometimes data is replicated so that there are backup copies. These
techniques have to be examined for handling malicious attacks on the
database and corrupting the data.

4. SUMMARY AND DIRECTIONS

This paper has discussed various cyber threats in general and threats to
web databases in particular. The threats include access control violations,
sabotage, infrastructure attacks, and insider threat analysis. Next we
proposed various solutions including data mining techniques and role-based
access control. As we have stated, the cyber threats are very real and we
need to do everything we can to detect, prevent and manage the threats. The
damages have to be contained.

16 Chapter 1

Various research programs are now under way to develop solutions for
cyber attacks. The National Science Foundation has various programs
including the Trusted Computing Program and the Data and Applications
Security Program (see [8]). There are also plans to initiate an umbrella
program on Cyber Trust. Other organizations like the Defense Advanced
Research Projects Agency, Advanced Research and Development Activity,
and the National Institute of Standards and Technology also have programs
in cyber security. While several techniques have been developed, we need to
ensure that these techniques scale for very large databases and large number
of interconnected systems. We need end-to-end security. That is, the clients,
the servers, and the infrastructures have to be secure. We must all work
together to combat terrorism. We need to be many steps ahead of the enemy
and thwart all attempts by the enemy to cause damage to our systems and
our infrastructures.

ACKNOWLEDGEMENTS

I thank NSF and the MITRE Corporation for their support to continue my
work on data mining, counter-terrorism, information security and privacy.
The views and conclusions expressed in this paper are those of the author
and do not reflect the policies or procedures of the National Science
Foundation, the MITRE Corporation or of the US Govemment.

REFERENCES

[I] Air Force Summer Study Report on Multilevel Secure Database Systems, Washington
DC, 1983.

[2] B. Carminati, E. Bertino, E. Ferrai, B. Thuraisingham, A. Gupta. Secure Third Party
Publishing of XML Documents. MIT Working Paper, 2002.

[3] D. Denning. Cryptography and Data Security, Addison Wesley, 1983.
[4] P Dokas, L Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, P. Tan. Data Mining for

Intrusion Detection. Proceedings NSF Workshop on Next Generation Data Mining,
Baltimore, MD, November 2002.

[5] Ghosh. E-commerce Security, Weak Links and Strong Defenses, John Wiley, NY,
1998.

[6] IFIP 11.3 Database Security Conference Proceedings, 1990-2002.
[7] National Computer Security Conference Proceedings, 1990-1999.
[8] National Science Foundation, www.nsf gov.
[9] Proceedings of the Symposium on Role-based Access Control, 2002-2003.
[10] B. Thuraisingham. Multilevel Security for Relational Database Systems Augmented

by an Inference Engine. Computers and Security, December 1987.
[II] B. Thuraisingham, W. Ford, M. Collins. Design and Implementation of a Database

Inference Controller. Journal on Data and Knowledge Engineering, December 1993.

Managing Threats to Web Databases and Cyber Systems 17

[12] B. Thuraisingham, W. Ford. Security Constraint Processing in a Multilevel
Distributed Database Management System. IEEE Transactions on Knowledge and
Data Engineering, April 1995.

[13] B. Thuraisingham. Data Mining: Technologies, Techniques, Tools and Trends, CRC
Press, FL, 1998.

[14] B. Thuraisingham. Data Mining, National Security and Privacy. SIGKDD
Explorations, January 2003.

[15] B. Thuraisingham. Web Data Mining: Technologies and Their Applications to
Business Intelligence and Counter-terrorism. CRC Press, FL, 2003.

[16] B. Thuraisingham. Privacy Constraint Processing. To be submitted to Computers and
Security, 2003.

Chapter 2

INTRUSION DETECTION: A SURVEY

Aleksandar Lazarevic, Vipin Kumar, Jaideep Srivastava
Computer Science Department, University of Minnesota

Abstract: This chapter provides the overview of the state of the art in intrusion detection
research. Intrusion detection systems are software and/or hardware
components that monitor computer systems and analyze events occurring in
them for signs of intrusions. Due to widespread diversity and complexity of
computer infrastructures, it is difficult to provide a completely secure
computer system. Therefore, there are numerous security systems and
intrusion detection systems that address different aspects of computer security.
This chapter first provides taxonomy of computer intrusions, along with brief
descriptions of major computer attack categories. Second, a common
architecture of intrusion detection systems and their basic characteristics are
presented. Third, taxonomy of intrusion detection systems based on five
criteria (information source, analysis strategy, time aspects, architecture,
response) is given. Finally, intrusion detection systems are classified according
to each of these categories and the most representative research prototypes are
briefly described.

Keywords: intrusion detection, taxonomy, intrusion detection systems, data mining.

1. INTRODUCTION

With rapidly growing adoption of the Internet, networked computer
systems are playing an increasingly vital role in our society. Along with the
tremendous benefits that the Internet brings, it also has its dark side.
Specifically, new threats are created everyday by individuals and
organizations that attack and misuse computer systems. As reported by the
Computer Emergency Response Team/Coordination Center (CERT/CC)
[37], the number of computer attacks has increased exponentially in the past
few years (Figure 2-1). In addition, the severity and sophistication of the

20 Chapter 2

attacks is also growing (Figure 2-2). For example, Slammer/Sapphire Worm
was the fastest computer worm in history. As it began spreading throughout
the Internet, it doubled in size every 8.5 seconds and infected at least 75,000
hosts causing network outages and unforeseen consequences such as
canceled airline flights, interference with elections, and ATM failures [153].
Earlier, the intruders needed profound understanding of computers and
networks to launch attacks. However, today almost anyone can exploit the
vulnerabilities in a computer system due to the wide availability of attack
tools (Figure 2-2).

120000

100000

80000

20000

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 20012002 2003

Figure 2-1. Growth rate of cyber incidents reported to Computer Emergency Response
Team/Coordination Center (CERT/CC)

The conventional approach for securing computer systems is to design
security mechanisms, such as firewalls, authentication mechanisms. Virtual
Private Networks (VPN), that create a protective "shield" around them.
However, such security mechanisms almost always have inevitable
vulnerabilities and they are usually not sufficient to ensure complete security
of the infrastructure and to ward off attacks that are continually being
adapted to exploit the system's weaknesses often caused by careless design
and implementation flaws. This has created the need for security technology
that can monitor systems and identify computer attacks. This component is
called intrusion detection and is a complementary to conventional security
mechanisms.

Intrusion Detection: A Survey 21

Cross site scripting

1 "stealth" / advanced

High

Intrudor «*"***'
Knowlodgo

Attack '•**
Sophistrcation

Low

scanning toctiniquos

yT ^*****»s^packot spoofing

^ y * ^ > . sniffers

s w c o ^ ^

denial of service! J^

" r j ^ . - * * . ! ^

Tools

r 1
jL""^ 'distributed

^0/^^"^ i attack toots
mt^] i www attacks

^ X " " ^ ' automated probes/scans
r IGUI

back doors 1 m'^^^^^''^^,
disabling audits | w J r s IWtwork mgmt diagnostics

^ y ^ \ J hijacking \
^^X'^'^burglaries j sessions >.

f^ \ exploiting known vulnorabiliticsS.

i password cracking '̂***'*****»«ŵ

1 self-replicating code *̂ "

Attackers
password guessing

1980 1986 1990 1996 2000-1

Figure 2-2. Attack sophistication vs. Intruder technical knowledge (source:
http://www.cert.org/present/intemet-security-trends)

The National Institute of Standards and Technology classifies intrusion
detection [15] as "the process of monitoring the events occurring in a
computer system or network and analyzing them for signs of intrusions,
defined as attempts to compromise the confidentiality, integrity, availability,
or to bypass the security mechanisms of a computer or network^'.

Intmsions in computer systems are usually caused by attackers accessing
the systems from the Internet, or by authorized users of the systems who
attempt to misuse the privileges given to them and/or to gain additional
privileges for which they are not authorized. An Intrusion Detection System
(IDS) can be defined as a combination of software and/or hardware
components that monitors computer systems and raises an alarm when an
intrusion happens.

This chapter provides an overview of the current status of research in
intrusion detection. It first provides an overview of different types of
computer intrusions, and then introduces a more detailed taxonomy of
intrusion detection systems with an overview of important research in the
field. Both taxonomies are illustrated and supported with several well known
examples of computer attacks and intrusion detection techniques. Several
surveys in the intrusion detection have been pubHshed in the past [4, 13, 31,
55, 92, 97, 110, 114, 136]. However, the growth of the field has been very
rapid, and many new ideas have since emerged. The survey in this chapter
attempts to build upon these earlier surveys, but is more focused on intrusion
detection projects proposed in academic institutions and research

22 Chapter 2

organizations than on commercial intrusion detection systems, primarily due
to the lack of detailed technical information available on commercial
products. The reader interested in commercial IDSs is referred to a survey of
IDS products [92] and to web sites that maintain lists of such systems [57,
76].

2. TAXONOMY OF COMPUTER ATTACKS AND
INTRUSIONS

Research community in computer security has developed numerous
definitions of computer attacks and intrusions. One of the most popular
definitions for intrusion [181] is that it represents a ''malicious, externally
induced, operational fault"". Computer intrusions and attacks are often
considered synonymous. However, other definitions of the word "attack"
that differentiate it from intrusion have also been proposed in the intrusion
detection literature. For example, a system can be attacked (either from the
outside or the inside), but the defensive ''shield" around the system or
resource targeted by the attack may be sufficiently effective to prevent
intrusion. Therefore, we may say that an attack is an intrusion attempt, and
an intrusion results from an attack that has been (at least partially) successfijl
[181].

There have been numerous attempts to categorize and classify computer
attacks and intrusions [11, 112, 115, 128, 135]. Some of these attempts have
provided formally developed taxonomies and specified a certain set of
properties that the taxonomy should satisfy, e.g., they should be: (i) logical
and intuitive [84], (ii) based on solid technical details [23], (iii)
comprehensible [128], (iv) complete [5], (v) exhaustive [84, 128], (vi)
mutually exclusive [84, 128], (vii) objective [108], (viii) repeatable [84,
108], and (ix) useful [84, 128]. For more details on these characteristics, the
reader is referred to the above pubhcations, as well as to Lough's PhD thesis
[135].

Initial work in categorizing different aspects of computer security
focused on weaknesses in computer systems and design flaws in operating
systems [12], as well as functional vulnerabilities and computer abuse
methods [172]. Several taxonomies that were developed later mainly focused
on two issues: (i) categorization of computer misuse (i.e. attacks) and (ii)
categorization of the people trying to get unauthorized access to computers
(perpetrators), and the objectives and results of these attempts.

In one of earlier attempts for describing types of computer attacks,
Neumann and Parker developed the SRI Computer Abuse Methods Model
[165, 166, 173], which outlines about 3000 attack cases and computer

Intrusion Detection: A Survey 23

misuses collected over nearly twenty years and categorizes them into the
nine-level tree of attack classes. Lindqvist and Jonsson [128] extended the
Neumann and Parker model by expanding several attack categories
(categories 5, 6 and 7 from original nine-level tree of attacks) and by
introducing the concept of dimension, which represents a basis of the attack
classification. They specified two interesting criteria for system owners to
perform attack classification, namely "intrusion techniques'' and "intrusion
results'', and they called these criteria dimensions. Jayaram and Morse [96]
also developed a taxonomy of security threats to networks, in which they
provide five "classes of security threats" and two "classes of security
mechanisms". Another significant work in computer attack taxonomies is
performed by the CERIAS group at Purdue University [11, 108, 112]. Their
first attempt [112] provided a classification of computer intrusions on Unix
systems using system logs and colored Petri nets. Aslam [11] extended this
work by providing a taxonomy of security flaws in Unix systems. Finally,
Krsul [108] reorganized both previous taxonomies and provided a more
complex taxonomy of computer attacks that contains four main categories
(design, environmental assumptions, coding faults and configuration errors).
Richardson [189, 190] extended these taxonomies by developing a database
of vulnerabilities to help study of the problem of Denial of Service (DoS)
attacks. The database was populated with 630 attacks from popular sites that
report computer incidents. These attacks were cataloged into the categories
that correspond to extensions from Aslam's taxonomy of security flaws [11]
and Krsul's taxonomy of computer attacks [108]. Within the DARPA
intrusion detection project, Kendall [103] developed a similar database of
computer attacks that exist in DARPA intrusion detection evaluation data
sets [52]. An excellent overview of these techniques as well as their
extensions is provided in Lough's PhD thesis [135].

Anderson presented one of the first categorizations of attack perpetrators
according to their types. He used a 2x2 table to classify computer threats into
three groups (external penetration, intemal penetration and misfeasance),
based on whether or not penetrators are authorized to use the computer
system or to use particular resources in the system [7]. One of the most
influential taxonomies in categorizing attack perpetrators is the classification
of types of attackers, used tools, access information, attack consequences
and the objectives of the attacks, performed by CERT [84]. Researchers at
Sandia National Laboratories [45] proposed a very similar taxonomy, with a
few added or merged categories.

The taxonomy we provide in this survey is more general, and is obtained
by examining and combining existing categorizations and taxonomies of
host and network attacks published in the intrusion detection literature, and
by revealing common characteristics among them. In previously published

24 Chapter 2

taxonomies, categories used in classification of attacks were usually either a
cause of a vulnerability or the result (i.e., effect) of a vulnerability. In the
taxonomy proposed here, we use traditional cause of vulnerability to specify
the following categories of attacks:
• Attack type
• Number of network connections involved in the attack
• Source of the attack
• Environment
• Automation level

Attack type. The most common criterion for classifying computer
attacks and intrusions in the literature is according to the attack type [84,
103]. In this chapter, we categorize computer attacks into the following
classes:
- Denial of Service (DoS) attaclcs. These attacks attempt to ''shut down a

network, computer, or process; or otherwise deny the use of resources or
services to authorized users''' [144]. There are two types of DoS attacks:
(i) operating system attacks, which target bugs in specific operating
systems and can be fixed with patches; and (ii) networking attacks, which
exploit inherent limitations of networking protocols and infrastructures.
An example of operating system attack is teardrop, in which an attacker
exploits a vulnerability of the TCP/IP fragmentation re-assembly code
that do not properly handle overlapping IP fragments by sending a series
of overlapping packets that are fragmented. Typical example of
networking DoS attack is a "SYN flood" attack, which takes advantage
of three-way handshake for establishing a connection. In this attack,
attacker establishes a large number of "half-open" connections using IP
spoofing. The attacker first sends SYN packets with the spoofed (faked)
IP address to the victim in order to establish a connection. The victim
creates a record in a data structure and responds with SYN/ACK message
to the spoofed IP address, but it never receives the final acknowledgment
message ACK for establishing the connection, since the spoofed IP
addresses are unreachable or unable to respond to the SYN/ACK
messages. Although the record from the data structure is freed after a
time out period, the attacker attempts to generate sufficiently large
number of "half-open" connections to overflow the data structure that
may lead to a segmentation fault or locking up the computer. Other
examples of DoS attacks include disrupting connections between
machines thus preventing access to a service, preventing particular
individuals from accessing a service, disrupting service to a specific
system or person, etc. In distributed DoS (DDoS) attack, which is an
advanced variation of DoS attack, multiple machines are deployed to
attain this goal. DoS and DDoS attacks have posed an increasing threat to

Intrusion Detection: A Survey 25

the Internet, and techniques to thwart them have become an active
research area [151, 152, 154, 169, 171, 176, 226]. Researchers that
analyze DoS attacks have focused on two main problems: (i) early
detection mechanisms and identification of ongoing DoS activities [41,
75, 218, 235]; and (ii) response mechanisms for alleviating the effect of
DoS attacks (e.g. damage caused by the attack). Response mechanisms
include identifying the origin of the attack using various traceback
techniques [27, 91, 195, 206] and slowing down the attack and reducing
its intensity [141, 151, 248] by blocking attack packets. In addition to
these two main approaches, some systems use measures to suppress DoS
attacks. For example, CenterTrack [218] is an overlay network that uses
selective rerouting to trace the entrance points of large flooding attack,
while SOS (Secure Overlay Services) [104] employs a combination of
''secure overlay tunneling, routing via consistent hashing, and filtering"
to proactively prevent large flooding DoS attacks.

- Probing (surveillance^ scanning). These attacks scan the networks to
identify vaHd IP addresses (Figure 2-3) and to collect information about
them (e.g. what services they offer, operating system used). Very often,
this information provides an attacker with the list of potential
vulnerabilities that can later be used to perform an attack against selected
machines and services. Examples of probing attacks include IPs weep
(scanning the network computers for a service on a specific port of
interest), portsweep (scanning through many ports to determine which
services are supported on a single host), nmap (tool for network
mapping), etc. These attacks are probably the most common ones, and
are usually precursor to other attacks. The existing scan detection
schemes essentially look for IP addresses that make more than N
connections in T seconds. These schemes are very good at picking out
fast and disperse noisy scans. Unfortunately, tools based on these
techniques are quite inefficient at detecting slow/stealthy scans or scans
targeted specifically at the monitored enterprise - the type of scans that
analysts would really be interested in. Stealthy scans can be defined as
scans that would normally not trigger typical scan alert technology. Due
to these reasons, sophisticated adversaries typically attempt to adjust their
scans by reducing the frequency of their transmissions in order to avoid
detection. For detecting stealthy scans, there are a few recently proposed
more sophisticated technique based on collecting various statistics [62,
102, 147, 191,214,222].

26 Chapter 2

B S S B
jilmillgfjj^ p̂iwg)|raĵ ĵ ppijsSt^ /ll|oi<5i^

Figure 2-3. Typical scanning activity

Compromises, These attacks use known vulnerabiHties such as buffer
overflows [38] and weak security points for breaking into the system and
gaining privileged access to hosts. Depending upon the source of the
attack (outside attack vs. inside attack), the compromises can be further
split into the following two categories:
• R2L (Remote to Local) attacks, where an attacker who has the ability

to send packets to a machine over a network (but does not have an
account on that machine), gains access (either as a user or as the
root) to the machine. In most R2L attacks, the attacker breaks into
the computer system via the Internet. Typical examples of R2L
attacks include guessing passwords (e.g. guest and dictionary
attacks) and gaining access to computers by exploiting software
vulnerability (e.g. phf attack, which exploits the vulnerability of the
phf program that allows remote users to run arbitrary commands on
the server).

• U2R (User to Root) attacks, where an attacker who has an account
on a computer system is able to misuse/elevate her or his privileges
by exploiting a vulnerability in computer mechanisms, a bug in the
operating system or in a program that is installed on the system.
Unlike R2L attacks, where the hacker breaks into the system from
the outside, in U2R compromise, the local user/attacker is already in
the system and typically becomes a root or a user with higher
privileges. The most common U2R attack is buffer overflow, in
which the attacker exploits the programming error and attempts to
store more data into a buffer that is located on an execution stack.
Since buffers are created to contain a specific amount of data, the
additional information used by the attacker can overflow into
adjacent buffers, corrupting or overwriting the vahd data held in
them. This data may contain codes designed to trigger specific
actions, such as damaging user's files or providing the user with root
access. Many approaches have recently been proposed for detection
and prevention of buffer overflow attacks [49, 71], due to increased

Intrusion Detection: A Survey 27

interest in them. It is important to note that buffer overflow attacks
can also belong to R2L attacks, where remote users attempts to
compromise the integrity of target computer. For example, a
vulnerabiHty discovered in Microsoft Outlook and Outlook Express
in July 2000 [35] allowed the attackers to simply send an e-mail
message and to overflow the specific areas with superfluous data,
which allowed them to execute whatever type of code they desired
on the recipient's computers.

Viruses/Worms/Trojan horses are programs that replicate on host
machines and propagate through a network.
• Viruses are programs that reproduce themselves by attaching them to

other programs and infecting them. They can cause considerable
damage (e.g. erase files on the hard disk) or they may only do some
harmless but annoying tricks (e.g. display some funny messages on
the computer screen). Viruses typically need human interaction (e.g.
trading files on a floppy or opening e-mail attachments) for
repHcation and spreading to other computers. One of the most well
known virus examples is Michelangelo virus that infects the hard
disk's master boot record and activates a destructive code on March
6, which is Michelangelo's birthday. There are various types of
viruses, and classifying them is not easy as many viruses have
multiple characteristics and may fall into multiple categories. The
most common virus classification is according to the environment,
operating system, different algorithms of work and destructive
capabilities [150], although there are other categorizations based on
what and how viruses infect [48, 87].

• Worms are self-replicating programs that aggressively spread
through a network, by taking advantage of automatic packet sending
and receiving features found on many computers. Worms can be
organized into several categories [105, 215, 236]:
• traditional worms (e.g. Slammer [37]) usually use direct

network connections to spread through the system and do not
require any user interaction.

• e-mail (and other client application) worms, (e.g. Melissa worm
[34]) infect other hosts on the network (Intemet) by exploiting
user's e-mail capabilities or utilizing other client applications
(e.g. ICQ - "I seek you").

• windows file sharing worms (e.g. ExploreZip [221]) repHcate
themselves by utilizing MS Windows peer-to peer service,
which is activated every time a networking device is detected in
the system. This type of a worm very often occurs in

28 Chapter 2

combination with other attacks, such as MS-DOS and Windows
viruses.

• hybrid worms (e.g. Nimda [36]) typically exploit multiple
vulnerabilities that fall into different categories specified above.
For example, Nimda used many different propagation
techniques to spread (e-mail, shared network drives and
scanning for backdoors opened by the Code Red II and Sadmind
worms). Success of Nimda demonstrated that e-mail and http
traffic are effective ways to penetrate the network system, and
that the file sharing is quite successful in replicating within the
system [236].

It is important to note that some of the worms that appeared recently
have also been used to launch DoS attacks [83]. For example, the
erkms and liOn worms were used to deploy DDoS tools via BIND
vulnerabilities [83], while Code Red was used to launch TCP SYN
DoS attacks [83]. However, traditional DoS attacks typically target a
single organization, while worms (e.g. SoBig.F worm) typically
affect a broad range of organizations. Over the last few years, many
DoS attacks have gradually mutated and merged with more
advanced worms and viruses (e.g. Blaster worm in August 2003),
Analysts also expect that in the future DoS attacks will be more
often part of worm payloads [83].

Trojan horses are defined as "malicious, security-breaking programs"
that are disguised as something benign [134]. For example, the user may
download a file that looks like a free game, but when the program is
executed, it may erase all the files on the computer. Victims typically
download Trojan horses from an archive on the Intemet or receive them
via peer-to-peer file exchange using IRC/instant messaging/Kazaa etc.
Some actual examples include Silk Rope and Saran Wrap.

Many people use terms like Trojan horse, viruses and worms
interchangeably since it is not easy to make clear distinction between them.
For example, ''Love Bug" is at the same time a virus, worm, and Trojan
horse. It is a trojan horse since it pretends to be a love letter but it is a
harmful program. It is a virus because it infects all the image files on the
disk, turning them into new Trojan horses. Finally, it s also a worm since it
propagates itself over the Intemet by hiding in trojans that it sends out using
peoples' email address book, IRC client, etc.

Number of network connections involved in an attack. Attacks can be
classified according to the number of network connections involved in the
attack:
- Attacks that involve multiple network connections. Typical examples of

such attacks are DoS, probing and worms (Figure 2-3).

Intrusion Detection: A Survey 29

- Attacks that involve a single or very few network connections. Typical
attacks in this category usually cause compromises of the computer
system (e.g. buffer overflow).
Source of the attack. Computer attacks may be launched from a single

location {single source attacks) or from several different locations
{distributed/coordinated attacks). Most of the attacks typically originate
from a single location (e.g. simple scanning), but in the case of large
distributed DoS attacks or other organized attacks, multiple source locations
may participate in the attack. In addition, very often distributed/coordinated
attacks are targeted not only to a single computer, but also to multiple
destinations. Detecting such distributed attacks typically requires the
analysis and correlation of network data from several sites.

Environment. Attacks may be categorized according to the environment
where they occur:
- Intrusions on the host machine are intrusions that occur on a specific

machine, which may not even be connected to the network. These attacks
are usually detected by investigating the system information (e.g. system
commands, system logs). The identity of the user that performs an attack
in this case is typically associated with the usemame, and is therefore
easier to discover.

- Network intrusions are intrusions that occur via computer networks
usually from outside the organization. Detection of such intrusions is
performed by analyzing network traffic data (e.g. network flows,
tcpdump data). However, such analysis often cannot reveal the precise
identity of the attackers, since there is typically no direct association
between network connections and a real user.

- Intrusions in a P2P environment are intrusions that occur in a system
where connected computers act as peers on the Intemet. Unlike standard
"client/server" network architectures, in P2P environment, the computers
have equivalent capabilities and responsibilities and do not have fixed IP
address. They are typically located at "the edges of the Internet [240],
and actually disconnected from the DNS systems. Although P2P file
sharing applications can increase productivity of enterprise networks,
they can also introduce vulnerabilities in them, since they enable users to
download executable codes that can introduce rogue or untraceable
"backdoor" applications on users* machines and jeopardize enterprise
network security.

- Intrusions in wireless networks are intrusions that occur between
computers connected through wireless network. Detection of attacks in
wireless networks is based on analyzing information about the
connections in wireless networks, which is typically collected at wireless

30 Chapter 2

access points [126]. In general, security threats in wireless networks can
be categorized into:
• eavesdropping, when intruder only listens for the data;
• intrusions, when intruder attempts to access or to modify the data;
• communication hijacking, when a rogue node captures the channel,

poses as a rogue wireless access point and attracts mobile nodes to
connect to it and then collects confidential data from them (e.g.
passwords, secret keys, logon names);

• Denial of Service (jamming) attacks, when an attacker disturbs the
communication channel with various frequency domains (cordless
phones, microwave ovens), physical obstacles and disables all
communication on the channel.

Automation level. Depending on the level of the attack automation, there
are several categories of attacks as follows:
- Automated attacks use automated tools that are capable of probing and

scanning a large part of the Intemet in a short time period. Using these
easily available tools, even inexperienced attackers may create highly
sophisticated attacks (Figure 2-2). Such attacks are probably the most
common method of attacking the computer systems today.

- Semi-automated attacks deploy automated scripts for scanning and
compromise of network machines and installation of attack code, and
then use the handler (master) machines to specify the attack type and
victim's address.

- Manual attacks involve manual scanning of machines and typically
require a lot of knowledge and work. Manual attacks are not very
frequent, but they are usually more dangerous and harder to detect than
semi-automated or automated attacks, since they give to attackers more
control over the resources. Experts or organized groups of attackers
generally use these attacks for attacking systems of critical importance.

3. INTRUSION DETECTION SYSTEMS

Since the first model for intrusion detection was developed by Dorothy
Denning [56] at SRI Intemational, many intrusion detection systems (IDSs)
have been proposed both in the research and commercial world. For
information about these research and commercial products, the reader is
referred to Web sites that contain links to them [32, 76, 149, 198, 223].
Although these systems are extremely diverse in the techniques they employ
to gather and analyze data, most of them rely on a relatively general
architectural framework (Figure 2-4), which consists of the following
components:

Intrusion Detection: A Survey 31

Data gathering device (sensor) is responsible for collecting data from the
monitored system.
Detector {Intrusion Detection {ID) analysis engine) processes the data
collected from sensors to identify intrusive activities.
Knowledge base {database) contains information collected by the
sensors, but in preprocessed format (e.g. knowledge base of attacks and
their signatures, filtered data, data profiles, etc.). This information is
usually provided by network and security experts.
Configuration device provides information about the current state of the
intrusion detection system (IDS).
Response component initiates actions when an intrusion is detected.
These responses can either be automated (active) or involve human
interaction (inactive).

I
Knowledgebase Configuration

System State

System
State

Detector - ID Engine

i Alarms

Response
Component

Events

Data gathering (sensors)

i
Actions

Raw data
•

Information Source - Monitored System

Figure 2-4. Basic architecture of intrusion detection system (IDS)

3.1 Characteristics of Intrusion Detection Systems

A number of desired characteristics for intrusion detection systems
(IDSs) have been identified [55, 180], as follows:
• Prediction performance. In intrusion detection, simple performance

measure such as prediction accuracy is not adequate. For example, the
network intrusions typically represent a very small percentage (e.g. 1%)
of the entire network traffic, and a trivial IDS that labels all network
traffic as normal, can achieve 99% accuracy. In order to have good

32 Chapter 2

prediction performance, an IDS needs to satisfy two criteria: (i) it must
be able to correctly identify intrusions and (ii) it must not identify
legitimate action in a system environment as an intrusion. Typical
measures for evaluating predictive performance of IDSs include detection
rate and false alarm rate (Table 1). Detection rate is defined as the ratio
of the number of correctly detected attacks and the total number of
attacks, while the false alarm (false positive) rate is the ratio of the
number of normal connections that are incorrectly misclassified as
attacks and the total number of normal connections. In practice, it is very
difficult to evaluate these two measures, since it is usually infeasible to
have global knowledge of all attacks. Since detection rate and false alarm
rate are often in contrast, evaluation of IDSs is also performed using
ROC (Receiver Operating Characteristics) analysis [183]. ROC curve
represents a trade-off between detection rate and false alarm rate as
illustrated in Figure 2-5. The closer the ROC is to the left upper comer of
the graph (point that corresponds to 0% false alarm and 100% detection
rate), the more effective the IDS is.

Table 2-1. Evaluations of intrusions (attacks)
Predicted connection label

Normal Intrusions (Attacks)

Actual , True Negative (TN) False Alarm (FP)
connections

connection — : ;—; --: \
, , , Intrusions ^ , ^̂ . .̂ ^̂ ^ Correctly detected intrusions
label False Negative (FN) T̂ r» ^ /T̂ m

(Attacks) ^ - True Positive (TP)

Time Performance. The time performance of an intrusion-detection
system corresponds to the total time that the IDS needs to detect an
intrusion. This time includes the processing time and the propagation
time. The processing time depends upon the processing speed of the IDS,
which is the rate at which the IDS processes audit events. If this rate is
not sufficiently high, then the real time processing of security events may
not be feasible. The propagation time is the time needed for processed
information to propagate to the security analyst. Both times need to be as
short as possible in order to allow the security analyst sufficient time to
react to an attack before much damage has been done, as well as to stop
an attacker from modifying audit information or altering the IDS itself

Intrusion Detection: A Survey

Different ROC curves

33

1

0.9

0.8

0.7

0.6

O 0.5

B
0) 0.4
Q

0.3

0.2

0.1

0

; 1 1 1 1 II ii 1 1 j ;

1 Perfect
I IDS
r •
1 * 1 #
j •
1 «

[
/

• • r^

/ y
r .*

•

t/ m. 1 1 1 1 L

y*
y

/
•

/
y

' \

\
\

^ Random Prediction

-
J

1 \ 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False alarm rate

Figure 2-5. ROC Curves for different intrusion detection techniques

• Fault tolerance. An IDS should itself be dependable, robust and resistant
to attacks, and should be able to recover quickly from successful attacks
and to continue providing a secure service. This is especially true in the
case of very large distributed DoS attacks, buffer overflow attacks and
various deliberate attacks that can shut down the computer system and
thus IDS too. This characteristic is very important for the proper
functioning of IDSs, since most commercial IDSs run on operating
systems and networks that are vulnerable to different types of attacks. In
addition, IDS should also be resistant to scenarios when an adversary can
cause the IDS to generate a large number of false or misleading alarms.
Such alarms may easily have a negative impact on the availability of the
system, and the IDS should be able to quickly overcome these obstacles.

3.2 Taxonomy of Intrusion Detection Systems (IDSs)

Several classifications of intrusion detection methods have been proposed
in the past [4, 13, 55, 97, 110, 114, 136], but there is still no universally
accepted taxonomy. In this chapter, we present a taxonomy that is based on
the synthesis of a number of existing ones [13, 55]. We use five criteria to
classify IDSs, as summarized in Figure 2-6.

The first criterion is information (data) source, which distinguishes IDSs
based on the system that is monitored, i.e. source of input information (see
Figure 2-4). The source information can be (i) audit trails (e.g. system logs)
on a host, (ii) network connections/packets, (iii) apphcation logs, (iv)

34 Chapter 2

wireless network traffic or (v) intrusion-detection and/or sensor alerts
produced by other intrusion-detection systems.

[IDS Y.

Information
source

Analysis
strategy

Time Aspects

Architecture

Response

/

^

^

Host based

Network based

Application Logs

Wireless networks

Sensor Alerts |

Anomaly Detection

Misuse Detection

Real-time prediction

Off-line prediction

("* pn tra 1 i yf H

Distributed & heterogeneous |

Active response |

1 assive reaCiio 11 1

Figure 2-6. Taxonomy of intrusion detection systems according to proposed six criteria

The analysis strategy describes the characteristics of the detector
(intrusion detection engine from Figure 2-4). When the IDS looks for events
or sets of events that match a predefined pattem of a known attack, this
analysis strategy is called misuse detection. When the IDS identifies
intrusions as unusual behavior that differs from the normal behavior of the
monitored system, this analysis strategy is called anomaly detection.

Time aspects are used to categorize the IDSs into on-line IDSs that detect
intrusions in real time and off-line IDSs that usually first store the monitored
data and then analyze it in batch mode for signs of intrusion.

The architecture of IDSs is used to differentiate between centralized
IDSs that analyze the data collected only from a single monitored system
and distributed IDSs that collect information from multiple monitored
systems in order to investigate global, distributed and coordinated attacks.

Intrusion Detection: A Survey 35

Detection response describes the reaction of the IDS to an attack
(intrusion). If the IDS reacts to the attack by taking corrective action (e.g.
closing holes) or pro-active action (e.g. logging out possible attackers,
closing down services), the response is called active. If the IDS only
generates alarms (including paging security analysts) and does not take any
actions, the response is called passive.

4. INFORMATION SOURCE

Early intrusion detection systems were largely host-based, since
mainframe computers were common and all users were local to the system.
In such an environment, intrusion-detection was focused only on insider
threats, since interaction with outside world was quite rare. The audit
information collected at the mainframe was analyzed either locally [137] or
on a separate machine [204] and security-suspicious events were reported.

However, with the growth of computer networks, there has been an
increasing focus on IDSs for the networked environment. Initial attempts of
intrusion detection in a networked environment were focused on enabling
communication among host-based intrusion-detection systems [93] and then
exchanging information at several levels, either through a raw audit trail
over the network [80, 204], or issuing alarms generated by local analysis
[205].

In the late nineties, the intrusion detection research community debated
the superiority of network-based vs. host-based approaches. However, today
many systems attempt to provide an integrated tool by incorporating both
variants. These IDSs are usually called hybrid IDSs. For example, in the
distributed intrusion detection system (DIDS) developed by Snapp et al
[205], Haystack [80, 204] is used on each host to detect local attacks, while
network security monitor (NSM) [81] is employed to monitor the network.
Both systems. Haystack and NSM, send information to the DIDS Director,
where the final analysis is performed.

Network/host based IDSs typically analyze past network traffic and host
OS activity, but they are unable to detect unauthorized use of specific
applications. This caused the emergence of application-based IDSs that
focus on monitoring interactions between a user and specific applications.

More recently, increasing popularity of wireless networks has caused
intrusion detection researchers to focus on detecting attacks in wireless
environment. Wireless network are highly sensitive and extremely insecure,
as they are vulnerable to easy eavesdropping and jamming thus requiring
additional security poHcies as well as specific intrusion detection techniques.

36 Chapter 2

4.1 Host-based IDSs

Host based intrusion detection systems (IDSs) analyze users' activities
and behavior on a given machine. Host-based IDSs have an advantage that
they are able to work with high quality data that is typically very
informative. However, depending upon the processing performed, host-
based IDSs can significantly impact the performance of the machine they are
running on. In addition, audit sources used in host-based intrusion analysis,
can be easily modified by a successful attack, which represents another
limitation of host-based IDSs. In order to alleviate these drawbacks, host-
based IDSs have to process the audit trail sufficiently fast to be able to raise
alarms before an attacker has an opportunity to observe and/or modify the
audit trail or the intrusion-detection system itself

There are several types of information that are typically used in host-
based IDSs, e.g. (i) system commands, (ii) system accounting, (iii) syslog
and (iv) security audit information.

4.1.1 System commands

System commands are a useful source of information that can be
employed by host based IDSs for detecting malicious users [51, 116, 145,
193]. By analyzing system commands that users invoke in their sessions, it is
possible to build user profiles, which describe users' characteristics and
common behavior. Examples of such logged system commands in Unix are
p s , p s t a t , vmstat , g e t r l i m i t . Information about different events
provided by these commands can be very precise and informative. Since the
audit information is collected as unstructured data, and has to be
preprocessed before analysis.

4.1.2 System accounting

System accounting is present in both Windows and Unix operating
systems. Although the interest for system accounting in Windows
environment is increasing, there have not been many intrusion detection
approaches that used this type of data for intrusion analysis. On the other
hand, system accounting is commonly used in the Unix environment to
collect information on system behavior, such as consumption of shared
resources (e.g. processor time, memory, disk) by the users of the system.
Data generated by system accounting can serve as a valuable and convenient
source of information for IDSs [63].

There are two typical Unix accounting logs that are used for easy
extraction of system behavioral information, without extensive kernel

Intrusion Detection: A Survey 37

modifications often required for detailed auditing, namely: process
accounting and login accounting. The standard file for storing the process
accounting information is p a c c t or a c c t , while the standard file for the
login accounting information is wtmp. Process accounting keeps track of
information about a process at the time of process completion (e.g. user and
group IDs of those that use the process, beginning and elapsed times of the
process, CPU time for the process, amount of memory used). The login
accounting (wtmp) system records information about users' login and logout
from the system. When users successfully log in and log out or
unsuccessfully attempt to login, the Unix kernel appends utmp structures to
the log file.

Use of system accounting as a source of information for IDSs has several
advantages. First, all Unix systems have the same format of the accounting
records. Second, the time needed to store system accounting records is
generally small, since information is compressed. Finally, system accounting
is quite common in the modem operating systems, and it is easy to setup and
use. However, using system accounting also has a few drawbacks that limit
their use in security applications. First, in order to perform real time analysis
of system accounting data, all historical profiles have to be compared to each
currently active profile, which can be computationally intensive. This
generally impacts the system load and therefore slows down potential
statistical data analysis. Second, accounting is either enabled for all users or
not enabled at all, and cannot be selectively activated only for particular
individuals of interest. Third, system accounting logs require a large amount
of disk storage, and hence, they must be periodically removed. Fourth, the
accounting structures limit the length of recorded command name to only a
fixed number of characters (typically eight), thus losing important
information (e.g. common arguments are not recorded). Finally, the
accounting data is recorded only when the application terminates, so
continuously running executables such as system daemons (e.g. sendmail)
are never audited (these applications have to be audited using syslogs). In
such cases, it is only possible to perform off-line intrusion analysis.

Due to these drawbacks of system accounting, its use is not very
common. Nevertheless, there are several systems that employ this
information for intrusion detection [54, 63]. For example, the statistical and
neural network modules in Hyperview [54] use system accounting only as
additional information to security audit, but not as a substitute for it, while
anomaly-based detection techniques in Eschrich's thesis [63] use accounting
logs to identify imposters. Imposters are special class of intruders who are
valid users in a system but gain illegal access to the account of other users.

38 Chapter 2

4.1.3 System log information

System log data contains information that is not available at the network
level, such as when users log in, when they send email, who they send email
to, which ftp logs commands are issued, and which files are transferred.
Capturing and collecting system log file information in a readable format is
typically performed by the syslog daemon.

One of the major drawbacks of using syslog information for intrusion
detection is that syslog information is not very secure, since several syslog
daemons exhibit buffer overflow exploitation [33]. On the other hand, due to
straightforward use of syslog, this information is widely employed by
numerous network services and applications, such as log in , sendmail ,
n f s , h t t p , as well as security-related tools such as sudo, klaxon, or TCP
wrappers [55]. For example, Swatch [78] and TkLogger [85] perform regular
expression matching against system log files, search for certain pattems and
take appropriate actions when they are found. These tools are especially
useful for identifying things that may indicate very specific problems.

4.1.4 Security audit processing

The security audit trails represent records that contain all potentially
important activities related to the security of the system. Since these
activities are usually logged to a file in chronologically sorted order, their
analysis could allow easier investigation of sequential intrusive pattems. One
of the most popular security audit trails is BSM (Basic Security Module),
auditing facility in Solaris operating system form Sun Microsystems Inc
[219]. BSM monitors security related events and records the "crossing of
instructions executed by the processor in the user space and instructions
executed in the kerneF [219].

In general, the security audit trail can provide information about full
system call traces, which includes detailed user and group identification, the
parameters of system call execution, memory allocation, context switches,
internal semaphores, and successive file reads that typically do not appear in
the regular audit trail. In addition, advantages of using security audit data
include strong user authentication, easier audit system configuration, and
fine-grain parameterization of collected information [55]. On the other hand,
drawbacks of using security audit trails include complex setup, intensive
resource requirement and possible vulnerability to DoS attack due to filling
audit file system [55].

Several research groups [77, 155, 180, 217] have been actively using
security audit trails mainly for host-based intrusion detection systems. The
focus of their research has been mainly to define what information the

Intrusion Detection: A Survey 39

security audit trail should contain in order to increase the IDS prediction
performance as well as to establish an acceptable common format for audit
trail records.

4.2 Network-based information sources

With rapidly growing popularity of the Intemet, there have been an
increasing number of attacks aimed at the network itself (e.g. spoofing, TCP
hijacking, port scanning, ping of death) that cannot be (at least not easily)
detected by examining the host audit trail alone. These reasons have led to
the development of specific tools that sniff network packets [161, 175, 224]
in real time and facilitate searching for network attacks. In addition, by
analyzing the payload of the packet, a number of typical attacks against
servers can also be detected.

There are several advantages of using network based IDSs over host-
based IDSs. First, network-based IDSs can be installed such that they do not
have effect on existing computer systems or infrastructures. Second, they are
usually more resistant than host-based IDSs, since they do not reside on the
hosts that may be the targets of certain attacks. Third, the majority of
network-based IDSs typically do not depend on the operating system that is
used and can extract useful information at a network level (e.g. packet
fragmentation). Finally, they can be installed at strategic points in a network
(e.g. routers, borders) where they can be used to watch all traffic passing
through these ports and therefore used to discover network attacks.
However, their major drawbacks are their weak scalability, high possibility
for dropping packets in fast networks under heavy load, and inability to
perform intrusion detection when data is encrypted.

Network based intrusion detection systems analyze various kinds of
information that are obtained by monitoring network infrastructures. Typical
sources of such information are network connections/packets collected by
network sniffers and management information between network devices
collected due to use of Simple Network Management Protocol (SNMP).

4.2.1 Network connections and network packets

Network packet sniffers are commonly used for collecting information
about events that occur on a network. Sniffers capture copies of network
packets directly from the network interface and provide administrators with
detailed information about the IP addresses of senders and receivers, the
number of transferred packets/ bytes and other low-level information about
those packets. Certain sniffers also provide protocol-level analysis of data

40 Chapter 2

flowing through network, packet by packet. This information is typically
beneficial for administrators to diagnose and fix network related problems.

Some organizations also collect information about network events at the
firewalls. There are several categories of firewalls (packet filters, circuit
level gateways, application level gateways and stateful multilayer inspection
firewalls [21, 231]) that all collect firewall logs and use them to detect
suspicious activity and alert human analysts.

Use of network connections/packets as source of intrusion detection data
has several advantages:
- There are numerous network-specific attacks (e.g. large distributed

denial-of-service attacks) that cannot be detected using audit information
on the host but only using information about network infrastructure.

- TCP/IP standardization of network traffic facilitates collecting,
formatting and analyzing information from heterogeneous audit trail
formats that come from different portions of large and complex networks.

- Using the payload information (content of the packets) can be very
informative in detection of attacks against hosts.

However, using network connections/packets also has several drawbacks:
- When an intrusion has been detected, it is not straightforward to identify

an attacker, since there is no direct association between network
connections/packets and the identity of the user who actually performed
the attack.

- If the packets are encrypted, it is practically impossible to analyze the
payload of the packets, as important information may be hidden from
network sniffers. In addition, if the attack signatures are not sufficiently
comprehensive, it is possible to evade detection by making the contents
of the packet more complex [184].
Packet sniffers can be placed at the gateways between the protected

system and the outside world, or on switches within the network. Which of
these is the most appropriate location, it is not always clear. Placing sniffers
on switches gives better audit information but at a higher cost, due to a larger
number of switches in the network. Nevertheless, networks that use switches
are commonly used since they are less vulnerable to sniffer attacks [42, 184].

Network packets are the source of information used by most of the recent
commercial products [8, 47, 89, 159, 160, 210, 222, 238], as well as by
many projects in the research community [61, 120, 142, 174, 188, 192, 216].
Other network-based systems such as Bro [174] have been developed as
network data-acquisition tools, but not as tools to directly support intrusion-
detection task.

Intrusion Detection: A Survey 41

4.2.2 Simple Network Management Protocol (SNMP) information

The Simple Network Management Protocol (SNMP) is the Internet
standard operations and maintenance protocol that facilitates the exchange of
management information between network devices. SNMP was designed to
help network administrators to manage network performance, to find and
solve network problems, and to minimize resources necessary for supporting
network management.

An SNMP-managed network typically consists of three components:
managed devices, agents, and one or more network management systems
(NMSs). A managed device corresponds to any SNMP-compliant equipment
that resides on a managed network, collects management information and
sends this information to NMSs using SNMP. Examples of managed devices
include routers, switches, hubs, workstations, printers, etc. An agent is
typically a ''network-management software''' module that resides on a
managed device. The agent gathers management information from managed
devices and converts that information into a format that can be passed over
the network using SNMP. Finally, an NMS monitors and controls managed
devices, issues requests and returns responses from devices. Information
collected from NMSs can serve as a useful audit source.

One of the earliest projects that used SNMPvl Management Information
Base (MIB) for Ethernet and TCP/IP was SECURENET [212]. The
SECURENET project showed that the counters maintained in the SNMPvl
MIBs could be potentially interesting as an audit source for anomaly
detection techniques. SNMPv2 and SNMPv3 have also been used for
security and intrusion detection [100], but the failure of SNMPv2 has
lowered the interest of the intrusion-detection community in these
information sources.

4.3 Application log files

Application based IDSs monitor only specific applications such as
database management systems, content management systems, accounting
systems, etc. An application based IDS has access to types of information
that network based or host based IDSs do not have. For example, by
analyzing application log files, application based IDSs can detect many types
of computer attacks, suspicious activities that can be difficult to detect using
host based or network based IDSs. In addition, they can be used to trace
down unauthorized activities from individual users or to analyze encrypted
data by employing application-based encryption/decryption services [20]. As
application servers have recently become increasingly popular, application
log files are used more often as an information source for intrusion detection.

42 Chapter 2

In general, there are two approaches to implement application based IDSs
[20]. In the first approach, IDS monitors an application and analyzes its audit
log files. This post analysis allows suspicious activities in the application to
be observed easily, but only after they happen. In a second, more complex
approach, application based IDS is integrated into the application itself. This
integration allows IDS to analyze the data at the same time the application
interprets it, to detect attacks in real-time making it possible to take an
immediate action.

The operation of an application based IDS in general is not impacted by
the total amount of network traffic unless most of the traffic is due to the
application (e.g., at a large commercial vendor sites such as Amazon.com,
appHcation-based IDSs highly depend on the network traffic).

In general, appHcation based IDSs offer several advantages:
- Unencrypted information. Unlike the analyzed data at the network level,

the data at the application level is not encrypted, thus giving more
information for intrusion analysis to application based IDSs.

- Prediction performance. Since an application based IDS focuses on
monitoring operations specific to the application, it is easier to define the
normal and the anomalous behavior. There are certain types of
information (e.g. query logs from database applications) that are
available only to appHcation based IDSs but not visible to the operating
system. As a result, application based IDSs can detect intrusions that are
not detectable by host-based IDSs. This results in a lower false alarm
rate, as well as in higher detection rate.

- Complete sessions. Unlike network monitoring where network
connection may be fragmented during recording, the application typically
records complete transaction, and there is no inconsistency involved in
the reconstruction of session records.

- Prevention. When an application based IDS is embedded in the
application module itself, it can stop the intruder from proceeding with
the attack by denying malicious operations.

However, application based IDSs have also certain limitations:
- Performance penalty. When an application based IDS is not a part of an

application itself, it usually needs to be installed on the same host as the
application. In such scenario, this installation could result in a decrease in
the system performance.

- Larger system overhead. Since the application based IDSs have to be
installed on every individual host machine, and the organization may
have numerous hosts, there is a larger administration overhead.

- Non-detectable attacks below the application layer. Although analyzing
the data at the application level allows application-based IDSs access to

Intrusion Detection: A Survey 43

encrypted information, they are not able to detect attacks that target
protocols below the application layer.

- Specific development. Every application based IDS has to be developed
for a specific application, since there is no general application-based IDS.

4.4 Wireless networks

Wireless network systems have become increasingly popular recently,
mainly due to the ease of their installation and maintenance. However, this
convenience comes at a price, since wireless networks pose a serious
security risk. There are numerous, potentially devastating threats that have
emerged in wireless networks that are more difficult to detect due to the
following reasons [3, 88, 126]:
- Physical layer in wireless networks is essentially a broadcast medium and

therefore less secure than in fixed computer networks. For example, an
attacker that enters the wireless network, bypasses existing security
mechanisms and can easily sniff sensitive and confidential information.
In addition, the attacker also has access to all the ports that are regularly
available only to the people within the network. In wired networks,
attempts to access these ports from outside world through Internet are
stopped at the firewalls. Finally, the attacker can also excessively load
network resources thus causing denial of service to regular users.

- There are no specific traffic concentration points (e.g. routers) where
packets can be monitored, so each mobile node needs to run an intrusion
detection system.

- Separation between normal and anomalous traffic is often not clear in
wireless ad-hoc networks, since the difference between compromised or
false node and the node that is temporarily out of synchronization due to
volatile physical movement can be hard to observe.
There are currently only a few commercial wireless IDS solutions [3, 88]

in the market that try to detect a wide range of known attacks as well as
identify abnormal network activities and policy violations for wireless
networks. For Linux operating system, Lin et al have developed a
homegrown wireless IDS [126] along with a freely available software. Other
open source solutions include Snort-Wireless [208] and WIDZ [239].

4.5 Alerts from intrusion detection systems

Due to increase in a traffic volume, current commercial IDSs usually tend
to produce a very large number of alarms [185]. These alarms are raised both
for actual intrusions (attacks), but very often for regular behavior, thus
increasing false alarm rate and overwhelming security administrator. In

44 Chapter 2

addition, a large distributed DoS or scanning attack may trigger multiple
alarms since many network connections are involved in such attacks. This
further increases the number of alarms that security analysts have to analyze.
In order to decrease this number, the threshold for detecting intrusions is
raised, but this can reduce the overall detection rate.

Due to these reasons, a number of researchers have attempted to develop
a new generation of intrusion-detection systems that correlate information
from several, "lower-level" IDSs to identify intrusions [50, 101, 168, 177,
186, 225, 229]. These IDSs employ different correlation and data-mining
techniques in order to reduce both false alarm rate and the burden on the
security analyst. In addition, some of these IDSs can typically provide
security analysts with a summarized view of detected anomalous activities.
Examples of such IDSs include distributed intrusion detection system
(DIDS) [217] that correlates user identification by using information from
sensors and GrIDS [225] that measures the traffic on hosts and network links
and then correlates information from sensors on multiple networks. In
general, there are three basic groups of alert correlation methods:
- Methods based on similarities between alert attributes (features) [101,

229] compare the degree to which alerts have similar features (e.g. source
IP address, destination IP address, ports), and then correlate alerts with a
high degree of feature similarity.

- Correlation methods based on known attack scenarios [50, 186, 225]
utilize the fact that intrusions often require several actions to take place in
order to succeed (e.g. to carry out a DoS attack on the DNS server, the
attacker could first do an nslookup, ping, and scan port 139, and then a
winnuke (sends out-of-Band data to an IP address of a windows
machine)). Every attack scenario has corresponding steps required for the
success of the attack. Low-level alerts from IDS(s) are compared against
the predefined attack scenario before the alerts can be correlated. Major
drawbacks of this method are (i) it requires that human users specify the
attack scenarios and (ii) it is limited to detection of known attacks.

~ Correlation methods based on preconditions and consequences of
individual attacks [168] work at a higher level then correlation based on
feature similarities, but at a lower level then correlation based on known
scenarios. Preconditions are defined as conditions that must exist for the
attack to occur, and the consequences of the attack are defined as
conditions that may exist after a specific attack has occurred.

Intrusion Detection: A Survey 45

5. ANALYSIS STRATEGY: MISUSE DETECTION
VS. ANOMALY DETECTION

There are two primary approaches for analyzing events to detect attacks;
namely misuse detection and anomaly detection. Misuse detection is based
on extensive knowledge of known attacks and system vulnerabilities
provided by human experts. The misuse detection approaches look for
hackers that attempt to perform these attacks and/or to exploit known
vulnerabilities. Although the misuse detection can be very accurate in
detecting known attacks, misuse detection approaches cannot detect
unknown and emerging cyber threats.

Anomaly detection, on the other hand, is based on the analysis of profiles
that represent normal behavior of users, hosts, or network connections.
Anomaly detectors characterize normal "legitimate" computer activity using
different techniques and then use a variety of measures to detect deviations
from defined normal behavior as potential anomaly. The major benefit of
anomaly detection algorithms is their ability to potentially recognize
unforeseen attacks. However, the major limitation is potentially high false
alarm rate. Note that deviations detected by anomaly detection algorithms
may not necessarily represent actual attacks, as they may be new or unusual,
but still legitimate, network behavior.

Many contemporary IDSs integrate both approaches to benefit from their
respective advantages [164, 167, 200, 207].

5.1 Misuse Detection

Misuse detection is the most common approach used in the current
generation of commercial intrusion detection systems (IDSs). The misuse
detection approaches can be classified into the following four main
categories: (i) signature-based methods, (ii) rule-based techniques, (iii)
methods based on state-transition analysis, and (iv) data mining based
techniques.

5.1.1 Signature-based techniques

Signature-based IDSs operate analogously to virus scanners, i.e. by
searching a database of signatures for a known identity - or signature - for
each specific intrusion event. In signature-based IDSs, monitored events are
matched against a database of attack signatures to detect intrusions.
Signature-based IDSs are unable to detect unknown and emerging attacks
since signature database has to be manually revised for each new type of
intrusion that is discovered. In addition, once a new attack is discovered and

46 Chapter 2

its signature is developed, often there is a substantial latency in its
deployment across networks [130]. The most well known signature-based
IDSs include SNORT [207], Network Flight Recorder [167], NetRanger
[47], RealSecure [89], Computer Misuse Detection System (CMDS™)
[230], NetProwler [14], Haystack [204] and MuSig (Misuse Signatures)
[127].

SNORT [207] is a widely used open source signature-based network
IDS, which is used for performing real-time traffic logging and analysis over
IP networks. Currently, SNORT has an extensive database of over a
thousand attack signatures. There are three main modes in which SNORT
can be configured; namely sniffer, packet logger, and network IDS. In the
sniffer mode, SNORT monitors the network packets and continuously
displays them on the console. Packet logger mode is used to store (log) the
packets to the disk. In the network intrusion detection mode, the system
analyzes network traffic for matches against a database of user defined rules
and performs one of five corresponding actions:
- Alert - raise an alarm using the selected alert method and then log the

packet;
- Log - log the analyzed packet;
- Pass - ignore the analyzed packet;
- Activate - generate an alert and then tum on another dynamic rule;
- Dynamic - stay inactive until turned on by an activate rule.

Network Flight Recorder (NFR) is a network-based IDS that also creates
alerts based on rules. These rules, called "backends" in NFR terminology,
contain filters (hard-coded signatures) written to trigger in response to
different computer attacks. NFR includes a complete programming
language, called N, designed for packet analysis and creating filters.

NetRanger [47], an IDS developed at Cisco, was introduced to intrusion
detection community in November 1998. Over the years NetRanger grew
into a more complex Cisco IDS [46] that provides complete intrusion
protection and is a component of a SAFE BluePrint Cisco security system.
NetRanger is composed of three major components: sensors, director and
post office. Sensors are network appliances that analyze the network traffic
using a rule-based engine, which distills large volumes of network traffic
into meaningful security events, which are then forwarded to a Director.
Directors are responsible for the management of security across a distributed
network of sensors and can be structured hierarchically to manage large
networks. Finally, the post office provides communication between
NetRanger services and hosts.

RealSecure, is an earlier version of the Proventia system developed at
Intemet Security Systems [182]. While Real Secure was principally a
signature-based IDS composed of three modules: network engines, system

Intrusion Detection: A Survey Al

agents, and managers, Proventia provides a more complete security solution
including: inspection firewall, antivirus protection, intrusion detection and
prevention, anti-spam filters and application protection.

CMDS [230] was a predecessor of Intrusion SecureHost [90], which
represents a host-based IDS that monitors and protects applications at the
kernel level of operating system by building a profile of the application's
normal behavior based on the ^^code paths of a running program".
NetProwler [14] is another host basd IDS that is based on "Stateful Dynamic
Signature Inspection" virtual processor proposed by Anxent, which was
acquired by Symantec recently. Today, NetProwler is a part of Symantec
Intruder Alert IDS [220]. NetProwler collects various types of information
"sniffed" from the network and then integrates them into more complex
events that are matched against predefined signatures in real time. In
addition, the system can install novel signatures without stopping the
intrusion detection process.

The Haystack prototype [204] was one of the first signature based IDSs
developed for the task of intrusion detection in a multi-user Air Force
computer system. Haystack employs both misuse detection and anomaly
detection strategy for detecting intrusions. The misuse detection module
identifies intrusions according to behavioral constraints (rules) imposed by
official security policies. On the other hand, the anomaly detection module is
based on building profiles of users' behavior in the past and on constructing
generic user group models that describe generic acceptable behavior for a
particular group of users.

Adaptable real-time misuse detection system (ARMD) [127], developed
at George Mason University, provides a high-level language for abstract
misuse signatures, called MuSigs, and a mechanism to translate MuSigs into
a monitoring program. With the notion of abstract events, the high-level
language specifies a MuSig as a pattern over a sequence of abstract events,
which is described as conditions that the abstract event attributes must
satisfy. In addition, on the basis of MuSigs, the available audit trail, and the
strategy costs, ARMD uses a strategy generator to automatically generate
monitoring strategies to govern the misuse detection process.

Kumar and Spafford proposed a generalized framework for matching
intrusion signatures based on Colored Petri Nets [113]. In this approach,
every signature of an attack is represented as a Petri net, and start states and
final state are used to perform signature matching.

5.1.2 Rule-based systems

Rule-based systems use a set of "if-then" implication rules to characterize
computer attacks. At the early stage of intrusion detection era, rule based

48 Chapter 2

languages represented one of the regular methods for describing the expert's
knowledge that is collected about numerous attacks and vulnerabilities. In
rule-based IDSs, security events are usually monitored and then converted
into the facts and rules that are later used by an inference engine to draw
conclusions. Examples of such rule-based IDSs include Shadow [170], IDES
[56, 95, 138, 139], NIDX [19], ComputerWatch [58], P-BEST [129], ISOA
[241, 242] and AutoGuard that uses case-based reasoning [66, 67].

IDES [138] is a rule-based expert system trained to detect known
intrusion scenarios, known system vulnerabihties, and site-specific security
policies. IDES can also detect (i) outside attacks from unauthorized users;
(ii) internal attacks from authorized users who masquerade as other users and
(iii) attacks from authorized users who abuse their privileges by avoiding
access controls. NIDX [19] extends the IDES model by including system
dependent knowledge such as a description of file systems, and rules
regarding system policies. It integrates (i) information obtained from the
target computer system, (ii) user profiles built through history and (iii)
intrusion detection heuristics into rules that are used to detect violations from
the audit trail on the target system.

The ComputerWatch [58] data reduction tool was developed as an expert
system IDS by the Secure Systems Department at AT&T. Computer Watch
employs the host audit trail data to summarize system security activities and
provides mechanisms for further investigation of suspicious security events
by security analysts. The tool checks users' actions according to a set of rules
that describe proper usage policy, and flags any suspicious action that does
not match the acceptable patterns.

Production Based Expert System Toolset (P-BEST) [129] is a rule-based,
forward-chaining expert system developed at SRI, and used in the
EMERALD IDS [179]. The system was first deployed in the MIDAS ID
system at the National Computer Security Center, and then used as the rule-
based inference engine of NIDES, which is an IDES successor. P-BEST is a
programmable expert system shell that consists of the definition of several
fact types, and a set of inference rules on these facts. Inference rules are
composed of two parts. The first part is a guard, which tests the existence of
facts satisfying logical expressions; and the second part is composed of
actions upon the fact base (adding, removing, modifying facts) and of calls
to external functions.

ISOA (Information Security Officer's Assistant) [241, 242] is a real time
IDS for monitoring security relevant behavior in computer networks. ISOA
serves as the central point for real-time collection and analysis of audit
information. It has two components; i.e. statistical analysis module and an
expert system. These components cooperate in the automated analysis of
various "concern levels". If a recognized set of indicators are matched,

Intrusion Detection: A Survey 49

concern levels increase and the IDS starts to analyze the growing classes of
audit events in more details to flag suspicious users or hosts.

5.1.3 State transition analysis

Intrusion detection using state transition analysis requires the
construction of a finite state machine, in which states correspond to different
IDS states, and transitions characterize certain events that cause IDS states to
change. IDS states correspond to different states of the network protocol
stacks or to the integrity and validity of current running processes or certain
files. Every time when the automation reaches a state that is flagged as a
security threat, the intrusion is reported as a sign of malicious attacker
activity. This is the technique first proposed in USTAT (Unix State
Transition Analysis Tool) [86, 178] and later in NetSTAT (Network-based
State Transition Analysis Tool) [232].

USTAT, developed at UC Santa Barbara, is a real-time state transition
analysis tool developed for the Unix system and based on STAT (State
Transition Analysis Tool) [178]. STAT introduced the idea of representing
computer attacks with high level descriptions and providing an expert
system model to detect compromises. In STAT, attack scenarios are
represented as states that describe security status of the system, and
intrusions are detected by modeling the transition between states. The
computer initially exists in a secure state, but as a result of a number of
intrusions it may end up in a compromised target state. USTAT uses the C2
security audit trail data produced by the computer as the source of
information about the system's state transitions. It records only those critical
actions that have visible effect on the system state and must happen in order
to successfully complete the penetration.

NetSTAT is a real-time network-based IDS that employs state transition
analysis techniques from the STAT approach, for detecting intrusions that
occur in a networked environment. The networked environment is
represented by hypergraphs, where network interfaces are modeled as nodes,
and hosts are modeled as edges of the hypergraph. By using state transition
analysis for the states of network attacks, it is possible to automatically
determine which network events have to be monitored in order to support
intrusion analysis.

5.1.4 Data mining based techniques

In data mining methods for misuse detection, each instance in a data set
is labeled as 'normal' or 'intrusive' and a learning algorithm is trained over
the labeled data. These techniques are able to automatically retrain intrusion

50 Chapter 2

detection models on different input data that include new types of attacks, as
long as they have been labeled appropriately. Research in misuse detection
has focused mainly on classification of network intrusions using various
standard data mining algorithms [16, 74, 121, 140, 202], rare class predictive
models [40, 98, 99], cost sensitive modeling [99] and association rules [16,
122, 143]. Unlike signature-based intrusion detection systems, models of
misuse are created automatically, and can be more sophisticated and precise
than manually created signatures. The advantage of data mining based
misuse detection techniques over signature-based intrusion detection systems
is their high degree of accuracy in detecting known attacks and their
variations.

MADAM ID [120, 122] at Columbia University was one of the first
project that applied data mining techniques to the intrusion detection
problem. Association rules and frequent episodes were extracted from
network connection records to obtain additional features for data mining
algorithms. Three groups of features are constructed, namely: content-based
features that describe intrinsic characteristics of a network connection (e.g.
number of packets, acknowledgments, data bytes from source to
destination), time-based traffic features that compute the number of
connections in some recent time interval (e.g. last few seconds) and
connection based features that compute the number of connections from a
specific source to a specific destination in the last N connections (e.g. N =
1000). In addition to the standard features that were available directly from
the network traffic (e.g. duration, start time, service), these constructed
features were also used by the RIPPER algorithm to leam intrusion detection
rules from DARPA 1998 data set [132, 133].

Other classification algorithms for the intrusion detection problem
include decision trees [24, 202], modified nearest neighbor algorithms [246],
fuzzy association rules [26, 72, 140], neural networks [30, 51, 131, 247],
naiVe Bayes classifiers [196], genetic algorithms [26, 145], genetic
programming [158], support vector machines [65, 156], and adaptive
regression splines [157]. Most of these approaches attempt to directly apply
specified standard techniques to some of publicly available intrusion
detection data sets [132, 133], assuming that the labels for normal and
intrusive behavior are already known.

Computer intrusions, however, are much rarer than normal behavior, and
in such scenarios standard classification algorithms do not perform well.
Thus, some researchers have developed specially designed algorithms for
handhng rare classes and applied them to the problem of intrusion detection
[40,98,99].

Finally, association pattems, often expressed in the form of frequent
itemsets or association rules, have also been found to be valuable for

Intrusion Detection: A Survey 51

analyzing network traffic data [16, 121, 143]. In [121], association patterns
generated at different times were used to study significant changes in the
network traffic characteristics at different periods of time, while in [16, 121,
143] they were used to construct a profile of the normal network traffic
behavior for anomaly detection systems.

5.2 Anomaly Detection

Increase in the number of computer attacks, in their severity and
complexity has raised substantial interest in anomaly detection algorithms
due to their potential for recognizing unforeseen and emerging cyber
activities. There are many anomaly detection algorithms proposed in the
literature that differ according to the information used for analysis and
according to techniques that are employed to detect deviations from normal
behavior. In this section, we provide classification of anomaly detection
techniques based on employed techniques into the following five groups: (i)
statistical methods; (ii) rule based methods; (iii) distance based methods (iv)
profiling methods and (v) model based approaches. Although anomaly
detection algorithms are quite diverse in nature, and thus may fit into more
than one proposed category, our classification attempts to find the most
suitable category for all described anomaly detection algorithms.

5.2.1 Statistical methods

Statistical methods monitor the user or system behavior by measuring
certain variables over time (e.g. login and logout time of each session). The
basic models keep averages of these variables and detect whether thresholds
are exceeded based on the standard deviation of the variable. More advanced
statistical models also compare profiles of long-term and short-term user
activities. These statistical models are used in host-based IDSs, network-
based IDSs, as well as in application-based IDSs for detecting malicious
viruses. Some of the first proposed anomaly detection algorithms were
integrated in well known IDSs such as IDES [56, 95, 138, 139], NIDES [6],
EMERALD [164, 179] and SPADE [214].

IDES [138], whose misuse detection module is explained in section
4.1.2., also has an anomaly detection module. This module characterizes
normal user activity using an audit data and detects deviations from
described normal user behavior. Each new audit record is processed as it
enters the system, and verified against the known profile. To further
distinguish unusual but authorized behavior, the prototype was extended to
handle two sets of profiles for monitored subjects depending on whether the
activity took place on "normal" or "suspicious" days. The security analyst

52 Chapter 2

defines whether working days are "normal" or not. The NIDES system [6]
extends IDES by integrating results from misuse detection component with
the results produced by the anomaly detection module. NIDES monitors
ports and addresses and builds a statistical model of long term behavior over
a period of hours or days, which is assumed to contain few or no attacks. If
short-term behavior (seconds, or a few packets) differs significantly from
normal, then an alarm is raised.

EMERALD [164, 179] has statistical profile-based anomaly detection
module that tracks subject activity through one of four types of statistical
variables: categorical, continuous, traffic intensity (e.g., volume over time),
and event distribution (e.g., a meta-measure of other measures). The eBayes
system [228] is a recently developed module that extends earlier anomaly
detection component from the EMERALD system [164, 179] by encoding
probabilistic models of normal, attack, and anomalous behavior modes with
hypotheses. The eBayes system first collects basic variables of network
sessions as well as derives new ones (e.g. maximum number of open
connections to any unique host), and then applies probabilistic Bayesian
inference to them in order to obtain a belief for the session over the states of
hypotheses. For example, the session hypotheses in the eBayes TCP tree
may correspond to both normal traffic modes (MAIL, FTP, etc.) and to
attack scenario modes PORTSWEEP, SYNFLOOD, etc.). The eBayes builds
a table of conditional probabilities for all the hypotheses and variables,
which is adjusted every time the current observation is made. The eBayes
has an option of detecting novel attacks by dynamically generating new
hypothesis, which is obtained by adding a fake state of hypothesis and a new
conditional probability table row initialized by a uniform distribution.

Similarly to eBayes, many anomaly detection techniques have been
proposed recently to overcome limitations of earlier statistical anomaly
detection algorithms. For example, SPADE [214] is a statistical based
system, that is available as a plug-in for SNORT as a plug-in, and used for
automatic detecting stealthy port scans. Unlike traditional scan detectors that
look for X events in Y seconds, SPADE takes a fundamentally different
approach and looks at the amount of information gained by probing. It has
four different methods of calculating the likelihood of packets, of which
most successful method measures the direct joint probability P(dest IP, dest
Port) between destination IP address and destination port. SPADE examines
TCP-SYN packets and maintains the count of packets observed on (destIP,
destPort) tuples. When a new packet is observed, SPADE checks the
probability of observing that packet on the (dest IP, dest Port) tuple. The
lower the probability of the packet, the higher the anomaly score. However,
in a real life system, SPADE gives a high false alarm rate, since all unseen

Intrusion Detection: A Survey 53

(dest IP, dest Port) tuples are detected as attacks regardless whether or not
they correspond to actual intrusions.

Another recently proposed statistical method employs statistical traffic
modeling [29] for detecting novel attacks against networks. In this approach,
a network activity model is used to detect large classes of Denial of Service
and scanning attacks by monitoring the network traffic volume. By applying
the KolmogorovSmimov test on the DARPA dataset [132], it was
demonstrated that, for example, normal telnet connections are statistically
different from the attacks that use telnet connections.

Chi-square (x^) statistics have also been successfully used to detect
anomalies both in host-based and network based intrusion detection. For
host-based IDSs, Ye [245] proposed approach where activities on a host
machine are captured through a stream of events and then characterized by
the event type. For each event type, the profiles of audit events from normal
behavior are defined, and then used to compute y^ as a measure of difference
between the test audit event and the normal audit event, whereas large
deviations are detected as anomaHes. In network based IDS, the chi-square
statistic has also been used [111] to differentiate the payload distribution
(distribution of characters in the content of the network packets) in normal
network packets and anomalous ones.

Some researchers have used outlier detection algorithms for anomaly
detection, since outliers are typically defined as data points that are very
different from the rest of the data. The statistics community has studied the
concept of outliers quite extensively [17]. In these techniques, the data points
are modeled using a stochastic distribution, and points are determined to be
outliers depending on their relationship with this model. For example,
SmartSifter [244] uses a probabilistic model as a representation of
underlying mechanism of data generation, and scores each data example by
measuring how large the model has changed after the leaming. Smart sifter
extension [243] gives positive labels to higher scored data and negative to
the lower scored data, and then constructs an outlier filtering rule by
applying supervised leaming. Eskin's approach [64] computes the likelihood
of data distribution Lt{D) at some specific time interval /, removes a data
example at the interval /-I and measures the likelihood of data distribution
without removed data example Lt.j(D). The probability that removed data
example is an outlier is proportional to the difference between the new
likelihood Lt.j(D) and the original one Lt(D). Information theoretic measures
such as entropy, conditional entropy, relative conditional entropy,
information gain, and information cost [123] were also proposed for
anomaly detection task. These measures were used to characterize the
characteristics of an audit data set by measuring their regularity, and to build
appropriate anomaly detection models according to these regularity

54 Chapter 2

measures. The higher regularity of audit data, the better the anomaly
detection module is.

Statistic based anomaly detection techniques have also been used in
detecting malicious viruses through e-mail messages. For example, the MET
(Malicious Email Tracking) [22] system keeps track of email attachments as
they are exchanged between users through a set of collaborating email
servers that forward a subset of their data to a central data warehouse and
correlation server. Only attachments with a high frequency of appearance are
deemed suspicious, while the email exchange patterns among users are used
to create models of normal behavior. MET system contains MET server and
MET clients. MET server is used to collect data on malicious activity, store
them in a database, and calculate derived statistics, while MET clients
analyze email attachments across all mail domains and then detect email-
based attacks.

5.2.2 Distance based methods

Most statistical approaches have limitation when detecting outliers in
higher dimensional spaces, since it becomes increasingly difficult and
inaccurate to estimate the multidimensional distributions of the data points
[2]. Distance based approaches attempt to overcome limitations of statistical
outher detection approaches and they detect outliers by computing distances
among points. Several distance based outlier detection algorithms have been
recently proposed for detecting anomalies in network traffic [117]. These
techniques are based on computing the full dimensional distances of points
from one another [107, 187] using all the available features, and on
computing the densities of local neighborhoods [25, 117]. MINDS
(Minnesota Intrusion Detection System) [61] uses net-flow data to extract
useful set of features to be used in anomaly detection. MINDS anomaly
detection module employs an outlier detection algorithm to assign an
anomaly score to each network connection. A human analyst then has to
look at only the most anomalous connections to determine if they are actual
attacks or other interesting behavior. MINDS anomaly detection module is
used at the University of Minnesota and is also incorporated into the
Interrogator architecture at the ARL Center for Intrusion Monitoring and
Protection (CIMP), where network data from multiple sensors are collected
and analyzed by human analysts to detect intrusions and attacks.
Experiments on live network traffic at the University of Minnesota and at the
ARL-CIMP have shown that MINDS is able to routinely detect various
suspicious behavior (e.g. policy violations), worms, as well as various
scanning activities,

Intrusion Detection: A Survey 55

In addition, in several clustering based techniques (fixed-width and
canopy clustering [65]), network intrusions in DARPA 1998 evaluation data
sets have been detected as small clusters when compared to the large ones
that corresponded to the normal behavior.

In another interesting approach [68], artificial anomalies in the network
intrusion detection data are generated around the edges of the sparsely
populated data regions, thus forcing the leaming algorithm to discover the
specific boundaries that distinguish these regions from the rest of the data.

5.2.3 Rule based systems

Rule based systems used in anomaly detection characterize normal
behavior of users, networks and/or computer systems by a set of rules.
Examples of rule based IDSs include ComputerWatch [58] and Wisdom &
Sense [124, 125].

ComputerWatch system [58] employs a typical rule based system that
summarizes "normal" security events and then detects anomalous behavior
as deviations from them. The rule system creates rules to describe proper
usage policy, to check users' actions according to these rules, and to flag any
action that does not match the described rule pattems. Wisdom & Sense
[124, 125] employs historic audit data to produce a set of rules describing
normal behavior, forming the "wisdom" of the title. These rules are then fed
to an expert system that evaluates recent audit data for violations of the
rules, and alerts the security analyst when the rules indicate ("sense")
anomalous behavior.

Recently, Valdes [227] proposed an unsupervised technique that does not
require attack free training data and detects novel scans through pattem-
based anomaly detection. The model assigns network connections into one
of a number of modes discovered by competitive leaming. The technique is
applied to port pattems in TCP sessions in simulated and real network
traffic.

5.2.4 Profiling metliods

In profiling methods, profiles of normal behavior are built for different
types of network traffic, users, programs etc., and deviations from them are
considered as intrusions. Profiling methods vary greatly ranging from
different data mining techniques to various heuristic-based approaches. In
this section, we provide an overview of several distinguished profiling
methods for anomaly detection.

ADAM (Audit Data and Mining) [16] is a hybrid anomaly detector
trained on both attack-free traffic and traffic with labeled attacks. The

56 Chapter 2

system uses a combination of association rule mining and classification to
discover attacks in tcpdump data. One of the advantages of ADAM is its
ability to detect novel attacks, without depending on attack training data,
through a novel application of the pseudo-Bayes estimator [16]. Recently
reported IDDM system [1] represents an off-Hne IDS, where the intrusions
are detected only when sufficient amounts of data are collected and
analyzed. The IDDM system describes profiles of network data at different
times, identifies any large deviations between these data descriptions and
produces alarms in such cases.

Human immune system has gained a lot of attention among researchers
in intrusion detection community, especially when analyzing attacks at the
host level [73, 119, 209]. These techniques first collect data pattems
representing the appropriate behavior of the service and extract a reference
table containing all the known good sequences of system calls. These
pattems are then used for live monitoring to check whether the sequences
generated are listed in the table or not. If they are not listed, an alarm is
generated. Wespi [237] also proposed a novel technique for modeling
process behavior by building a table of variable length pattems, which is
based on the Teiresias algorithm. Experimental results show that the variable
length pattem model is significantly better than a fixed length approach, both
in reducing the number of pattems to describe the normal process behavior
and in achieving better detection rates. Although the immune system
approach is interesting and intuitively appealing, so far it has proven to be
difficult to apply [60].

The temporal sequence leaming [116] has been shown successful in
profiling Unix user command line data, where user shell commands are used
to build user profiles for activities during an intmsion and for activities
during normal use. By comparing these profiles, it is possible to detect new
types of anomalous user behavior.

Association pattem analysis has been shown to be beneficial in
constructing a profile of normal network traffic behavior [61, 118, 143]. For
example, Manganaris [143] used association mles to characterize the normal
stream of IDS alerts from a sensor and later to distinguish between false
alarms and real ones. On the other hand, MINDS [61] uses association
pattems to provide high-level summary of network connections that are
ranked highly anomalous in the anomaly detection module. These
summaries allow a human analyst to examine a large number of anomalous
connections quickly and to provide templates from which signatures of novel
attacks can be built for augmenting the database of signature-based intrusion
detection systems.

PHAD (packet header anomaly detection) [142] monitors network packet
headers and builds profiles for 33 different fields from these headers by

Intrusion Detection: A Survey 57

observing attack free traffic and building contiguous clusters for the values
observed for each field. The number of clusters is pre-specified and if a new
value that is observed does not fit into any of the clusters, it is treated as a
new cluster and the closest two clusters are merged. The number of updates,
r, is maintained for each field as well as the number of observations, n,
When a new packet is being tested for anomaly, the values of all fields are
checked to see if they fit into the clusters formed in the training phase. If the
values for some fields do not fit into any clusters, then each of them
contributes to the anomaly score value of the packet proportional to the n/r
ratio for the field. ALAD (application layer anomaly detection) [142] uses
the same method for calculating the anomaly scores as PHAD, but it
monitors TCP data and builds TCP streams when the destination port is
smaller than 1024. It constructs five features from these streams as opposed
to 33 fields used in PHAD.

ADMIT (Anomaly-based Data Mining for InTrusions) [201] attempts to
discriminate between masqueraders and true users on computer terminals.
This task is performed by augmenting conventional password authentication
measures and by continuously running a terminal-resident IDS program,
which monitors the terminal usage by each user, creates an appropriate
profile and verifies user data against it.

Call stack information [71] was also effectively used to detect various
exploits on computer systems. The anomaly detection approach, called
VtPath, first extracts retum addresses information from the call stack and
generates "abstract execution paths" between two execution points in the
program. These "abstract execution paths" are then compared to the
"abstract execution paths" leamed during normal runs of the program.

Finally, there have also been several recently proposed commercial
products that use profiling based anomaly detection techniques. For
example, Antura from System Detection [222] use data mining based user
profiling, while Mazu Profiler form Mazu Networks [147] and Peakflow X
from Arbor networks [8] use rate-based and connection profiling anomaly
detection schemes.

5.2.5 Model based approaches

Many researchers have used different types of models to characterize the
normal behavior of the monitored system. In the model-based approaches,
anomalies are detected as deviations for the model that represents the normal
behavior.

Very often, researchers have used data mining based predictive models
such as replicator neural networks [79] or unsupervised support vector

58 Chapter 2

machines [65, 117]. Replicator four-layer feed-forward neural network
(RNN) [79] have the same number of input and output nodes. During the
training phase, RNNs reconstruct input variables at the output layer, and then
use the reconstruction error of individual data points as a measure of
outlyingness. Unsupervised support vector machines [65, 117] attempt to
separate the entire training data set from the origin, i.e. to find a small region
where most of the data lies and label data points in this region as a normal
behavior. In the test phase they detect deviations from leamed models as
potential intrusions. In addition, standard neural networks (NN) were also
used in intrusion detection problems to leam a normal profile. For example
NNs were often used to model the normal behavior of individual users [193],
to build profiles of software behavior [74] or to profile network packets and
queue statistics [122].

User Intention Identification [213] is a technique developed within the
SECURENET project [212]. The goal of this technique is to model the
normal behavior of users using a set of high-level tasks they have to perform
on the system. These tasks are then refined into actions, which in tum are
related to the audit events observed on the system. The analyzer keeps a set
of tasks that each user can perform. Whenever an action occurs that does not
fit the task pattem, an alarm is issued. User intention identification was also
successfully used in several recently proposed approaches [43, 44].

Wagner [234] proposed to statically generate a non-deterministic finite
automaton (NDFA) or a non deterministic pushdown automaton (NDPDA)
from the global control flow graph of the program. The approach first
computes a model of expected application behavior, built statically from
program source code, then monitors program execution online at run time,
and finally checks its system call trace for compliance to the model.

Specification based intrusion detection techniques have been recently
proposed to produce a low rate of false alarms [199], but they have not been
as effective as anomaly detection in detecting novel attacks. Hence,
specification based anomaly detection [199] was designed to mitigate the
weaknesses of both specification based IDSs and anomaly detection
techniques and complement their strengths. The approach begins with state-
machine specifications of network protocols, and augments these state
machines with information about statistics that need to be maintained to
detect anomalies.

Finally, anomaly detection has also been used in embedded systems
[146], where Markov models were employed to determine whether the states
(events) in a sequential data streams, taken from a monitored process, are
normal or anomalous. It computes the probabilities of transitions between
events in a training set, and uses these probabilities to assess the transitions
between events in a test set.

Intrusion Detection: A Survey 59

6. TIME ASPECTS

When considering time aspects of IDSs, we distinguish two main groups:
real-time (on-hne) IDSs and off-line IDSs. Real-time (on-line) IDSs attempt
to detect intrusions in real-time or near real-time. They operate on
continuous data streams from information sources and analyze the data while
the sessions are in progress (e.g. network sessions for network intrusion
detection, login sessions for host based intrusion detection). Real-time IDSs
should raise an alarm as soon as an attack is detected, so that action that
affects the progress of the detected attack can be taken. Most commercial
IDSs claim continuous processing capability [8, 147].

Off-line IDSs perform post-analysis of audit data. This method of audit
data analysis is common among security analysts who often examine
network behavior, as well as behavior of different attackers, in an off-line
(batch) mode. Many early host-based IDSs used this timing scheme, since
they used operating system audit trails that were recorded as files [77, 155].

Off-line analysis is also often performed using static tools that analyze
the snapshot of the environment (e.g. host vs. network environment), look
for vulnerabihties and configuration errors and assess the security level of
the current environment configuration. Examples of these tools include
COPS [69] and Tiger [194] for host environments, and Satan [70] and
CyberCop Scanner [163, 197] for networks. Virus detectors belong to static
tools too and they scan the disks searching for pattems matching known
viruses. Although static tools are very popular and broadly used by system
administrators, they are typically not sufficient to ensure high security [55].

Static tools can be also specifically designed for active investigation of
vulnerabilities over the Internet. For example. Tripwire [106] or ATP [233]
can be used to monitor a designated set of files and to detect computer
intrusions that exploited older vulnerable applications. These intrusions
should also be identified and reported to the system administrator as
potential security holes using other tools like COPS [69] or Tiger [194].

7. ARCHITECTURE

There are two principal architectures that are used in IDSs, namely
centralized and distributed IDSs. Most IDSs employ centralized architecture
and detect intrusions that occur in a single monitored system. However, there
is a recent increasing trend towards distributed and coordinated attacks,
where multiple machines are involved, either as attackers (e.g. distributed
denial-of-service) or as victims (e.g. large volume worms). Analysis that
uses data from a single site and that is often employed by many existing

60 Chapter 2

intrusion detection schemes is often unable to detect such attacks. To
effectively combat them, there is a need for distributed IDS and cooperation
among security analysts across multiple network sites.

Unlike a centralized IDS, where the analysis of data is performed on a
fixed number of locations (independent of how many hosts are being
monitored), in a distributed IDS the analysis of data is performed on a
number of locations that is proportional to the number of hosts that are being
monitored [211]. An excellent comparison of centrahzed and distributed
IDSs, with their advantages and drawbacks, is provided in a paper by
Spafford and Zamboni [211]. Despite several drawbacks of distributed IDSs,
many commercial vendors have realized the need for detecting coordinated
cyber attacks from distributed locations, and adapted their systems to address
these challenges [9, 162].

Starting from the first proposed distributed IDS [205], the most typical
architectures of distributed IDSs assume employment of intelligent agents.
There are several advantages of using mobile agent based intrusion detection
systems over other approaches for distributed intrusion detection [94]. First,
agents are independently running entities and can be added, removed and
reconfigured without altering other components, and without restarting local
IDSs. Second, agents can be tested on their own before introducing them
into a more complex environment. Finally, agents can exchange information
to derive more complex results than any one of them may be able to obtain
on their own. Although IDSs based on mobile agents are still in their infancy
and fully implemented systems are still emerging, there are many agent-
based distributed IDSs [39, 109]. The typical examples include DIDS [59],
AAFID [211], Argus [203], IDA [10], Mic^l [53].

DIDS [59] and distributed autonomous-agent NID [18] use a similar
architecture that consists of a central analysis server and multiple IDS agents
that communicate with each other. AAFID (autonomous agents for intrusion
detection) [211] has a hierarchical design with three levels. At the lowest
level, agents perform host security monitoring and data analysis. The
information gathered by agents is forwarded to transceivers that distribute
the information either to other agents or monitors, and control and configure
agents at the second level. At the highest level, each monitor collects data
from transceivers and evaluates their input. InteUigent agents in [82] employ
classifier algorithms and travel among collection points, referred to as data
cleaners, and uncover suspicious activities. The architecture is hierarchical,
with a data warehouse at the root, data cleaners at the leaves, and classifier
agents in between. A classifier agent specializes in a specific category of
intrusion and is capable of collaborating with agents of another category to
determine the severity level of an activity deemed suspicious. Moving the
computational analysis to each collection point avoids the costly movement

Intrusion Detection: A Survey 61

of information to an aggregation unit. Argus [203] employs a similar
architecture with low-level agents that serve as data cleansers, and data
mining agents that generate not only rules for matching a normal profile but
also generate feedback for knowledge-based components. These rules can be
used then to update the rule database of the NFR knowledge component
[167]. Bayesian multiple hypothesis tracking was also used to more
effectively analyze information provided by existing IDSs from multiple
networks [28]. Hypotheses that explain the measured intrusion events are
generated and stored, and then evaluated against the understanding of the
sensor behavior in order to determine the likelihood of the hypotheses. The
hypothesis with the greatest likelihood is assumed correct, while other
hypotheses are treated as intrusions.

The Intrusion Detection Agent (IDA) system [10] is a multi-host based
IDS that relies on mobile agents to trace intruders among the various hosts
involved in an intrusion. IDA watches specific events that are related to
various intrusions. These events are called "Marks Left by Suspected
Intruder" (MLSI). If a specific MLSI is identified, IDA collects all the
information related to this MLSI, analyzes this information and determines
whether the MLSI is related to a real attack or not. The IDA system has a
hierarchical tree structure, in which the central manager is placed at the root
of the tree, while numerous agents are located at the leaves.

Micad [53] is a distributed IDS that uses autonomous mobile intelligent
agents able to make various decisions in the process of intrusion detection
(e.g. investigating intrusions and initiating countermeasures against them).
The Mic^l architecture contains the following agents: (i) headquarters, i.e.
specialized centralized agents that are responsible for creating other agents
and maintaining their executable codes. They receive information about
potential intrusions from sentinel agents and can create new detachment
agents that will be sent to hosts when needed; (ii) sentinels, i.e. immobile
agents that collect data about the activities on the host machines and inform
headquarter agents about detected anomalies; and (iii) detachments, i.e.
mobile agents that are used to face possible intrusions (hazards) by starting a
detailed analysis of log files.

Applying intrusion detection techniques on a system-wide basis allows
the system to be protected against general misuse, but may require
significant resources. By optimizing the placement and configuration of
these tools, it is possible to offer both increased protection for sensitive
systems, and more context-sensitive detection, at the cost of general
protection. For example, distributed IDS deployment often concentrates
monitors in high-risk areas, such as network ingress points (e.g. adjacent to
firewalls), or in the presence of valuable resources (such as network server
farms) [148].

62 Chapter 2

8. RESPONSE

The response of IDSs to identified attacks may be either passive or
active. In the most common scenario, IDSs have passive response and
simply inform responsible personnel of an event, but no countermeasure is
actively applied to thwart the attack. The most common method for such
notifications is through pop-up windows or on-screen alerts or through
recording alerts into a file. These alerts may vary from notification of alarms
only to detailed information about computer attacks such as source IP
address, target of the attack, specific port of interest, the tools used to
perform the attack, the outcome of the attack, etc. Some products also offer
remote notification through sending alarms or alerts to cellular phones and
pagers carried by system security personnel. In addition, notification is often
sent through e-mail messages, but this may be unsafe, as attackers may
monitor email and might even block the message. Certain IDSs (e.g. Cisco
IDS [46]) use SNMP traps and messages to report generated alarms to a
network management system, where network operations personnel can
investigate them. Passive response is often used for off-line analysis.

Altematively, IDSs can also provide an active response to critical events,
such as ''patching" a system vulnerabiHty, logging off a user, re-configuring
routers and firewalls, or disconnecting a port.

Given the speed and frequency at which attacks can occur, an ideal IDS
would automatically respond to computer attacks at machine speed without
requiring any operator intervention. However, this is an unrealistic
expectation, largely due to the difficulty in eliminating false alarms.
Nevertheless, IDS products can still provide a variety of active response
mechanisms that may be used at the discretion of the system administrator.

One of the most harmless, but often most productive, active responses is
to collect additional information about a suspected attack and to perform
damage control. This might involve increasing the sensitivity level of
information sources (e.g., increasing the number of events logged by an
operating system audit trail, or increasing the sensitivity of a network
monitor that captures all packets). Such additional information collected can
help resolve the detection of the attack (assisting the system in diagnosing
whether an attack did or did not take place) thus allowing the IDS to gather
information that can be used to support investigation of the attacker.

In more recent IDS tools, active responses that include countermeasure
against the attacker have become increasingly popular. An example of such a
tool with early countermeasure capability is NetProbe [192], which monitors
a network for undesired connections and immediately terminates them.
There are also other tools with similar capabilities, such as RealSecure [89],
NetRanger [47], and WebStalker [204] that have options to interrupt

Intrusion Detection: A Survey 63

suspicious network connections that carry attacks, to block network traffic
from the hosts that are originating attacks, or to reconfigure routers and
firewalls.

9. CONCLUSIONS

Intrusion detection techniques have improved dramatically over time,
especially in the past few years. Initially developed to automate tedious and
difficult log parsing activity, IDSs have developed into sophisticated, real­
time applications with the ability to have a detailed look at traffic and to
sniff out malicious activity. They can handle high-speed networks and
complex traffic, and deliver detailed insight - previously unavailable - into
active threats against critical online information resources. IDS technology is
developing rapidly and its near-term future is very promising. It is
increasingly becoming an indispensable and integral component of any
comprehensive enterprise security program, since it complements traditional
security mechanisms.

This chapter provides an overview of the current state of the art of both
computer attacks and intrusion detection techniques. The overview is based
on presented taxonomies exemplified with the most illustrative paradigms.
The taxonomy of computer attacks and intrusions provides the current status
and trends in techniques that attackers employ today. The taxonomy of IDSs
highlights their properties and provides an overview of the past and current
developments. Although a variety of techniques have been developed for
detecting different types of computer attacks in different computer systems,
there are still a number of research issues conceming the prediction
performance, efficiency and fault tolerance of IDSs that need to be
addressed. Signature analysis, the most common strategy in the commercial
domain until recently, is increasingly integrated with different anomaly
detection and alert correlation techniques in order to detect emerging and
coordinated computer attacks.

We hope this survey provides actionable information and advice on the
topics, as well as serves to acquaint newcomers with the world of IDSs and
computer attacks. The information provided herein is by no means complete
and we recommend further reading to the interested reader.

ACKNOWLEDGEMENTS

This work was partially supported by Army High Performance
Computing Research Center contract number DAAD19-01-2-0014, NSF

64 Chapter 2

grant IIS-0308264, and ARDA contract number F30602-03-C-0243. The
content of the work does not necessarily reflect the position or policy of the
government and no official endorsement should be inferred. Access to
computing facilities was provided by the AHPCRC and the Minnesota
Supercomputing Institute.

REFERENCES

[I] T. Abraham, IDDM: Intrusion Detection Using Data Mining Techniques, DSTO
Electronics and Surveillance Research Laboratory, Department of Defense, Australia
Technical Report DSTO-GD-0286, 2001.

[2] C.C, Aggarwal and P. Yu, Outlier Detection for High Dimensional Data, In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Santa BArbara, CA, May 2001.

[3] A. AirDefense, http.7/www.airdefense.net/products/index.html, 2004.
[4] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner, J. Ellis, E. Hayes, J.

Marella and B. Willke, State of the Practice of Intrusion Detection Technologies.,
Carnegie Mellon University, Pittsburgh, PA Technical Report CMU/SEI-99-TR-028,
1999.

[5] E. Amoroso, Fundamentals of Computer Security Technology, Prentice-Hall PTR,
1994.

[6] D. Anderson, T. Lunt, H. Javitz, A. Tamaru and A. Valdes, Detecting Unusual
Program Behavior Using the Statistical Component of the Next-Generation Intrusion
Detection Expert System (NIDES), Computer Science Laboratory, SRI International,
Menlo Park, CA Technical Report SRI-CSL-95-06.

[7] J.P. Anderson, Computer Security Threat Monitoring and Surveillance, James P.
Anderson Co., Box 42, Fort Washington, PA 19034 Technical Report Contract
79F296400, April 1980.

[8] Arbor Networks, Intelligent Network Management with Peakflow Traffic,
http.7/www.arbometworks.com/products_sp.php, 2003.

[9] ArcSight, Enterprise Security Management Software, http://www.arcsight.com/.
[10] M. Asaka, S. Okazawa, A. Taguchi and S. Goto, A Method of Tracing Intruders by

Use of Mobile Agents, In Proceedings of the 9th Annual Conference of the Internet
Society (INET99), San Jose, CA, June 1999.

[II] T. Aslam, A Taxonomy of Security Faults in the UNIX Operating System, Purdue
University Master's thesis, August 1995.

[12] C.R. Attanasio, P.W. Markstein and R.J. Phillips, Penetrating an Operating System: A
Study of VM/370 Integrity,/i5A/6:>^5/ewJowrA7a/, vol. 15, l,pp. 102-116, 1976.

[13] S. Axelsson, Intrusion Detection Systems: A Survey and Taxonomy, Dept. of
Computer Engineering, Chalmers University Technical Report 99-15, March 2000.

[14] AXENT Technologies, Inc, NetProwler-Advanced Network Intrusion Detection,
available online at:, http://www.axent.com/iti/netprowler/idtk_ds_word_l.html, 1999.

[15] R. Bace and P. Mell, NIST Special PubHcation on Intrusion Detection Systems, 2001.

Intrusion Detection: A Survey 65

[16] D. Barbara, N. Wu and S. Jajodia, Detecting Novel Network Intrusions Using Bayes
Estimators, In Proceedings of the First SIAM Conference on Data Mining, Chicago,
IL, April 2001.

[17] V. Bamett and T. Lewis, Outliers in Statistical Data. New York, NY, John Wiley and
Sons, 1994.

[18] J. Barrus and N. Rowe, A Distributed Autonomous-Agent Network-Intrusion
Detection And Response System, In Proceedings of the Command and Control
Research and Technology Symposium, Monterey, CA, 577-586, June 1998.

[19] D.S. Bauer and M.E. Koblentz, NIDX - An Expert System For Real-Time, Computer
Networking Sympos ium, 1988.

[20] T. Baving, Network vs. Application-Based Intrusion Detection, Network and Internet
Nettwork Security, Computer Science Honours, 2003.

[21] S.M. Bellovin and W.R. Cheswick, Network Firewalls., IEEE Communications
Magazine, vol. 32, 9, pp. 50-57, September 1994.

[22] M. Bhattacharyya, M. Schultz, E. Eskin, S. Hershkop and S. Stolfo, MET: An
Experimental System for Malicious Email Tracking, In Proceedings of the New
Security Paradigms Workshop (NSPW), Hampton, VA, September 2002.

[23] M. Bishop, How Attackers Break Programs, and How To Write Programs More
Securely, In Proceedings of the 8th USENIX Security Symposium, University of
California, Davis, August 1999.

[24] E. Bloedom, A. Christiansen, W. Hill, C. Skorupka, L. Talbot and J. Tivel, Data
Mining for Network Intrusion Detection: How to Get Started, MITRE Technical
Report, http://www.mitre.org/work/tech_papers/tech__papers_01/bloedom_datamining,
August 2001.

[25] M.M. Breunig, H.P. Kriegel, R.T. Ng and J. Sander, LOF: Identifying Density Based
Local Outliers, ACMSIGMOD Conference, vol. Dallas, TX, May 2000.

[26] S. Bridges and R. Vaughn, Fuzzy Data Mining and Genetic Algorithms Applied to
Intrusion Detection, In Proceedings of the Twenty-third National Information Systems
Security Conference, Baltimore, MD, October 2000.

[27] H. Burch and B. Cheswick, Tracing Anonymous Packets to Their Approximate
Source, In Proceedings of the USENIX Large Installation Systems Administration
Conference, New Orleans, LA, 319-327, December 2000.

[28] D. Burroughs, L. Wilson and G. Cybenko, Analysis of Distributed Intrusion Detection
Systems Using Bayesian Methods, www.ists.dartmouth.edu/IRIA/projects/
ipccc.fmal.pdf, 2002.

[29] J. Cabrera, B. Ravichandran and R. Mehra, Statistical Traffic Modeling For Network
Intrusion Detection, In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, San Francisco,
CA, August 2000.

[30] J. Cannady, Artificial Neural Networks For Misuse Detection, In Proceedings of the
National Information Systems Security Conference (NISSC'98), Arlington, VA, 443-
456, October, 1998.

[31] J. Cannady and J. Harrell, A Comparative Analysis of Current Intrusion Detection
Technologies, In Proceedings of the Fourth Technology for Information Security
Conference'96 (TISV6), Houston, TX, May 1996.

66 Chapter 2

[32] CERIAS Intrusion Detection Resources, http://www.cerias.purdue.edu/coast/ids/ids-
body.html, 2004,

[33] CERT® Advisory CA-1995-13 Syslog Vulnerability - A Workaround for Sendmail,
http://www.cert.org/advisories/CA-1995-13.html, September, 1997.

[34] CERT® Advisory CA-1999-04 Melissa Worm and Macro Virus,
http://www.cert.org/advisories/CA-1999-04.html, March 1999.

[35] CERT® Advisory CA-2000-14 Microsoft Outlook and Outlook Express Cache
Bypass Vulnerability, http://www.cert.org/advisories/CA-2000-14.html, July 2000.

[36] CERT® Advisory CA-2001-26 Nimda Worm, http://www.cert.org/advisories/CA-
2001-26.html, September 2001.

[37] CERT® Advisory CA-2003-04 MS-SQL Server Worm, http://www.cert.org/
advisories/CA-2003-04.html, 2003.

[38] CERT® Advisory CA-2003-25 Buffer Overflow in Sendmail, http://www.cert.org/
advisories/CA-2003-25.html, September, 2003.

[39] P.C. Chan and V.K. Wei, Preemptive Distributed Intrusion Detection Using Mobile
Agents, In Proceedings of the Eleventh IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2002),
Pittsburgh, PA, June 2002.

[40] N. Chawla, A. Lazarevic, L. Hall and K. Bowyer, SMOTEBoost: Improving the
Prediction of Minority Class in Boosting, In Proceedings of the Principles of
Knowledge Discovery in Databases, PKDD'2003, Cavtat, Croatia, September 2003.

[41] C. Cheng, H.T. Kung and K. Tan, Use of Spectral Analysis in Defense Against DoS
Attacks, In Proceedings of the IEEE GLOBECOM, Taipei, Taiwan, 2002.

[42] W.R. Cheswick and S.M. Bellovin, Firewalls and Internet Security - Repelling the
Wily Hacker, Addison-Wesley, ISBN 0-201-63357-4, 1994,

[43] R. Chinchani, S. Upadhyaya and K. Kwiat, A Tamper-Resistant Framework for
Unambiguous Detection of Attacks in User Space Using Process Monitors, In
Proceedings of the IEEE International Workshop on Information Assurance,
Darmstadt, Germany, March 2003.

[44] R. Chinchani, S. Upadhyaya and K. Kwiat, Towards the Scalable Implementation of a
User Level Anomaly Detection System, In Proceedings of the IEEE Conference on
Military Communications Conference (MILCOM), Anaheim, CA, October 2002.

[45] J. Christy, Cyber Threat & Legal Issues, In Proceedings of the ShadowCon'99,
Dahlgren, VA, October 26, 1999.

[46] Cisco Intrusion Detection, www.cisco.com/warp/public/cc/pd/sqsw/sqidsz, May 2004.
[47] Cisco Systems, Inc., NetRanger-Enterprise-scale, Real-time, Network Intrusion

Detection System, http://www.cisco.com/univercd/cc/td/doc/product/iaabu/netrangr/,
1998.

[48] cknow.com Virus Tutorial, http://www.cknow.com/vtutor/vtmap.htm, 2001.
[49] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier and

P. Zhang, StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks, In Proceedings of the 7th USENIX Security Symposium, San
Antonio, TX, 63-77.

[50] O. Dain and R. Cunningham, Fusing a Heterogeneous Alert Stream Into Scenarios, In
Proceedings of the ACM Workshops on Data Mining for Security Applications,
Philadelphia, PA, November 2001.

Intrusion Detection: A Survey 67

[51] V. Dao and R. Vemuri, Computer Network Intrusion Detection: A Comparison of
Neural Networks Methods, Differential Equations and Dynamical Systems, Special
Issue on Neural Networks, 2002.

[52] DARPA, DARPA Intrusion Detection Evaluation, http://www.ll.mit.edu/IST/ideval/
pubs/pubs_index.html, 2004.

[53] J. De Queiroz and Carmo L., MICHAEL: An Autonomous Mobile Agent System to
Protect New Generation Networked Applications, In Proceedings of the 2nd Annual
Workshop n Recent Advances in Intrusion Detection, Rio de Janeiro, Brasil, 1999.

[54] H. Debar, M. Becker and D. Siboni, A Neural Network Component for an Intrusion-
Detection System, In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, Oakland, CA, 240-250, May 1992.

[55] H. Debar, M. Dacier and A. Wespi, Towards a Taxonomy of Intrusion Detection
Systems, Computer Networks, vol. 31,8, pp. 805-822, 1999.

[56] D. Denning, An Intrusion-Detection Model, IEEE Transactions on Software
Engineering, vol. 13, 2, pp. 222-232, 1987.

[57] dmoz Open Security Project, Intrusion Detection Systems, http://dmoz.org/
Computers/Security/Intrusion_Detection_Systems/,

[58] C. Dowell and P. Ramstedt, The Computerwatch Data Reduction Tool, In
Proceedings of the 13th National Computer Security Conference, Washington, DC,
1990.

[59] N. Einwechter, An Introduction To Distributed Intrusion Detection Systems,
Security Focus, January 2002.

[60] D. Engelhardt, Directions for Intrusion Detection and Response: A survey, DSTO
Electronics and Surveillance Research Laboratory, Department of Defense, Australia
Technical Report DSTO-GD-0155, 1997.

[61] L Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar and P. Dokas, The
MINDS - Minnesota Intrusion Detection System, in Data Mining: Next Generation
Challenges and Future Directions, A. Joshi H. Kargupta, K. Sivakumar, and Y.
Yesha, Ed., 2004.

[62] L. Ertoz, E. Eilertson, P. Dokas, V. Kumar and K. Long, Scan Detection - Revisited,
Army High Performance Computing Research Center Technical Report, 2004.

[63] S. Eschrich, Real-Time User Identification Employing Standard Unix Accounting,
Florida State University PhD Thesis, Fall 1995.

[64] E. Eskin, Anomaly Detection over Noisy Data using Learned Probability
Distributions, In Proceedings of the International Conference on Machine Learning,
Stanford University, CA, June 2000.

[65] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo, A Geometric Framework for
Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data, in
Applications of Data Mining in Computer Security, Advances In Information Security,
S. Jajodia D. Barbara, Ed. Boston: Kluwer Academic Publishers, 2002.

[66] M. Esmaili, B. Balachandran, R. Safavi-Naini and J. Pieprzyk, Case-Based Reasoning
For Intrusion Detection, In Proceedings of the 12th Annual Computer Security
Applications Conference, San Diego, CA, December 1996.

[67] M. Esmaili, R. Safavi-Naini and B.M. Balachandran, Autoguard: A Continuous Case-
Based Intrusion Detection System, In Proceedings of the Australian Computer Science

68 Chapter 2

Conference, Australian Computer Science Communications^ Sydney, Australia, 392-
401, February 1997.

[68] W. Fan, W. Lee, M. Miller, SJ. Stolfo and P.K. Chan, Using Artificial Anomalies to
Detect Unknown and Known Network Intrusions, In Proceedings of the First IEEE
International conference on Data Mining, vol. San Jose, CA, December 2001.

[69] D. Farmer, Cops Overview, http://www.trouble.org/cops/overview.html. May 1993.
[70] D. Farmer and W. Venema, Improving The Security Of Your Site By Breaking Into It,

http://www.trouble.org/security/admin-guide-to-cracking.html,
[71] H, Feng, O. Kolesnikov, P. Fogla, W. Lee and W, Gong, Anomaly Detection Using

Call Stack Information, In Proceedings of the IEEE Symposium Security and Privacy,
Oakland, CA, May 2003.

[72] G. Florez, S. Bridges and R. Vaughn, An Improved Algorithm for Fuzzy Data Mining
for Intrusion Detection, In Proceedings of the North American Fuzzy Information
Processing Society Conference (NAFIPS 2002), New Orleans, LA, June, 2002.

[73] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff, A Sense of Self for Unix
Processes, In Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, 120-128, May 1996.

[74] A. Ghosh and A. Schwartzbard, A Study in Using Neural Networks for Anomaly and
Misuse Detection, In Proceedings of the Eighth USENIX Security Symposium,
Washington, D.C., 141-151, August, 1999.

[75] T.M Gil and M. Poletto, MULTOPS: A Data-Structure for Bandwidth Attack
Detection, In Proceedings of the USENIX Security Symposium, Washington, D.C., 23-
28, July 2001.

[76] Google directory, http://directory.google.com/Top/Computers/Security/
Intrusion_Detection_Systems,

[77] N. Habra, B. LeCharlier, A. Mounji and I. Mathieu, ASAX: Software Architecture and
Rule-Based Language for Universal Audit Trail Analysis, In Proceedings of the
Second European Symposium on Research in Computer Security (ESORICS), Vol.
648, Lecture Notes in Computer Science, Springer-Verlag, Toulouse, France,
November 1992.

[78] S.E. Hansen and E.T. Atkins, Automated System Monitoring and Notification With
Swatch., In Proceedings of the Seventh Systems Administration Conference (LISA'93),
Monterey, CA, November 1993.

[79] S. Hawkins, H. He, G. Williams and R. Baxter, Outlier Detection Using Replicator
Neural Networks, In Proceedings of the 4th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK02), Lecture Notes in Computer
Science 2454, Aix-en-Provence, France, 170-180, September 2002.

[80] Haystack Labs, Inc., Stalker, http://www.haystack.com/stalk.htm, 1997.
[81] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood and D. Wolber, A

Network Security Monitor, In Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, 296-304, May 1990.

[82] G. Helmer, J.S.K Wong, V. Honavar and L. Miller, Intelligent Agents for Intrusion
Detection, In Proceedings of the IEEE Information Technology Conference, Syracuse,
NY, 121-124, September 1998.

[83] K. Houle, G, Weaver, N. Long and R. Thomas, Trends in Denial of Service Attack
Technology, CERT® Coordination Center, Pittsburgh, PA October 2001.

Intrusion Detection: A Survey 69

[84] J.D. Howard, An Analysis of Security Incidents on the Internet, Carnegie Mellon
University, Pittsburgh, PA 15213 Ph.D. dissertation, April 1997.

[85] D. Hughes, TkLogger, ftp://coast.cs.purdue.edU/pub/tools/unix/tklogger.tar.Z,
[86] K. Ilgun, USTAT A Real-time Intrusion Detection System for UNIX, University of

California Santa Barbara Master Thesis, 1992.
[87] Internet Guide, Computer Viruses / Virus Guide, http://www.intemet-guide.co.uk/

viruses,html, 2002.
[88] Internet Security Systems Wireless Products, Active Wireless Protection, An X-

Force's white paper, available at: documents.iss.net/whitepapers/
ActiveWirelessProtection.pdf, September 2002.

[89] Internet Security Systems, Inc., RealSecure, http://www.iss.net/prod/rsds.html, 1997.
[90] Intrusion.com, Intrusion SecureHost, white paper available at:

www.intrusion.com/products/hids.asp, 2003.
[91] J. loannidis and S. Bellovin, Implementing Pushback: Router-Based Defense Against

DDoS Attacks, In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, February 2002.

[92] K. Jackson, Intrusion Detection System Product Survey, Los Alamos National
Laboratory Research Report, LA-UR-99-3883, June 1999.

[93] R. Jagannathan, T. Lunt, D. Anderson, C. Dodd, F. Gilham, C. Jalali, H. Javitz, P.
Neumann, A. Tamaru and A. Valdes, System Design Document: Next-Generation
Intrusion Detection Expert System (NIDES). SRI International Technical Report
A007/A008/A009/A011/A012/A014, March 1993.

[94] W. Jansen and P. Mell, Mobile Agents in Intrusion Detection and Response, In
Proceedings of the 12th Annual Canadian Information Technology Security
Symposium, Ottawa, Canada, 2000.

[95] H.S. Javitz and A. Valdes, The SRI IDES Statistical Anomaly Detector, In
Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland,
CA, 1991.

[96] N.D. Jayaram and P.L.R. Morse, Network Security - A Taxonomic View, In
Proceedings of the European Conference on Security and Detection, School of
Computer Science, University of Westminster, UK, Publication No. 437, 28-30, April
1997.

[97] A. Jones and R. Sielken, Computer System Intrusion Detection, University of Virginia
Technical Report, 1999.

[98] M. Joshi, R. Agarwal and V. Kumar, PNrule, Mining Needles in a Haystack:
Classifying Rare Classes via Two-Phase Rule Induction, In Proceedings of the ACM
SIGMOD Conference on Management of Data, Santa Barbara, CA, May 2001.

[99] M. Joshi, R. Agarwal and V. Kumar, Predicting Rare Classes: Can Boosting Make
Any Weak Learner Strong?, In Proceedings of the Eight ACM Conference ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Edmonton, Canada, July 2002.

[100] Y.F. Jou, F. Gong, C. Sargor, S.F. Wu and W.R. Cleaveland, Architecture Design of a
Scalable Intrusion Detection System For The Emerging Network Infrastructure,
MCNC Information Technologies Division, Research Triangle Park, NC 27709
Technical Report CDRL A005, April 1997.

70 Chapter 2

[101] K. Julisch, Mining Alarm Clusters to Improve Alarm Handling Efficiency, In
Proceedings of the 17th Annual Conference on Computer Security Applications, New
Orleans, LA, December 2001.

[102] J. Jung, V. Paxson, A. W. Berger and H. Balakrishnan, Fast Portscan Detection Using
Sequential Hypothesis Testing, In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May, 2004.

[103] K. Kendall, A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems, Massachusetts Institute of Technology Master's Thesis, 1998.

[104] A.D. Keromytis, V. Misra and D. Rubenstein, SoS: Secure Overlay Services, In
Proceedings of the ACM SIGCO MM Conference, Pittsburgh, PA, 61-72, August 2002.

[105] D. Kienzle and M. Elder, Recent Worms. A Survey and Trends, In Proceedings of the
The Workshop on Rapid Malcode (WORM 2003), held in conjunction with the 10th
ACM Conference on Computer and Communications Security, Washington, DC,
October 27, 2003.

[106] G. Kim and E. Spafford, The Design and Implementation of Tripwire: A File System
Integrity Checker, In Proceedings of the ACM Conference on Computer and
Communications Security, COAST, Purdue University, IN, 18-29, November 1994.

[107] E. Knorr and R. Ng, Algorithms for Mining Distance based Outliers in Large Data
Sets, In Proceedings of the Very Large Databases (VLDB) Conference, New York
City, NY, August 1998,

[108] I.V. Krsul, Software Vulnerability Analysis, Purdue University Ph.D. dissertation,
May 1998.

[109] C. Kruegel and T. Toth, Distributed Pattern Detection For Intrusion Detection, In
Proceedings of the Network and Distributed System Security Symposium Conference
Proceedings, Internet Society, Los Angeles, CA, February 2002.

[110] C. Krugel and T. Toth, A Survey on Intrusion Detection Systems, Technical
University of Vienna Technical report, TUV-1841-00-11, 2000.

[I l l] C. Krugel, T. Toth and E. Kirda, Service Specific Anomaly Detection for Network
Intrusion Detection, In Proceedings of the ACM Symposium on Applied Computing,
Madrid, Spain, March 2002.

[112] S. Kumar, Classification and Detection of Computer Intrusion, Computer Science
Department, Purdue University Ph.D. dissertation, August 1995.

[113] S. Kumar and E. Spafford, An Application of Pattern Matching in Intrusion Detection,
Purdue University Technical Report, 1994.

[114] H. Kvamstrom, A Survey of Commercial Tools for Intrusion Detection, Chalmers
University of Technology, Goteborg, Sweden Technical Report, 1999.

[115] C. Landwehr, A. Bull, J. McDermott and W. Choi, A Taxonomy of Computer
Program Security Flaws, ACM Computing Surveys, vol. 26, 3, pp. 211-254, September
1994,

[116] T. Lane and C. Brodley, Temporal Sequence Learning and Data Reduction for
Anomaly Detection, ACM Transactions on Information and System Security, vol. 2, 3,
pp. 295-331, 1999.

[117] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava and V. Kumar, A Comparative Study
of Anomaly Detection Schemes in Network Intrusion Detection, In Proceedings of the
Third SIAMInternational Conference on Data Mining, San Francisco, CA, May 2003.

Intrusion Detection: A Survey 71

[118] A. Lazarevic, J. Srivastava and V. Kumar, Cyber Threat Analysis - A Key Enabling
Technology for the Objective Force (A Case Study in Network Intrusion Detection),
In Proceedings of the IT/C4ISR, 23rd Army Science Conference, Orlando, FL,
December 2002.

[119] W. Lee, S. Stolfo and P. Chan, Patterns from Unix Process Execution Traces for
Intrusion Detection, In Proceedings of the AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management, Providence, RI, July 1997.

[120] W. Lee, S. Stolfo and K. Mok, Adaptive Intrusion Detection: A Data Mining
Approach., Artificial Intelligence Review, vol. 14, pp. 533-567, 2001.

[121] W. Lee and S.J. Stolfo, Data Mining Approaches for Intrusion Detection, In
Proceedings of the USENIX Security Symposium, San Antonio, TX, January, 1998.

[122] W. Lee and S.J. Stolfo, A Framework for Constructing Features and Models for
Intrusion Detection Systems., ACM Transactions on Information and System Security,
vol. 3, 4, pp. 227-261, 2000.

[123] W. Lee and D. Xiang, Information-Theoretic Measures for Anomaly Detection, In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May
2001.

[124] G. Liepins and H. Vaccaro, Anomaly Detection Purpose and Framework, In
Proceedings of the 12th National Computer Security Conference, Baltimore, MD,
495-504, October 1989.

[125] G, Liepins and H. Vaccaro, Intrusion Detection: It's Role and Validation, Computers
and Security, pp. 347-355, 1992.

[126] Y.X. Lim, T. Schmoyer, J. Levine and H.L. Owen, Wireless Intrusion Detection and
Response, In Proceedings of the IEEE Workshop on Information Assurance, United
States Military Academy, West Point, NY, June 2003.

[127] J.L Lin, X.S. Wang and S. Jajodia, Abstraction-Based Misuse Detection: High-Level
Specifications and Adaptable Strategies, In Proceedings of the 11th IEEE Computer
Security Foundations Workshop, Rockport, MA, June 1998.

[128] U. Lindqvist and E. Jonsson, How to Systematically Classify Computer Security
\ntx\xs\on% IEEE Security and Privacy, ^^, 154-163, 1997.

[129] U. Lindqvist and P.A. Porras, Detecting Computer and Network Misuse Through the
Production-Based Expert System Toolset (P-BEST), In Proceedings of the IEEE
Symposium on Security and Privacy, Berkeley, CA, May 1999.

[130] R. Lippmann, The Role of Network Intrusion Detection, In Proceedings of the
Workshop on Network Intrusion Detection, H.E.A.T. Center, Aberdeen, MD, March
19-20,2002.

[131] R. Lippmann and R, Cunningham, Improving Intrusion Detection Performance Using
Keyword Selection and Neural Networks, Computer Networks, vol. 34, 4, pp. 597-
603, 2000.

[132] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba and K. Das, The 1999 DARPA Off-
Line Intrusion Detection Evaluation, Computer Networks, 2000.

[133] R.P. Lippmann, R.K. Cunningham, D.J. Fried, I. Graf, K.R. Kendall, S.E. Webster
and M.A. Zissman, Results of the DARPA 1998 Offline Intrusion Detection
Evaluation, In Proceedings of the Workshop on Recent Advances in Intrusion
Detection, (RAID-1999), West Lafayette, IN, September, 1999.

[134] J. Lo, Trojan Horse Attacks, www.irchelp.org/irchelp/security/trojan.html, April 2004.

72 Chapter 2

[135] D. Lough, A Taxonomy of Computer Attacks with Applications to Wireless
Networks, Virginia Polytechnic Institute PhD Thesis, April 2001.

[136] T. Lunt, A Survey of Intrusion Detection techniques. Computers & Security, vol 12,
4, pp. 405-418, June 1993.

[137] T. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P.O. Neumann, H.S.
Javitz and A. Valdes, IDES: The Enhanced Prototype - A Real-Time Intrusion-
Detection Expert System, SRI International Technical Report SRI-CSL-88-12.

[138] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, P.G. Neumann, H.S. Javitz,
A. Valdes and T.D. Garvey, A Real Time Intrusion Detection Expert System (IDES),
SRI Technical report, 1992.

[139] T.F. Lunt, Real-Time Intrusion Detection, In Proceedings of the Thirty Fourth IEEE
Computer Society International Conference (COMPCON), Intellectual Leverage, San
Francisco, CA, February 1989.

[140] J. Luo, Integrating Fuzzy Logic With Data Mining Methods for Intrusion Detection,
Department of Computer Science, Mississippi State University Master's thesis, 1999.

[141] R. Mahajan, S. Bellovin, S. Floyd, J. loannidis, V. Paxson and S. Shenker, Controlling
High Bandwidth Aggregates in The Network, ACM Computer Communication
Review, July 2001.

[142] M. Mahoney and P. Chan, Learning Nonstationary Models of Normal Network Traffic
for Detecting Novel Attacks, In Proceedings of the Eight ACM International
Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 376-385,
July 2002.

[143] S. Manganaris, M. Christensen, D. Serkle and K. Hermiz, A Data Mining Analysis of
RTID Alarms, Computer Networks, vol. 34, 4, October 2000.

[144] D. Marchette, Computer Intrusion Detection and Network Monitoring, A Statistical
Viewpoint, New York, Springer, 2001.

[145] J. Marin, D. Ragsdale and J. Surdu, A Hybrid Approach to Profile Creation and
Intrusion Detection, In Proceedings of the DARPA Information Survivability
Conference and Exposition, Anaheim, CA, June, 2001.

[146] R. Maxion and K. Tan, Anomaly Detection in Embedded Systems, IEEE Transactions
on Computers, vol. 51,2, pp. 108-120, 2002.

[147] Mazu Profiler'T^, An Overview, http://www.mazunetworks.com/solutions/
white_papers/download/Mazu_Profiler.pdf, December 2003.

[148] M. Medina, A Layered Framework for Placement of Distributed Intrusion Detection
Devices, In Proceedings of the 21st National Information Systems Security
Conference (NISSC98), Crystal City, VA, October 1998.

[149] Meier. M. and M. Sobirey, Intrusion Detection Systems List and Bibliography,
http://www-mks.informatik.tu-cottbus.de/en/security/ids.html,

[150] Metropolitan, Metropolitan Network BBS, Inc., Kaspersky.ch, Computer Virus
Classification, http://www.avp.ch/avpve/classes/classes.stm, 2003.

[151] J. Mirkovic, G. Prier and P. Reiher, Attacking DDoS at the Source, 10th IEEE
International Conference on Network Protocols, November 2002.

[152] J. Mirkovic and P. Reiher, A Taxonomy of DDoS Attacks and Defense Mechanisms,
ACM Computer Communication Review, April 2004.

Intrusion Detection: A Survey 73

[153] D, Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N. Weaver, The Spread
of the Sapphire/Slammer Worm, http://www.cs.berkeley.edu/~nweaver/sapphire/,
2003,

[154] D. Moore, G. M, Voeker and S. Savage, Inferring Internet Denial-of-Service Activity,
USENIXSecurity Symposium, pp. 9-22, August 2001.

[155] A. Mounji, Languages and Tools for Rule-Based Distributed Intrusion Detection,
Facult es Universitaires Notre-Dame de la Paix, Namur, Belgium Doctor of Science
Thesis, September 1997.

[156] S. Mukkamala, G. Janoski and A. Sung, Intrusion Detection Using Neural Networks
and Support Vector Machines, In Proceedings of the IEEE International Joint
Conference on Neural Networks, Honolulu, HI, May 2002.

[157] S. Mukkamala, A. Sung and A. Abraham, Intrusion Detection Systems Using
Adaptive Regression Splines, In Proceedings of the 1st Indian International
Conference on Artificial Intelligence (IICAI-03), Hyderabad, India, December 2003.

[158] S. Mukkamala, A. Sung and A. Abraham, A Linear Genetic Programming Approach
for Modeling Intrusion, In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC2003), Perth, Australia, December, 2003.

[159] NAGIOS Network Monitoring Tool, www.nagios.org, February 2004.
[160] Nessus Network Security Scanner, http://www.nessus.org/, 2004.
[161] Netflow Tools, www.netflow.com,
[162] NetForensics®, Security Information Management, http.7/www.netforensics.com/,
[163] Network Associates, Inc., Cybercop server, http://www.nai.com/products/security/

cybercopsvr/index.asp, 1998,
[164] P. Neumann and P. Porras, Experience with Emerald to Date, In Proceedings of the

First Usenix Workshop on Intrusion Detection and Network Monitoring, Santa Clara,
CA, 1999.

[165] P.G. Neumann, Computer Related Risks, The ACM Press, a division of the
Association for Computing Machinery, Inc. (ACM), 1995.

[166] P.G. Neumann and D.B. Parker, A Summary of Computer Misuse Techniques, In
Proceedings of the 12th National Computer Security Conference, 396-407, 1989.

[167] NFR Network Intrusion Detection, http://www.nfr.com/products/NID/, 2001.
[168] P. Ning, Y. Cui and D. Reeves, Constructing Attack Scenarios through Correlation of

Intrusion Alerts, In Proceedings of the 9th ACM Conference on Computer &
Communications Security, Washington D.C., 245-254, November 2002.

[169] S. Nomad, Distributed Denial of Service Defense Tactics, http://razor.bindview.com/
publish/papers/strategies.html, 2/14/2000.

[170] S. Northcutt, SHADOW, http://www.nswc.navy.mil/ISSEC/CID/, 1998.
[171] K. P. Park and H. Lee, On the Effectiveness of Router-Based Packet Filtering for

Distributed Dos Attack Prevention in Power-Law Internets, In Proceedings of the
ACMSIGCOMMConference, San Diego, CA, August 2001.

[172] D.B. Parker, Computer Abuse Perpetrators and Vulnerabilities of Computer Systems,
Stanford Research Institute, Menlo Park, CA 94025 Technical Report, December
1975.

[173] D.B. Parker, COMPUTER CRIME Criminal Justice Resource Manual, U.S.
Department of Justice National Institute of Justice Office of Justice Programs,

74 Chapter 2

Prepared by SRI International under contract to Abt Associates for National Institute
of Justice, U.S. Department of Justice, contract #OJP-86-C-002., 1989.

[174] V. Paxson, Bro: A System for Detecting Network Intruders in Real-Time, In
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, January 1998.

[175] Pcap, libpcap, winpcap, libdnet, and libnet Applications and Resources,
http.7/www.steams.org/doc/pcap-apps.html, 2004.

[176] T. Peng, C. Leckie and K. Ramamohanarao, Defending Against Distributed Denial of
Service Attack Using Selective Pushback, In Proceedings of the Ninth IEEE
International Conference on Telecommunications (ICT 2002), Beijing, China, June
2002.

[177] P. Porras, D. Schanckemberg, S. Staniford-Chen, M. Stillman and F. Wu, Common
Intrusion Detection Framework Architecture, http://www.gidos.org/drafts/
architecture.txt, 2001.

[178] P.A. Porras and R.A. Kemmerer, Penetration State Transition Analysis: A Rule-Based
Intrusion Detection Approach, In Proceedings of the Eighth Annual Computer
Security Applications Conference, San Antonio, TX, December, 1992.

[179] P.A. Porras and P.O. Neumann, EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances, In Proceedings of the 20th National Information
Systems Security Conference, Baltimore, MD., 353-365, October, 1997.

[180] P.A. Porras and A. Valdes, Live Traffic Analysis of TCP/IP Gateways, In Proceedings
of the ISOC Symposium on Network and Distributed System Security (NDSS'98), San
Diego, CA, March 1998.

[181] D. Powell and R. Stroud, Conceptual Model and Architecture, Deliverable D2, Project
MAFTIA 1ST-1999-11583, IBM Zurich Research Laboratory Research Report RZ
3377, Nov. 2001.

[182] Proventia^M^ Security's Silver Bullet? An Internet Security Systems White Paper,
available at:, http://documents.iss.net/whitepapers/ProventiaVision.pdf, 2003.

[183] F. Provost and T. Fawcett, Robust Classification for Imprecise Environments,
Machine Learning, vol. 42, 3, pp. 203-231, 2001.

[184] T.H. Ptacek and T.N. Newsham, Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection, Secure Networks, Inc Technical Report, January 1998.

[185] Michael Puldy, Lessons Learned in the Implementation of a Multi-Location Network
Based Real Time Intrusion Detection System, In Proceedings of the Workshop on
Recent Advances in Intrusion Detection (RAID 98), Louvain-la-Neuve, Belgium,
September 1998.

[186] X. Qin and W. Lee, Statistical Causality Analysis of INFOSEC Alert Data, In
Proceedings of the 6th International Symposium on Recent Advances in Intrusion
Detection (RAID 2003), Pittsburgh, PA, September 2003.

[187] S. Ramaswamy, R. Rastogi and K. Shim, Efficient Algorithms for Mining Outliers
from Large Data Sets, In Proceedings of the ACM SIGMOD Conference, Dallas, TX,
May 2000.

[188] M.J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth and Wall E.,
Implementing a Generalized Tool for Network Monitoring, In Proceedings of the
Eleventh Systems Administration Conference (LISAV7), San Diego, CA, October
1997.

Intrusion Detection: A Survey 75

[189] T. Richardson, The Development of a Database Taxonomy of Vulnerabilities to
Support the Study of Denial of Service Attacks., Iowa State University PhD Thesis,
2001.

[190] T. Richardson, J. Davis, D. Jacobson, J. Dickerson and L. Elkin, Developing a
Database of Vulnerabilities to Support the Study of Denial of Service Attacks, IEEE
Symposium on Security and Privacy, May 1999.

[191] S. Robertson, E. Siegel, M. Miller and S. Stolfo, Surveillance Detection in High
Bandwidth Environments, In Proceedings of the 3rd DARPA Information
Survivability Conference and Exposition (DISCEX 2003), Washington DC, April
2003.

[192] P. Rolin, L. Toutain and S. Gombault, Network Security Probe, In Proceedings of the
2nd ACM Conference on Computer and Communication Security (ACM CCS'94),
Fairfax, VA, 229-240, November 1994.

[193] J. Ryan, M-J. Lin and R. Miikkulainen, Intrusion Detection with Neural Networks, In
Proceedings of the AAAI Workshop on AI Approaches to Fraud Detection and Risk
Management, Providence, RI, 72-77, July 1997.

[194] D. Safford, D. Schales and D. Hess, The Tamu Security Package: An Ongoing
Response to Internet Intruders in an Academic Environment, In Proceedings of the
Fourth USENIXSecurity Symposium, Santa Clara, CA, 91-118, October 1993.

[195] S. Savage, D. Wetherall, A. Karlin and T. Anderson, Practical Network Support for IP
Traceback, In Proceedings of the ACM SIGCOMM Conference, Stockholm, Sweden,
295-306, August 2000.

[196] M. Schultz, E. Eskin, E. Zadok and S. Stolfo, Data Mining Methods for Detection of
New Malicious Executables, In Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, 38-49, May 2001.

[197] Secure Networks, Inc., Ballista Security Auditing System, http://
www.securenetworks.com/ballista/ballista.html, 1997.

[198] Security TechNetcom Intrusion Detection Links, http://cnscenter.future.co.kr/security/
ids.html, 2004.

[199] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S. Zhou,
Specification Based Anomaly Detection: A New Approach for Detecting Network
Intrusions, In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), Washington, D.C., November 2002.

[200] A. Seleznyov and S. Puuronen, HIDSUR: A Hybrid Intrusion Detection System Based
on Real-Time User Recognition, In Proceedings of the llth International Workshop
on Database and Expert Systems Applications (DEXA'OO), Greenwich, London, UK,
September, 2000.

[201] K. Sequeira and M. Zaki, ADMIT: Anomaly-base Data Mining for Intrusions, In
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada, July 2002.

[202] C. Sinclair, L. Pierce and S. Matzner, An Application of Machine Learning to
Network Intrusion Detection, In Proceedings of the 15th Annual Computer Security
Applications Conference, Phoenix, AZ, 371-377, December 1999.

[203] S. Singh and Kandula S., Argus: A Distributed Network Intrusion Detection System,
Indian Institute of Technology Kanpur, Department of Computer Science &

76 Chapter 2

Engineering, available at: http://www.cse.iitk.ac.in/research/btp2001/Argus.html
Technical Report, 2001.

[204] S. Smaha, Haystack: An Intrusion Detection System, In Proceedings of the Fourth
Aerospace Computer Security Applications Conference, 37-44, October 1988.

[205] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, T. Heberlein, C. Ho, K.N. Levitt, B.
Mukherjee, S.E. Smaha, T. Grance, D.M. Teal and D. Mansur, DIDS (Distributed
Intrusion Detection System) Motivation, Architecture, and an Early Prototype, In
Proceedings of the 14th National Computer Security Conference, Washington, DC,
167-176, October 1991.

[206] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E Jones, F. Tchakountio, S.T. Kent and
W.T. Strayer, Hash-Based IP Traceback, In Proceedings of the ACM SIGCOMM
Conference, San Diego, CA, 3-14, August 2001.

[207] SNORT Intrusion Detection System, www.snort.org, 2004.
[208] Snort-Wireless Intrusion Detection, http://snort-wireless.org, 2003.
[209] A. Somayaji, S. Hofmeyr and S. Forrest, Principles of a computer immune system, In

Proceedings of the New Security Paradigms Workshop, Langdale, Cumbria UK, 1997.
[210] Sourcefire, Sourcefire Real-time Network Awareness'^^ (RNA), http://

www.sourcefire.com/products/ma.html, 2004.
[211] E. Spafford and D. Zamboni, Intrusion Detection Using Autonomous Agents,

Computer Networks, vol. 34, pp. 547-570, 2000.
[212] P. Spirakis, S. Katsikas, D. Gritzalis, F, Allegre, J. Darzentas, C. Gigante, D.

Karagiannis, P. Kess, H. Putkonen and T. Spyrou, SECURENET: A Network-
Oriented Intelligent Intrusion Prevention And Detection System., Network Security
Journal, vol. 1, 1, November 1994.

[213] T. Spyrou and J. Darzentas, Intention Modelling: Approximating Computer User
Intentions for Detection and Prediction of Intrusions, In Proceedings of the
Information Systems Security, Samos, Greece, 319-335, May 1996.

[214] S. Staniford, J. Hoagland and J. McAlemey, Practical Automated Detection of
Stealthy Voxtscdins, Journal of Computer Security, yo\, 10, 1-2, pp. 105-136,2002.

[215] S. Staniford, V. Paxson and N. Weaver, How to Own the Internet in Your Spare Time,
In Proceedings of the USENIX Security Symposium, San Francisco, CA, 149-167,
August 2002.

[216] S. Staniford-Chen, C.R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C.
Wee, R. Yip and D. Zerkle, GrIDS - A Graph Based Intrusion Detection System for
Large Networks, In Proceedings of the 19th National Information Systems Security
Conference, Baltimore, MD.

[217] S. Staniford-Chen, B. Tung, P. Porras, C. Kahn, D. Schnackenberg, R. Feiertag and
M. Stillman, The Common Intrusion Detection Framework - Data Formats, Internet
Draft Draft-ietf-cidf-data-formats-OO.txt, March 1998.

[218] R. Stone, Centertrack: An IP Overlay Network for Tracking DoS Floods, In
Proceedings of the USENIX Security Symposium, Denver, CO, 199-212, July 2000.

[219] SunSHIELD Basic Security Module Guide, http://docs.sun.com/db/doc/802-
1965?q=BSM, 1995.

[220] Symantec Intruder Alert, http://enterprisesecurity.symantec.com/products/
products.cfm?ProductID=171&EID=0, May 2004.

Intrusion Detection: A Survey 11

[221] Symantec Security Response, W32.ExploreZip.L.Worm, http://
securi tyresponse.symantec.com/avcenter/venc/data/w32.explorezip.l.worm.html,
January 2003.

[222] System Detection, Anomaly Detection: The Antura Difference, http://
www.sysd.com/library/anomaly.pdf, 2003.

[223] Talisker's Network Security Resource, http://www.networkintrusion.co.uk/ids.htm,
[224] TCPDUMP public repository, www.tcpdump.org,
[225] S. Templeton and K. Levit, A Requires/Provides Model for Computer Attacks, In

Proceedings of the Workshop on New Security Paradigms, Ballycotton, Ireland, 2000.
[226] B. Tod, Distributed Denial of Service Attacks, OVEN Digital,

http://www.linuxsecurity.com/resource_files/intrusion_detection/ddos-faq.html, 2000.
[227] A. Valdes, Detecting Novel Scans Through Pattern Anomaly Detection, In

Proceedings of the Third DARPA Information Survivability Conference and
Exposition (DISCEX-III2003), Washington, D.C., April 2003.

[228] A. Valdes and K. Skinner, Adaptive, Model-based Monitoring for Cyber Attack
Detection, In Proceedings of the Recent Advances in Intrusion Detection (RAID
2000), Toulouse, France, 80-92, October 2000.

[229] A. Valdes and K. Skinner, Probabilistic Alert Correlation, In Proceedings of the
Recent Advances in Intrusion Detection (RAID 2001), Davis, CA, October 2001.

[230] J. Van Ryan, SAIC's Center for Information Security, Technology Releases CMDS
Version 3.5, http://www.saic.com/news/may98/news05-15-98.html, 1998.

[231] Vicomsoft White Paper, Firewall White Paper - What Different Types of Firewalls are
There?, available at:, http://www.firewall-software.com/firewall_faqs/
types_of_firewall.html, 2003.

[232] G. Vigna and R.A. Kemmerer, Netstat: A Network-Based Intrusion Detection
Approach, Journal of Computer Security, vol. 7, 1, pp. 37-71, 1999.

[233] D. Vincenzetti and M. Cotrozzi, ATP - Anti Tampering Program, In Proceedings of
the Fourth USENIXSecurity Symposium, Santa Clara, CA, 79-89, October 1993.

[234] D. Wagner and D. Dean, Intrusion Detection via Static Analysis, In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.

[235] H. Wang, D. Zhang and K. Shin, Detecting SYN Flooding Attacks, In Proceedings of
the lEEEInfocom, New York, NY, 000-001, June 2002.

[236] N. Weaver, V. Paxson, S. Staniford and R. Cunningham, A Taxonomy of Computer
Worms, In Proceedings of the The Workshop on Rapid Malcode (WORM 2003), held
in conjunction with the 10th ACM Conference on Computer and Communications
Security, Washington, DC, October 27, 2003.

[237] A. Wespi, M. Dacier and H. Debar, Intrusion Detection Using Variable-Length Audit
Trail Patterns, In Proceedings of the Recent Advances in Intrusion Detection (RAID-
2000), Toulouse, FR, 110-129, October 2000.

[238] WheelGroup Corporation, Cisco Secure Intrusion Detection System,
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/csids/index.htm, 2004.

[239] WIDZ Wireless Intrusion Detection System, www.loud-fat-bloke.co.uk/articles/
widz_design.pdf

[240] D. Winer, Clay Shirky on P2P, davenet.scripting.com/2000/ll/15/clayShirkyOnP2p,
November 2000,

78 Chapter 2

[241] J.R. Winkler, A Unix Prototype for Intrusion and Anomaly Detection in Secure
Networks, In Proceedings of the 13th National Computer Security Conference,
Baltimore, MD, October 1990.

[242] J.R. Winkler and L.C. Landry, Intrusion and Anomaly Detection, ISOA Update, In
Proceedings of the 15th National Computer Security Conference, Baltimore, MD,
October 1992.

[243] K. Yamanishi and J. Takeuchi, Discovering Outlier Filtering Rules from Unlabeled
Data, In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, August 2001.

[244] K. Yamanishi, J. Takeuchi, G. Williams and P. Milne, On-line Unsupervised Outlier
Detection Using Finite Mixtures with Discounting Learning Algorithms, In
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Boston, MA, 320-324, August 2000.

[245] N. Ye and Q. Chen, An Anomaly Detection Technique Based on a Chi-Square
Statistic for Detecting Intrusions Into Information Systems, Quality and Reliability
Engineering International, vo\, 17, 2, pp. 105-112,2001.

[246] N. Ye and X. Li, A Scalable Clustering Technique for Intrusion Signature
Recognition, In Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point, NY, June, 2001.

[247] Z. Zhang, J. Li, C.N. Manikopoulos, J. Jorgenson and J. Ucles, HIDE: A Hierarchical
Network Intrusion Detection System Using Statistical Preprocessing and Neural
Network Classification, In Proceedings of the IEEE Workshop on Information
Assurance and Security, United States Military Academy, West Point, NY, June 2001.

[248] E. Zwicky, S. Cooper, D. Chapman and D. Ru, Building Internet Firewalls, 2nd
Edition ed, O'Reilly and Associates, 2000.

PART II

DATA MINING BASED ANALYSIS
OF COMPUTER ATTACKS

Chapter 3

LEARNING RULES AND CLUSTERS FOR
ANOMALY DETECTION IN NETWORK TRAFFIC

Philip K. Chan/'^ Matthew V. Mahoney,^ and Muhammad H. Arshad^

Department of Computer Sciences, Florida Institute of Technology

2 Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract: Much of the intrusion detection research focuses on signature (misuse) detection,
where models are built to recognize known attacks. However, signature detec­
tion, by its nature, cannot detect novel attacks. Anomaly detection focuses on
modeling the normal behavior and identifying significant deviations, which could
be novel attacks. In this chapter we explore two machine learning methods that
can construct anomaly detection models from past behavior. The first method
is a mle learning algorithm that characterizes normal behavior in the absence of
labeled attack data. The second method uses a clustering algorithm to identify
outliers.

Keywords: anomaly detection, machine learning, intmsion detection

1. INTRODUCTION

The Intemet is one of the most influential innovations in recent history.
Though most people use the Intemet for productive purposes, some use it as
a vehicle for malicious intent. As the Intemet links more users together and
computers are more prevalent in our daily lives, the Intemet and the computers
connected to it increasingly become more enticing targets of attacks. Com­
puter security often focuses on preventing attacks using usually authentication,
filtering, and encryption techniques, but another important facet is detecting
attacks once the preventive measures are breached. Consider a bank vault,
thick steel doors prevent intmsions, while motion and heat sensors detect in-
tmsions. Prevention and detection complement each other to provide a more
secure environment.

82 Chapter 3

How do we know if an attack has occurred or has been attempted? This
requires analyzing huge volumes of data gathered from the network, host, or
file systems to find suspicious activity. Two general approaches exist for this
problem: signature detection (also known as misuse detection), where we look
for pattems signaling well-known attacks, and anomaly detection, where we
look for deviations from normal behavior. Signature detection works reliably
on known attacks, but has the obvious disadvantage of not being capable of
detecting new attacks. Though anomaly detection can detect novel attacks, it
has the drawback of not being capable of disceming intent; it can only signal
that some event is unusual, but not necessarily hostile, thus generating false
alarms. A desirable system would employ both approaches.

Signature detection methods are more well understood and widely applied.
They are used in both host based systems, such as virus detectors, and in network
based systems such as SNORT [32] and BRO [26]. These systems use a set of
rules encoding knowledge gleaned from security experts to test files or network
traffic for pattems known to occur in attacks. A limitation of such systems is that
as new vulnerabilities or attacks are discovered, the rule set must be manually
updated. Also minor variations in attack methods can often defeat such systems.
For anomaly detection, a model of acceptable behavior can also be specified
by humans as well. For example, firewalls are essentially manually written
policies dictating what network traffic is considered normal and acceptable.

How do security experts discover new unknown attacks? Generally, the
experts identify something out of ordinary, which triggers further investigation.
Some of these investigations result in discovering new attacks, while others
result in false alarms. From their experience, security experts have learned a
model of normalcy and use the model to detect abnormal events. We desire to
endow computers with the capability of identifying unusual events similar to
humans by leaming (data mining) from experience, i.e., historical data.

Since what is considered normal could be different in different environments,
a distinct model of normalcy need to be learned individually. This contrasts to
manually written polices of normal behavior that require manual customization
in each environment. Moreover, since the models are customized to each envi­
ronment, potential attackers would find them more difficult to circumvent than
manually written policies that might be less customized due to inexperienced
system administrators who do not change the default parameters and policies
supplied by the vendors. Our goal is to learn anomaly detectors that can be
customized to individual environments. This goal has a few challenges.

First, anomaly detection is a harder problem than signature detection be­
cause signatures of attacks can be very precise but what is considered normal
is more abstract and ambiguous. Second, classical machine leaming problems
are classification tasks—given examples of different classes, learn a model that
distinguishes the different classes. However, in anomaly detection, we are es-

Learning Rules and Clusters for Anomaly Detection in Network Traffic 83

sentially given only one class of examples (normal instances) and we need to
learn a model that characterizes and predicts the lone class reliably. Since ex­
amples of the other classes are absent, traditional machine learning algorithms
are less applicable to anomaly detection. Third, research in anomaly detection
uses the approach of modeling normal behavior from a (presumably) attack-free
training set. However, clean data for training may not be easy to obtain. Lastly,
to help humans analyze the alerts, anomaly detectors need to be able to describe
the anomalies, though not as precisely as signature detectors are capable.

To meet the second challenge, we propose two methods for leaming anomaly
detectors: rule leaming (LERAD) and clustering (CLAD). CLAD does not
assume the training data are free of attacks—the third challenge. For the last
challenge, our models are not black boxes. Alerts can be explained by rules that
are violated in LERAD or by the centroids of the "near miss" normal clusters
in CLAD. Our experimental results indicate that, though anomaly detection
is a harder problem (the first challenge), our methods can detect attacks with
relatively few false alarms.

This chapter is organized as follows. Section 2 contrasts related techniques
in anomaly detection. Section 3 proposes the LERAD algorithm that learns
the characterization of normal behavior in logical rules. Section 4 describes a
clustering algorithm that can identify behavior far from the normal behavior.
We summarize our findings and suggest improvements in Section 5.

2. RELATED WORK
Anomaly detection is related to biological immunology. Forrest et al. [11]

observe that part of our immune system functions by identifying unfamiliar
foreign objects and attacking them. For example, a transplanted organ is often
attacked by the patient's immune system because the organ from the donor
contains objects different from the ones in the patient, Forrest et al. found that
when a vulnerable UNIX system program or server is attacked (for example,
using a buffer overflow to open a root shell), that the program makes sequences
of system calls that differ from the sequences found in normal operation [12].
Forrest used n-gram models (sequences of n = 3 to 6 calls), and matched them to
sequences observed in training. A score is generated when a sequence observed
during detection is different from those stored during training. Other models
of normal system call sequences have been used, such as finite state automata
[34] and neural networks [13]. Notably, Sekar et al. [34] utilize program
counter information to specify states. Though the program counter carries
limited information about the state of a program, its addition to their model is
different from typical n-gram models that rely solely on sequences of system
calls. Lane and Brodley [18] use instance-based methods and Sequeira and
Zaki [35] use clustering methods for detecting anomalous user commands.

84 Chapter 3

A host-based anomaly detector is important since some attacks (for exam­
ple, inside attacks) do not generate network traffic. However, network-based
anomaly detectors can warn of attacks launched from the outside at an earlier
stage, before the attacks actually reach the host. Current network anomaly de­
tection systems such as eBayes [37], ADAM [4], and SPADE [7] model only
features of the network and transport layer, such as port numbers, IP addresses,
and TCP flags. Models built with these features could detect probes (such as
port scans) and some denial of service (DOS) attacks on the TCP/IP stack, but
would not detect attacks of the type detected by Forrest, where the exploit code
is transmitted to a public server in the application payload.

Network anomaly detectors estimate the probabilities of events, such as that
of a packet being addressed to some port, based on the frequency of similar
events seen during training or during recent history, typically several days.
They output an anomaly score which is inversely proportional to probability.
Anomaly detectors are typically just one component of more comprehensive
systems. eBayes is an anomaly detection component of EMERALD [24], which
integrates the results from host and network-based detectors that use both sig­
nature and anomaly detection. ADAM is a Bayes classifier with categories for
normal behavior, known attacks, and unknown attacks. SPADE is a SNORT
[32] plug-in. Some anomaly detection algorithms are for specific attacks (e.g.,
portscans [36]) or services (e.g., DNS [17]).

Most current anomaly detectors use a stationary model, where the probability
of an event depends on its average rate during training, and does not vary with
time. However, using the average rate could be incorrect for many processes.
Paxson and Floyd [27] found that many network processes, such as the rate
of a particular type of packet, have self-similar (fractal) behavior. Events do
not occur at uniform rates on any time scale. Instead they tend to occur in
bursts. Hence, it is not possible to predict the average rate of an event over a
time window by measuring the rate in another window, regardless of how short
or long the windows are. An example of how a stationary model fails in an
anomaly detector would be any attack with a large number of events, such as a
port scan or a flooding attack. If the detector correctly identifies each packet as
anomalous, then the user would be flooded with thousands of alarms in a few
minutes.

Clustering and related techniques have been used to locate outliers in a
dataset. Knorr and Ng [16] define an outlier as an object where a fraction
p of the dataset is further than distance D from the object, where p and D are
parameters specified by the users. Instead of a global perspective [16], LOF [5]
uses a local perspective and locates outliers with respect to the density in the lo­
cal/neighboring region. They illustrate the inability of conventional approaches
to detect such outliers. LOF has two short-comings: one, their approach is very
sensitive to the choice of MinPts, which specifies the minimum number of

Learning Rules and Clusters for Anomaly Detection in Network Traffic 85

objects allowed in the local neighborhood (similar to k in k-NN, k-Nearest
Neighbor); second, and more importantly, their approach is not well-suited for
very high dimensional data such as network traffic data. Ramaswamy et al.
[31] investigate the problem of finding the top n outliers. They characterize
an outlier by the distance of the fcth-nearest neighbor and their algorithm ef­
ficiently partitions the input space and prunes partitions that cannot contain
the top outliers. Aggarwal and Yu [1] calculate the sparsity coefficient, which
compares the observed and expected number of data points, in "cubes" (spatial
grid cells) generated by projections on the dataset.

3. LEARNING RULES FOR ANOMALY DETECTION
(LERAD)

To build a model for anomaly detection, from a probabilistic perspective,
one can attempt to estimate P{x\Di^oAttacks)•> where x is an instance under
consideration and D^^oAttacks is a data set of instances that do not contain
attacks. Since all the probabilistic estimations are based on the training data set
DNoAttacks, for notation convenience, we use P(x) in lieu of P{X\DNoAttacks)-
Under this model, the smaller P{x) is, the more likely x is anomalous.

Each instance x is represented by values from a set of m attributes ai, a2,...,
am- That is, a; is a tuple of values (ai = I'l, ^2 — ^2^ •--•, dm = Vm)-> where vi
is the value for attribute a .̂ The probability P{x) is hence: P{ai = Vj,a2 =
V2: •••) CLm = Vm) or more concisely, P{vi, f2,..., Vm)- Using the chain rule is
frequently is too computationally expensive. Some researchers assume the at­
tributes to be independent in "Naive" Bayes algorithms [9, 6, 8]. However this
assumption is usually invalid. To incorporate attribute dependence, Bayesian
networks [28] model a subset of the conditional probabilities structured in net­
works, which are selected using prior knowledge. Recent work in Bayesian net­
works attempts to learn the network structures from data. However, Bayesian
networks model the entire distribution of each conditional probability and could
consume significant computational resources.

Instead of estimating the probability of an instance x, an alternative approach
is to estimate the likelihood of values among the attributes in each instance. That
is, given some attribute values, we estimate the likelihood of some other attribute
values. Again, consider vi, ...,Vm = V axe the values of attributes ai,. . . , a^ of
an instance. Let U cV,W CV, and U OW = ^,WQ would like to estimate:
P{W\U). For example, consider these network packet values: V = {Srclp =
12S.1.2.3, Destip = 12SA.5.Q, SrcPort = 2222, DestPort = 80}. Fur­
ther we consider U = {Srclp = 128.1.2.3, Destip = 128.4.5.6} and W =
{DestPort = SO},hmceP{W\U) is: P{DestPort = SO\SrcIp = 128.1.2.3,
Destlp= 128.4.5.6).

86 Chapter 3

In anomaly detection we seek combinations of U and W with large
P{W\U)—W is highly predictive by U. These combinations indicate pat­
terns in the normal training data and fundamentally constitute a model that
describes normal behavior. If these patterns are violated during detection, we
calculate a score that reflects the severity of the violation and hence the degree of
anomaly. That is, the anomaly score depends on P(--W\U), where W, though
expected, is not observed when U is observed. Finding these patterns could be
computationally expensive since the space of combinations is 0{d^), where d
is the domain size of an attribute and m is the number of attributes. In the next
section we describe our proposed learning algorithm.

LERAD Algorithm

Our goal is to design an efficient algorithm that finds combinations of U
and W with large P{W\U) during training and uses P{-^W\U) to calculate an
anomaly score during detection. The task of finding combinations of U and W
is similar to finding frequent patterns in association rules [2], where U is the
antecedent, W is the consequent, and P{W\U) is the confidence. Algorithms
for finding association rules, for example Apriori [2], typically find all rules
that exceed the user-supplied confidence and support thresholds; consequently,
a large number of rules can be generated. Checking large number of rules
during detection incurs unacceptable amounts of overhead. However, our goal
is different from finding association rules in two fundamental respects. First, the
semantics of our rules are designed to estimate P{-^W\U). Second, we want a
"minimal" set of rules that succinctly describes the normal training data. These
differences are exhibited in our proposed rules and algorithm called LERAD
(LEaming Rules for Anomaly Detection).

Semantics of LERAD Rules. The semantics of LERAD rules seek to
estimate P{-^W\U); in rule form, a LERAD rule is:

U^^W \p = P(-^W\U)l (3.1)

where p denotes P{-^W\U) and reflects the likelihood of an anomaly. These
rules can be considered as anomaly rules. We also extend the semantics of W.
In the consequent instead of allowing a single value for each attribute, our rules
allow each attribute to be an element of a set of values. For example, consider
W = {DestPort € {21,25,80}} (instead of 1^ -= {DestPort = 80}),
P{W\U) is: P(DestPort e {21,25,80}|5rc7p = 128.1.2.^, Destip =
128.4.5.6) and P{-nW\U) becomes: P{DestPort ^ {21,25,80}|5'rc7p =
128.1.2.3, Destip = 128.4.5.6) or in rule form: Srclp = 128.1.2.3, Destip
= 128.4.5.6 => DestPort ^ {21,25,80}. Given U, the set of values for
each attribute in W represents all the values seen in the training data for that
particular attribute. Following the above example, given Srclp = 128.1.2.3

Learning Rules and Clusters for Anomaly Detection in Network Traffic 87

and Destip = 128.4.5.6, DestPort is either 21, 25, or 80 in the normal
training data. This extension allows our models to be more predictive and
conservative so that false alarms are less likely to occur. However, since W
includes all the seen values in training, a simplistic estimation of P{W\U)
would yield 1 and P(-^W\U) 0. Obviously, these estimates are too extreme.
Since event -\W is not observed when event U is observed during training,
estimating P{-^W\U) becomes a "zero-frequency" problem [38].

Zero-frequency Problem. Laplace smoothing is commonly used in the
machine leaming community to handle the zero-frequency problem [25,23,30].
One variant of the technique is to assign a frequency of one, instead of zero, to
each event at the beginning. Hence, all events, observed or not, will have at least
a count of one and none of the events have an estimated probability of zero. That
is, the likelihood of a novel event can be estimated by: P{NovelEvent) =
I^^TLJ where |^ | is the size of the alphabet A of possible values, n is the
total number of observed events and r is the number of unique observed events.
However, Laplace smoothing is appropriate only for the case where A is known,
and for which the apriori distribution over A is uniform. In general, A could
be very large and unknown (for example, the set of all possible strings in the
application payload), and the distribution could be highly skewed toward a few
common values.

Witten and Bell [38] proposed a few estimates for novel events in the context
of data compression that are independent of alphabet size and which do not
assume an apriori uniform distribution; one estimate is:

P(NovelEvent) = - . (3.2)
n

This measures the average rate of novel values in the sample. Eq. 3.2 is used
to estimate p = P{-^W\U) in Eq. 3.1, where n is the number of instances
satisfying the antecedent U and r is the number of unique values in the attribute
of the consequent W, We attempted more sophisticated estimators in initial
experiments for anomaly detection, but Eq. 3.2 seems to perform as effectively
as others and requires the least computation, which is advantageous in mining
large amounts of data.

Randomized Algorithm. In the previous sections we have discussed the
semantics of LERAD rules and how P{-iW\U) can be estimated. We now
discuss an efficient algorithm that finds combinations of U and W with low
P{-^W\U) (or high P{W\U)). Our algorithm is based on sampling and ran­
domization. Let D be the entire training data set, DT and Dy be the training
and validation sets respectively such that DT U Dy = D, DT H Dy = 0, and
\DT\ > \Dv\^ and Ds is a random sample of DT such that Ds C DT and

Chapter 3

Table 3.1. Example Training Data Set D = {di} for i = 1..6 (marked by rk in Step 3)

di

di

d2
dz
di
ds
de \

1 ai
1
1

2
2
1
2

a2

2(r2)
2(r2)
6(r i)

7
2
8

as
3
3
3
3
3
3

0-4

4
5
5
5
4

4

1 in subset
1 Ds and £>T

JDS and DT

Ds and Z?T

DT

Dv
1 Dv

Ta^/e 3.2. Rules (r^) Generated by LERAD Steps 1-5

Step 1
r i : * ^ a2 = 2
r2: ax = I => a2 = 2
ra: ai = 1, as = 3 => a2 = 2

' Step 2 (rewritten in Eq.3.1 form)
n : *=>a2 ^{2,6}[p = 2/3]
r2: ai = l = ^ a 2 ^ { 2 } [p = l / 2]
ra: ai = 1, 03 = 3 =^ 02 0 {2}[p = 1/2]

Step 4
r2: ai = l - » a 2 0 { 2 } [p = l / 2]
r i : *=>a2 ^ {2, 6, 7}[p = 3/4]

Step 2
r i : * =^a2 G {2,6}
r2: ai = 1 =^ a2 = 2
rs: ai = 1, as = 3 => a2 = 2

Step 3
r2: ai = 1 =^ a2 ^ {2}[p = 1/2]
n : *=^a2 0{2,6}[p = 2/3]

Steps
ra: ai = 1 :^ 02 ^ { 2 } [p = 1/3]

\Ds\ <C li^rl- ^£; is a separate test/evaluation set disjoint from the training
set D. Our proposed mining algorithm consists of five main steps:

1 generate candidate rules from Ds,
2 evaluate candidate rules from Ds,
3 select a ''minimal" set of candidate rules that covers Ds,
4 train the selected candidate rules on DT, and
5 prune the rules that cause false alarms on Dy

Steps 1-3 intend to select a small and predictive set of rules from a small sample
Ds of the data. The selected rules are then trained on the much larger set DT
in Step 4. The validation set Dy is used to reduce overfitting in Step 5. For
simplicity, we only consider rules that have only one attribute in the consequent.
Further details are in [20].

Step 1. Pairs of instances are randomly chosen from D^. For each pair of
instances, we identify the matching attribute values between the two instances.
Consider di and d2 in Table 3.1 as a random pair, ai = 1, a2 = 2, and as = 3
occur in both instances. The three values are then chosen in random order, e.g.,
a2 = 2,ai = 1, and as = 3; and the candidate rules in Table 3.2 are generatedc
The first value (a2 = 2) is chosen to be in the consequent (W) and the the
later values are iteratively added to the antecedent ([/). In r i , * is a wild card

Learning Rules and Clusters for Anomaly Detection in Network Traffic 89

and matches anything. If the matching attribute values occur often in different
instances, they will likely be found matching again in another randomly chosen
pair of instances and more rules for these matching attribute values will be
generated. That is, the more likely the values are correlated, the more rules will
be generated to describe the correlation (duplicate rules are removed).

Step 2. We evaluate the candidate rules on Ds^ Note that the consequent in
the candidate rules generated from Step 1 has only one value. In Step 2 we add
values to the attribute in the consequent if more values are observed in Ds* di
and (̂ 2 do not change the rules. ^3 causes ri is to be updated because a2 == 6 in
ds; the other two rules are unchanged because the antecedents are not satisfied
for da. The new set of candidate rules are in Table 3.2. We then write the
rules in the form of Eq. 3.1 and estimate p = P{-^W\U) for each rule by using
Eq. 3.2 in Table 3.2.

Step 3, We select a "minimal" subset of candidate rules that sufficiently
describe Ds. Our method is based on two heuristics. First, we prefer rules with
lower p = P{-iW\U). Second, a rule can cover multiple instances in Ds, but
an instance does not need to be covered by more than one rule (more details
later). Hence, we sort the rules based on p and evaluate the rules in ascending
order. For each rule, we mark instances that are covered by the rule. If a rule
cannot mark any remaining unmarked instances, it is removed. That is, we keep
rules with lower p and remove rules that do not contribute to covering instances
not covered by previous rules with lower p values.

Step 4. This step is similar to Step 2, except that the rules are updated based
on DT, instead of D5. 0̂4 does not affect r2 since its antecedent does not match.
However, 7 is added to the consequent of ri and p is updated to 3/4 in Table 3.2.
After Step 4, the rules have been trained from D^.

Step 5. Since all instances in the validation set Dy are normal, an alarm
generated by a rule with any instance in Dy is a false alarm. To reduce overfit-
ting, during Step 5, we remove rules that generate alarms in the validation set.
Using our running example, ^5 is normal according to vi and r2. However, ri
generates an alarm for d^ since a2 = 8 ^ {2, 6, 7}. r2 does not generate an
alarm because ai = 2, which does not satisfy the antecedent of r2. Hence, only
r2 remains in Table 3.2. During Step 5, to fully utilize legitimate training data
in the validation set, we also update p for rules that are not removed. Hence, p
for r2 was updated to 1/3.

Anomaly Score and Nonstationary Model. During training, a set of
anomaly rules R that "minimally" describes the training data are generated and

90 Chapter 3

their p = P{-^W\U) is estimated. During detection, given an instance x, we
generate an anomaly score if x satisfies any of the anomaly rules (U => ^W),
Let S' C i? be the set of anomaly rules that x satisfies. The anomaly score is
calculated as: AnomalyScore(x) = Ylvk^s ^T' ^here Vk is a rule in S and pk
is the p value of rule Vk^ The reciprocal ofpk reflects a surprise factor that is
large when anomaly has a low likelihood (small p^)-

The p estimate is an aggregate over a stationary training period; however,
recent events can greatly influence current events. Bursty network traffic or OS
activities are common. In intrusion detection we experience that attacks cause
bursty behavior as well. In order to incorporate recent novel events into our
scoring mechanism, we introduce t^ which is the duration since the last novel
value was observed in the consequent of anomaly rule Vk (or when r^ was
satisfied). The smaller tk is, the higher the likelihood that we will see another
novel value. That is, intuitively, we are less surprised if we have observed a
novel value in a more recent past. Hence, we calculate the anomaly score as:

Anomaly S cor e{x) = ^ —. (3.3)

Summary of Current Results

To evaluate LERAD, we use network traffic recorded in tcpdiimp provided
by the DARPA evaluation in 1999 [19,15]. Week 3 inside sniffer traffic (which
contains no attacks) was used for training (D) and Weeks 4 and 5 (DE) were
used for testing. The size of the validation set (|D\/1) was set to be 10% of the
training set (D). We set Ds = 100 samples. LERAD was run five times with
a different random seed. Attributes used in our data sets include IP addresses,
port numbers, length, duration, opening and closing TCP flags, and the first 8
words of the application payload of reassembled inbound client TCP streams.
LERAD is evaluated based on the number of detected attacks with at most 10
false alarms per day.

In our experiments the resulting set of rules usually contains 50 to 75 rules.
Though the rule set is relatively small, LERAD, on the average, detects about
117 attacks out of 201 attacks with at most 10 false alarms per day. Under a
''blind" evaluation (the test set was not available apriori), the original DARPA
participant with the most detections detected 85 attacks [19]. This indicates
LERAD is quite successful in finding highly predictive normal patterns. More
importantly, LERAD detects about 58% of the attacks poorly detected by the
original participants [19]. That is, LERAD increases the overall coverage of
detectable attacks. The total computational overhead is about 30 minutes for
three weeks of training and test data. Much of the overhead is in preprocessing
of the raw data to generate feature values for training and testing. Training and

Learning Rules and Clusters for Anomaly Detection in Network Traffic 91

testing on three weeks of data take less than two minutes. We also analyzed and
categorized why our detected anomalies were successful in detecting attacks.
The more common categories (covering about 70% of the detected attacks) are
unexpected user behavior (e.g., unusual client addresses for servers) and learned
(partial) attack signatures (e.g., unusual input that exploit bugs in software).
Details of our findings are described in [20].

In [22] we tested LERAD on 623 hours of traffic collected on a university
departmental server over a 10 week period. We first used SNORT and manual
inspection to identify six attacks that evaded our gateway firewall: an inside au­
tomated port/security scan which tests for multiple vulnerabilities, three HTTP
worms (Code Red II, Nimda, and Scalper), an HTTP proxy probe, and a DNS
version probe. We evaluated LERAD using two attribute sets: TCP streams as
above, and a simpler set consisting of just the first 32 pairs of bytes (i.e. 16 bit
values) of inbound client IP packets. (To reduce the traffic load, we limited all
packets to 16 per minute per session, and TCP up to the first payload packet).
Lacking clean training data, we simply used each week's data as training for the
following week. Averaged over five runs at 10 false alarms per 24 hours, the
TCP version detects 2.4 attacks and the packet version detects 1.4, for a total of
3.0 (50%) after removing overlap. The probability of detection is highest for
the most malicious attack (the inside scan), and lowest for the two probes.

LERAD is based on our simpler algorithms PHAD and ALAD, which use
fixed rule sets [21]. PHAD was also adapted to detect attacks by modeling
accesses to the Registry in the Windows OS [3].

4. CLUSTERING FOR ANOIMALY DETECTION
(CLAD)

LERAD assumes the training data are free of attacks, however, making sure
the data is clean could be time consuming. We propose to use a clustering
approach to identify "outliers" as anomalous. Our clustering method, CLAD, is
inspired by the work of [10,29], and is related to k-NN. CLAD locates anomalies
by finding local and global outliers with some restrictions, where k-NN and LOF
[5] concentrate mainly on local outliers. One key difference of CLAD from
other clustering algorithms is that clusters are of fixed width (radius) and allows
clusters to overlap (i.e., the clusters are not mutually exclusive). This difference
permits CLAD to process large amounts of data efficiently.

CLAD has two phases: Phase 1 creates the clusters and Phase 2 assigns data
points to additional clusters. Fig. 3.1 illustrates the steps of the 2 phases. Given
a dataset, D, Phase 1 creates clusters of fixed width, W (which will be discussed
later), and assigns data points, d e D,to the created clusters. If a data point is
further away than width W from any existing cluster, the data point becomes
the centroid of a new cluster; otherwise it is assigned to all existing clusters that

92 Chapter 3

Input: Dataset D
Output: Set of clusters C

1 initialize the set of clusters, C, to 0
Phase 1: Creating clusters

2 fox deD
3 f or c e C
4 if distance{dj c) < W, assign d to c
5 if d is not assigned
6 create cluster ĉ with d as the centroid and add ĉ to C

Phase 2: Assigning data points to additional clusters
7 fovdeD
8 for c € C
9 if distance(d^ c) <W and d is not assigned to c

10 assign d toe

Figure 3.1, Overall CLAD Algorithm

are not further away than W. In Phase 1 since data points can only be assigned
to existing clusters, some data points might miss assignment to clusters that are
subsequently created. Phase 2 assigns these data points to additional clusters.
So far our CLAD algorithm is basically the clustering algorithm proposed in
[10, 29], however, the methods significantly diverge on how data points are
represented for calculating distance, how the cluster width is determined, and
how the properties of outliers are decided.

Feature Vectors and Distance Function

Each data point, d, is represented by a feature vector, and a cluster, c, is
represented by its centroid, which is a data point. We use the Euclidean distance
as our distance function:

distance{Yi^Y2) =

\

\yi\

E (^ i 7 - ^ 2 i) ^ (3.4)

where Yi and Y2 are two feature vectors, Yij denotes the jth component of Yi,
and \Yi\ denotes the length of vector Yi.

To obtain a feature vector for a data point, we transform the data points
represented in the input attribute vectors (Xi) into our feature vectors (Yi). We
have two types of transformation depending on whether the input attribute is
continuous or discrete. Discrete attributes are usually problematic for distance
functions. In anomaly detection since values that are observed more frequently

Learning Rules and Clusters for Anomaly Detection in Network Traffic 93

are less likely to be anomalous and we want distance to indicate the difference
in the degree of normalcy (separating normal from abnormal behavior), we
represent a discrete value by its frequency. That is, discrete values of similar
frequency are close to each other, but values of very different frequency are far
apart. As a result, discrete attributes are transformed to continuous attributes.

In our domain continuous attributes, including those transformed from dis­
crete attributes, usually exhibit a power-law distribution—smaller values are
much more frequent than larger values. Distances involving the infrequent
large values are large and "drowns" the distances involving only small values.
To reduce this problem, we use a logarithmic scale. In addition, to discount
variance among values, we quantize the values using the floor operation, after
taking the logarithm. Furthermore, in order to consider each attribute equally,
the values of each attribute are normalized to the range [0,1]. Formally, an input
attribute value, Xij, is transformed to a, feature value, Yij as follows:

Yij = normalize(l\n{Xij + 1)J), (3.5)

where normalize{vj) = {vj — Minj)/{Maxj — Miuj), Vj is a value from
vector component j , and Mirij (Maxj) is the minimum (maximum) value of
component j . To avoid negative and undefined values (when 0 < Xij < 1),
we add 1 to Xij before taking In.

For normalization, we also considered the number of standard deviations
(SD) away from average. However, power-law distributions are one-sided and
heavy-tailed, so standard deviations are not very appropriate for our purpose.
Using SD for normalization resulted in noticeable degradation in performance
in our experiments. Therefore, we revert to simple scaling as a means of nor­
malization.

Cluster Width

The cluster width, W, specifies the local neighborhood of clusters that are
considered close. The width is specified by the user in [29]. CLAD derives the
width from the smallest distances between pairs of data points. To efficiently
calculate the width, CLAD randomly draws a sample, of size s = 1% x \D\,
from the entire dataset, D, and calculates the pair-wise distances. The bottom
1% of the pair-wise distances (i.e., 1% x s{s — l) /2 pairs) are considered the
smallest and their average is the cluster width. That is, CLAD samples pair-
wise distances and uses the average distance of the closest neighbors as W.
Though CLAD has a fixed parameter of 1% for deriving W, it is much less
ad hoc than asking the user to specify W, which becomes a parameter. Our
parameter is similar to specifying k in k-NN methods, but our parameter is
in relative percentage, which is different from the absolute count of k and is
conceptually easier to specify and understand.

94 Chapters

Density^ Inter-cluster Distance, and Anomalies

To determine if a cluster is an outlier, CLAD relies on two properties of a
cluster: density and distance from the other clusters. Since each cluster has the
same W (and hence ''area"), we define the density of cluster Q as the number
of data points, Counti, in ĉ . For the distance from the other clusters, we
calculate the average inter-cluster distance {ICD) between Q and the other
clusters. Formally, we denote ICDi as the ICD of cluster ci and define ICDi
as:

^ \c\
ICDi = 7——r ^ distance(ci^Cj) (3.6)

where C, as similarly defined before, is the set of clusters.
Outliers are generally distant and sparse. A cluster Q is considered distant

if ICDi is more than a standard deviation away from the average ICD. From
our initial experiments, we observe that the distribution of Count exhibits a
power-law distribution; when we use average and SD for Count, the average is
very small and few/no clusters have County one SD smaller than the average.
Hence, instead of using the average we use the median; a cluster Ci is considered
sparse when County is more than one median absolute deviation (MAD) [14]
smaller than the median Count. Interestingly, in our domain an attack could be
composed of many data points (e.g., flooding attacks), and hence dense regions
could be attacks as well. We will discuss this issue further in the next section
when we evaluate CLAD. Accordingly, we define dense clusters, which have
Counti more than one MAD larger than the median Count. More formally,
the set of distant clusters Cdistant-> sparse clusters Csparse^ and dense clusters
Cdense^ are defined as:

Cdistant = {ci e C\ICDi > AVG{ICD) + SD{ICD)}, (3.7)

Csparse = {Q G C\Counti < AVG{Count) - MAD{Count)], (3.8)

Cdense = {Q G C\Counti > AVG(Count) + MAD{Count)], (3.9)

where AVG is the average function. CLAD generates alerts for clusters that
are sparse and distant, or dense and distant. Each cluster is represented by its
centriod.

A sparse cluster/region is essentially a local outlier, i.e., it reflects how many
neighbors are within W. This is similar to k-NN which computes distance to
the closest k neighbors, as discussed previously. Labeling a region distant is
equivalent to saying that the region is a global outlier.

Summary of Current Results

As with the evaluation of LERAD, we use the same DARPA 99 dataset to
evaluate CLAD. Connections are similarly reassembled and the first 10 bytes

Learning Rules and Clusters for Anomaly Detection in Network Traffic 95

1

1 1 : •

ill Ml!
\^
lihj'iM

*. • «•
f<'-t\..-'
'jf^-i'/'^'

5'»*f * *
NW. •

5

•

1

i 1
1

. •
1 •!• •*;•: I . . * \ i * '*;*. •*:' .:•

*

Figure 3.2. Count and ICD of clusters for port 25 with CD a. < 20%, b. > 80%

1

i
i ! ! . .

i ;il :::i':ir--
iH;:'*'-.

rf'^.C*!* .r. • .

....

11

!
,
i

J

1 .:•

i • • • •;','

Figure 3.3. Count and ICD of clusters for port 80 with CD a. < 20%, b. > 80%

from the application payload are in the input data. Unlike LERAD, CLAD
does not require an explicit training phase, we combine the normal training
data (Weeks 1 and 3) and test data (Weeks 4 and 5); the additional normal
training data also help reduce the unusually high rate of attacks in the test data.

To improve effectiveness and efficiency, CLAD learns a model for each port
(application protocol). For ports that are rarely used (< 1% of the dataset), we
lump them into one model: "Other." Only clusters that are sparse and distant,
or dense and distant trigger alerts. To make anomaly scores comparable across
models, anomaly scores are normalized to the number of SD's away from the
average ICD.

Density is not used in the anomaly score because it is not as reliable as
ICD. This results from our analysis of how attacks are distributed between
density and ICD on ports 25 and 80, which have the most traffic. Since we
do not have exact labels (attack or normal) for each data point, we rely on
how DARPA/LL counts an alert as a detection of an attack [19]. We define
CD (counted as detection) of a cluster as the percentage of data points in the
cluster, when used to trigger an alert, is counted as a detection of an attack.
This is an indirect rough approximation of the likelihood of an attack present in
the cluster. We plot clusters with CD < 20% (''unlikely anomalies") against

96 Chapter 3

Table 3.3.

Port
Detections

Slumber of detections by CLAD (duplicates are

20
3

21
14

23
17

25
33

53
5

79
8

80
37

110
2

removed in Combined^,

111
1

143
3

Other
14

I

Combined
76

Count and ICD in Fig. 3.2a and similarly for CD > 80% ("likely anomalies")
in Fig. 3.2b. Both Count and ICD are in log scale. As we compare the two
plots, we observe that the likely anomalies occur more often in regions with
larger ICD, and the opposite for unlikely anomalies with smaller ICD. The
same observation cannot be made for Count. This is related to the fact that
some attacks can occur in dense clusters as we explained previously. For port
80 in Fig 3.3, similar observations can be made. The figures also indicate that
sparse and distant, or dense and distant clusters, which we use to trigger alerts,
are likely to detect attacks. Furthermore, for port 80, 96% of the clusters have
CD = 100% or < 9% (similarly for port 25). This indicates that most of the
clusters are near homogeneous and hence our combination of feature vectors,
distance function, and cluster width can sufficiently characterize the data.

Table 3.3 shows the number of attacks detected by models learned for each
port with at most 100 false alarms during the 10 day attack period in Weeks 4 and
5. The combined model detected 76 attacks, after removing duplicate detections
from individual models. As mentioned perviously, the original DARPA partici­
pant with the most detections detected 85 attacks [19], which was achieved by a
signature detector built by hand—unlike CLAD, which is an anomaly detector
with no apriori knowledge of attacks. Compared to LERAD, CLAD detected
fewer detections, but CLAD is handicapped by not assuming the availability of
attack-free training data. However, we seem to detect more attacks than similar
techniques [10, 29], which make similar assumptions, but we cannot claim that
since the datasets are different. Further experimentation would help reduce the
uncertainty.

5. CONCLUDING REIMARKS

We motivated the significance of a machine learning approach to anomaly
detection and have proposed two machine learning methods for constructing
anomaly detectors, LERAD is a learning algorithm that can characterize normal
behavior in logical rules. CLAD is a clustering algorithm that can identify
outliers from normal clusters. We evaluated both methods with the DARPA 99
dataset and show that our methods can detect more attacks than similar existing
techniques.

LERAD and CLAD have different strengths and weaknesses. We would like
to investigate more how one's strengths can benefit the other. Unlike CLAD,
LERAD assumes the training data are free of attacks. This assumption can be
relaxed by assigning scores to events that have been observed during training;

Learning Rules and Clusters for Anomaly Detection in Network Traffic 97

these scores can be related to the estimated probability of observing the seen
events. Unlike CLAD, LERAD is an offline algorithm. An online LERAD
would update the random sample used in the rule generation phase with new
data by a replacement strategy, and additional rules would be constructed that
consider both new and old data.

Unlike LERAD, CLAD does not aim to generate a concise model, which
can affect the efficiency during detection. We plan to explore merging similar
clusters in a hierarchical manner and dynamically determine the appropriate
number of clusters according to the L method [33]. Also, CLAD does not
explain alerts well; we plan to use the notion of "near miss" to explain an alert by
identifying centriods of normal clusters with few attributes contributing much of
the distance between the alert and the normal centroid. We are also investigating
extracting features from the payload, as well as applying our methods to host-
based data.

ACKNOWLEDGMENTS
This research is partially supported by DARPA (F30602-00-1-0603).

REFERENCES
[1] C. Aggarwal and P. Yu. Outlier detection for high dimensional data. In Proc. SIGMOD,

2001.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items
in large databases. In Proc. ACM SIGMOD Conf., pages 207-216, 1993.

[3] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo. Detecting malicious software
by monitoring anomalous windows registry accesses. In Proc. Fifth Intl. Symp. Recent
Advances in Intrusion Detection (RAID), 2002.

[4] D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusions using bayes estima­
tors. In Proc. SI AM Intl. Conf. Data Mining, 2001.

[5] M. Breunig, H. Kriegel, R. Ng, and J. Sander. Lof: Identifying density-based local outliers.
In Proc. SIGMOD, 2000.

[6] R Clark and T Niblett. The CN2 induction algorithm. Machine Learning, 3:261-285, 1989.

[7] Silicon Defense. SPADE, 2001. http://www.silicondefense.com/software/spice/.

[8] P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under
zero-one loss. Machine Learning, 29:103-130, 1997.

[9] R. Duda and P. Hart. Pattern classification and scene analysis. Wiley, New York, NY, 1973.

[10] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for
unsupervised anomaly detection: Detecting intrusions in unlabeled data. In D. Barbara and
S. Jajodia, editors. Applications of Data Mining in Computer Security. Kluwer, 2002.

[11] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Comm. ACM, 4(10):88-
96, 1997.

[12] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix processes,
In Proc. of 1996 IEEE Symp. on Computer Security and Privacy, 1996.

98 Chapters

[13] A. Ghosh, A. Schwartzbard, and M. Schatz. Learning program behavior profiles for in­
trusion detection. In Proc, 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, 1999.

[14] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

[15] K. Kendall. A database of computer attacks for the evaluation of intrusion detection
systems. Master's thesis, EECS Dept., MIT, 1999.

[16] E. Knorr and T. Ng. Algorithms for mining distance-based outliers in large datasets. In
Proc. VLDB, 1998.

[17] C. Krugel, T. Toth, and E. Kirda. Service specific anomaly detection for network intrusion
detection. In Proc. ACM Symp. on Applied Computing, 2002.

[18] T. Lane and C. Brodley. Temporal sequence learning and data reduction for anomaly
detection. ACM Trans. Information and System Security, 1999.

[19] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion
detection evaluation. Computer Networks, 34:579-595, 2000.

[20] M. Mahoney and P. Chan. Learning models of network traffic for detecting novel
attacks. Technical Report CS-2002-08, Florida Inst, of Tech., Melbourne, FL, 2002.
http://www.cs.fit.edu/'^pkc/papers/cs-2002-08.pdf.

[21] M. Mahoney and P. Chan. Learning nonstationary models of normal network traffic for
detecting novel attacks. In Proc. Eighth Intl. Conf. on Knowledge Discovery and Data
Mining, pages 376-385, 2002.

[22] M. Mahoney and P. Chan. Learning Rules for Anomaly Detection of Hostile Network
Traffic. Technical Report CS-2003-16, Florida Inst, of Tech., Melbourne, FL, 2003.
http://www.cs.fit.edu/'^pkc/papers/cs-2003-16.pdf.

[23] T Mitchell. Machine Learning. McGraw Hill, 1997.

[24] P Neumann and P. Porras. Experience with EMERALD to date. In Proc. 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, pages 73-80, 1999.

[25] T Niblett. Constructing decision trees in noisy domain. In Proc. 2nd European Working
Session on Learning, pages 67-78, 1987.

[26] V. Paxson. Bro: A system for detecting network intruders in real-time. In Proc. 7th USENIX
Security Symp., 1998.

[27] V. Paxson and S. Floyd. The failure of poisson modeling. IEEE/ACM Transactions on
Networking, 3:226-24, 1995.

[28] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1987.

[29] L. Portnoy. Intrusion detection with unlabeled data using clustering. Undergraduate Thesis,
Columbia University, 2000.

[30] F. Provost and P. Domingos. Tree induction for probability-based rankings. Machine
Learning, 2002.

[31] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from
large data sets. In Proc. SIGMOD, 2000.

[32] M. Roesch. Snort - lightweight intrusion detection for networks. In USENIX LISA, 1999.

[33] S. Salvador and P. Chan. Learning states and rules for time-series anomaly de­
tection. Technical Report CS-2003-05, Florida Inst, of Tech., Melbourne, FL, 2003.
http://www.cs.fit.edu/''pkc/papers/cs-2003-05.pdf.

Learning Rules and Clusters for Anomaly Detection in Network Traffic 99

[34] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollinen. A fast automaton-based method for
detecting anomalous program behaviors. In Proc, lEEESymp. Security and Privacy, 2001.

[35] K. Sequira and M. Zaki. ADMIT: Anomaly-based data mining for intrusions. In Proc,
KDD, 2002.

[36] S. Staniford, J. Hoagland, and J. McAlemey. Practical automated detection of stealthy
portscans. / Computer Securityy 2002.

[37] A. Valdes and K. Skinner. Adaptive model-based monitoring for cyber attack detection. In
Proc. RAID, pages 80-92, 2000.

[38] I. Witten and T. Bell. The zero-frequency problem: estimating the probabilities of novel
events in adaptive text compression. IEEE Trans, on Information Theory, 37(4): 1085-1094,
1991.

Chapter 4

STATISTICAL CAUSALITY ANALYSIS OF
INFOSEC ALERT DATA

Wenke Lee, Xinzhou Qin
College of Computing, Georgia Institute of Technology

Abstract: With the increasingly widespread deployment of security mechanisms, such as
firewalls, intrusion detection systems (IDSs), antivirus software and authentica­
tion services, the problem of alert analysis has become very important. The large
amount of alerts can overwhelm security administrators and prevent them from
adequately understanding and analyzing the security state of the network, and ini­
tiating appropriate response in a timely fashion. Recently, several approaches for
alert correlation and attack scenario analysis have been proposed. However, these
approaches all have limited capabilities in detecting new attack scenarios. In this
paper, we study the problem of security alert correlation with an emphasis on at­
tack scenario analysis. In our framework, we use clustering techniques to process
low-level alert data into high-level aggregated alerts, and conduct causal anal­
ysis based on statistical tests to discover new relationships among attacks. Our
statistical causality approach complements other approaches that use hard-coded
prior knowledge for pattern matching. We perform a series of experiments to
validate our method using DARPA's Grand Challenge Problem (GCP) datasets,
the 2000 DARPA Intrusion Detection Scenario datasets, and the DBF CON 9
datasets. The results show that our approach can discover new patterns of attack
relationships when the alerts of attacks are statistically correlated.

Keywords: Intrusion detection, alert correlation, attack scenario analysis, time series analysis

1. INTRODUCTION
Information security (INFOSEC) is a complex process with many challeng­

ing problems. Deploying INFOSEC mechanisms, e.g., authentication systems,
firewalls, intrusion detection systems (IDSs), antivirus software, and network
management and monitoring systems, is just one of the necessary steps in the
security process. INFOSEC devices often output a large amount of low-level

102 Chapter 4

or incomplete alert information because there is a large number of network and
system activities being monitored and multiple INFOSEC systems can each re­
port some aspects of the same (coordinated) security event. The sheer quantity
of alerts from these security components and systems also overwhelms security
administrators. The large number of low-level or incomplete alert information
can prevent intrusion response systems and security administrators from ade­
quately understanding and analyzing the security state of the network, and initi­
ating appropriate response in a timely fashion. From a security administrator's
point of view, it is important to reduce the redundancy of alarms, intelligently
integrate and correlate security alerts, construct attack scenarios (defined as a
sequence of related attack steps) and present high-level aggregated informa­
tion from multiple local-scale events. Correlating alerts of the related attack
steps to identify an attack scenario can also help forensic analysis, response and
recovery, and even prediction of forthcoming attacks.

Recently there have been several proposals on alert correlation (e.g., [4],
[7], [10], [23], [26], [29]). Most of these proposed approaches have limited
capabilities because they rely on various forms of predefined knowledge of at­
tack conditions and consequences. They cannot recognize a correlation when
an attack is new (previously unknown) or the relationship between attacks is
new. In other words, these approaches in principle are similar to misuse de­
tection techniques, which use the ''signatures" of known attacks to perform
pattem matching and cannot detect new attacks. It is obvious that the number
of possible correlations is very large, potentially a combinatorial of the num­
ber of (known and new) attacks. It is infeasible to know a priori and encode
all possible matching conditions between attacks. To further complicate the
matter, the more dangerous and intelligent adversaries will always invent new
attacks and novel attack sequences. Therefore, we must develop significantly
better alert correlation algorithms that can discover sophisticated and new attack
sequences.

In this paper, we study the problem of INFOSEC alert analysis with an em­
phasis on attack scenario analysis. The analysis mechanism is based on time
series and statistical analysis. We reduce the high volume of raw alerts by com­
bining low-level alerts based on alert attributes. Clustering techniques are used
to group low-level alert data into high-level alerts. We prioritize alerts based
on the relevance of attacks to the protected networks and hosts and the impacts
of attacks on the mission goals. We then conduct causality analysis to correlate
alerts and construct attack scenarios. We perform a series of experiments to
validate our method using DARPA's Grand Challenge Problem (GCP) datasets
and the DEF CON 9 datasets. Our results show that our approach can discover
new patterns of alert relationships without depending on prior knowledge of at­
tack scenarios. Our statistical approach complements other approaches in that
our correlation approach does not depend on the hard-coded prior knowledge

Statistical Causality Analysis oflNFOSEC Alert Data 103

for pattern matching and can discover new attack relationships when the alerts
of attacks are statistically correlated.

The emphasis of this paper is on statistical causality analysis. The remainder
of this paper is organized as follows. In Section 2, we introduce Granger
Causality Test, a time series analysis method. Our alert correlation steps and
algorithms are presented in Section 3. In Section 4, we report the experiments
and results on the GCP datasets, the 2000 DARPA Intrusion Detection Scenario
datasets and the DEF CON 9 datasets. Section 5 discusses related work. We
summarize our work and future work in Section 6.

2. GRANGER CAUSALITY ANALYSIS
Time series analysis aims to identify the nature of a phenomenon represented

by a sequence of observations. The objective requires the study of patterns of
the observed time series data. Time series analysis has been widely used in
many applications, e.g., earthquake forecasting and economy analysis. In this
section, we introduce time series based causal analysis, and in particular, the
Granger Causality Test [11].

Time Series Analysis

A time series is an ordered finite set of numerical values of a variable of
interest along the time axis. It is assumed that the time interval between con­
secutively recorded values is constant. We denote a univariate time series as
x{k), where k = 0^1^... ^N — 1, and N denotes the number of elements in
x(k),

Time series causal analysis deals with analyzing the correlation between
time series variables and discovering the causal relationships. Causal anal­
ysis in time series has been widely studied and used in many applications,
e.g., economy forecasting and stock market analysis. Network security is an­
other application in which time series analysis can be very useful. In our prior
work [1, 3], we have used time series-based causality analysis for pro-active
detection of Distributed-Denial-of-Service (DDoS) attacks using MIB II [28]
variables. We based our approach on the Granger Causality Test (GCT) [11].
Our results showed that the GCT is able to detect the ''precursor" events, e.g.,
the communication between Master and Slave hosts, without prior knowledge
of such communication signatures, on the attacker's network before the victim
is completely overwhelmed (e.g., shutdown) at the final stage of DDoS.

In this work, we apply the GCT to INFOSEC alert streams for alert correlation
and scenario analysis. The intuition is that attack steps that do not have well-
known pattems or obvious relationships may nonetheless have some statistical
correlations in the alert data. For example, there are one or more alerts for
one attack only when there are also one or more alerts for another attack. We

104 Chapter 4

can apply statistical causality analysis to find such alerts to identify an attack
scenario. We next give some background on the GCT.

Granger Causality Test

The intuition of Granger Causality is that if an event Z is the cause of another
event F, then the event X should precede the event Y. Formally, the Granger
Causality Test (GCT) uses statistical functions to test if lagged information on
a time-series variable x provides any statistically significant information about
another time-series variable y. If the answer is yes, we say variable x Granger-
causes y. We model variable y by two auto-regression models, namely, the
Autoregressive Model (AR Model) and the Autoregressive Moving Average
Model (ARMA Model). The GCT compares the residuals of the AR Model with
the residuals of the ARMA Model. Specifically, for two time series variables y
and X with size Â , the Autoregressive Model of y is defined as:

p

y{k) = Y.^iy(k-i) + eo(k) (4.1)

The Autoregressive Moving Average Model of y is defined as:

p p

y{k) = Y, c^iVik - 0 + E PMk - 0 + ei {k) (4.2)
1=1 i=l

Here, p is a particular lag length, and parameters ai, (3i and 6i {1 < i <
p) are computed in the process of solving the Ordinary Least Square (OLS)
problem (which is to find the parameters of a regression model in order to
have the minimum estimation error). The residuals of the AR Model is RQ =
X^^^i eg (A;), and the residuals of the ARMA Model is i?i =J2k=i^i{f^)- Here,
T = N-p.

The AR Model, i.e., Equation 4.1, represents that the current value of variable
y is predicted by its past p values. The residuals RQ indicate the total sum of
squares of error. The ARMA Model, i.e.. Equation 4.2, shows that the current
value of variable y is predicted by the past p values of both variable y and
variable x. The residuals Ri represents the sum of squares of prediction error.

The Null Hypothesis HQ of GCT is HQ : Pi = 0,i = 1,2,-•• ,p. That is,
X does not affect y up to a delay of p time units. We denote g as the Granger
Causality Index (GCI):

Here, F(a, b) is Fisher's F distribution with parameters a and 6 [14]. F-test
is conducted to verify the validity of the Null Hypothesis. If the value of g

Statistical Causality Analysis of INFOSEC Alert Data 105

is larger than a critical value in the F-test, then we reject the Null Hypothesis
and conclude that x Granger-causes y. Critical values of F-test depends on the
degree of freedoms and significance value. The critical values can be looked
up in a mathematic table [15].

The intuition of GCI {g) is that it indicates how better variable y can be
predicted using histories of both variable x and y than using the history of y
alone. In the ideal condition, the ARMA model precisely predicts variable y
with residuals R\ = 0, and the GCI value g is infinite. Therefore, the value of
GCI (g) represents the strength of the causal relationship. We say that variable
{xi{k)} is more likely to be causally related with {y{k)} than {x2{k)} if
9i > g2 and both have passed the F-test, where gi, i = 1,2, denotes the GCI
for the input-output pair (x^, y).

Applying the GCT to alert correlation, the task is to determine which hyper
alerts among 5 i , ^ 2 , . . . , 5/ are the most likely to have the causal relationship
with hyper alert A (a hyper alert represents a sequence of alerts in the same
cluster, see Section 3). For a hyper alert time series, say A, each A{k) is the
number of alerts occurring within a certain time period. In other words, we are
testing the statistical correlation of alert instances to determine the causal rela­
tionship between alerts. For each pair of hyper alerts (S^, A)^i = 1,2,... ,/,
we compute the GCI value gi. We record the alerts whose GCI values have
passed the F-test as the candidates, and rank order the candidate alerts accord­
ing to their GCI values. We can then select the top m candidate alerts and regard
them as being causally related to alert A, These (candidate) relationships can
be subject to more inspection by other analysis techniques such as probabilistic
reasoning or plan recognition.

The main advantage of using statistical causality test such as GCT for alert
correlation is that this approach does not require a priori knowledge about attack
behaviors and how the attacks could be related. This approach can identify the
correlation between two attack steps as long as the two have a high probability
(not necessarily high frequency) of occurring together. We believe that there
is a large number of attacks, e.g., worms, that have attack steps with such
characteristics. Thus, we believe that causal analysis is a very useful technique.
As discussed in [1], [3], [2], when there is sufficient training data available, we
can use GCT off-line to compute and validate very accurate causal relationships
from alert data. We can then update the knowledge base with these ''known''
correlations for efficient pattem matching in run-time. When GCT is used in
real-time and finds a new causal relationship, as discussed above, the top m
candidates can be selected for further analysis by other techniques.

106 Chapter 4

3. ALARM CORRELATION
In this section, we describe our framework for alert correlation and attack

scenario construction. Specifically, the steps include alert aggregation and
clustering, alert prioritization, alert time series formulation, alert correlation,
and scenario construction.

Alert Aggregation and Clustering

One of the issues with deploying multiple security devices is the sheer amount
of alerts output by the devices. The large volume of alerts makes it very difficult
for the security administrator to analyze attack events and handle alerts in a
timely fashion. Therefore, the first step in alert analysis is alert aggregation and
volume reduction.

In our approach, we use alert fusion and clustering techniques to reduce the
redundancy of alerts while keeping the important information. Specifically,
each alert has a number of attributes such as timestamp, source IP, destination
IP,port(s), user name, process name, attack class, and sensor ID, which are de­
fined in the standard document "Intrusion Detection Message Exchange Format
(IDMEF)" [12] drafted by the IETF Intrusion Detection Working Group.

In alert fusion, there are two steps. First, we combine alerts that have the
same attributes except timestamps. The timestamps can be slightly different,
e.g., 2 seconds apart. Second, based on the results of step 1, we aggregate alerts
with the same attributes but are reported from different heterogeneous sensors.
The alerts varied on time stamp are fused together if they are close enough to
fall in a pre-defined time window.

Alert clustering is used to further group alerts after alert fusion. Based on
various clustering algorithms, we can group alerts in different ways according
to the similarity among alerts, (e.g., [29] and [17]). Currently, based on the
results of alert fusion, we further group alerts that have same attributes except
time stamps into one cluster. After this step, we have further reduced the
redundancy of alerts.

A Hyper Alert is defined as a time ordered sequence of alerts that belong to
the same cluster.

For example, after alert clustering, we have a series of alerts, Ai, A^, . . . ,
An in one cluster that have the same attributes along the time axis, and we use
hyper alert A to represent this sequence of alerts.

Alert Prioritization

The next phase of alert processing is to prioritize each hyper alert based on
its relevance to the mission goals. The objective is that, with the alert priority
rank, security analyst can select important alerts as the target alerts for further

Statistical Causality Analysis oflNFOSEC Alert Data 107

correlation and analysis. Specifically, the priority score of an alert is computed
based on the relevance of the alert to the configuration of the protected networks
and hosts as well as the severity of the corresponding attack assessed by the
security analyst. Porras et al. proposed a more comprehensive mechanism of
incident/alert rank computation model in a ''mission-impact-based" correlation
engine, named M-Correlator [26]. Because we focus on alert correlation and
scenario analysis instead of alert priority ranking, and alert prioritization is just
an intermediate step to facilitate further alert analysis, we adapted the priority
computation model of M-Correlator with a simplified design.

Figure 4,1, Alert Priority Computation Model

Figure 4.1 shows our priority computation model that is constructed based
on Bayesian networks [25]. We use Bayesian inference to obtain a belief over
states (hypotheses) of interests. A Bayesian network is usually represented
as a directed acyclic graph (DAG) where each node represents a variable, and
the directed edges represent the causal or dependent relationships among the
variables. A conditional probability table (CPT) [25] is associated with each
child node. It encodes the prior knowledge between the child node and its parent
node. Specifically, an element of the CPT at a child node is defined by CPTij =
P{child.state = j\parent^state = i) [25]. The belief in hypotheses of the
root is related to the belief propagation from its child nodes, and ultimately the
evidence at the leaf nodes.

Specifically, in our priority computation model, the root represents the prior­
ity with two hypothesis states, i.e., "high" and "low". Each leaf node has three
states. For node "Interest", its three states are "low", "medium" and "high".
For other nodes, the three states are "matched", "unmatched" and "unknown".
The computation result is a value in [0,1] where 1 is the highest priority score.

We denote e^ as the k^^ leaf node and Hi as the i^^ hypothesis of the root
node. Given the evidence from the leaf nodes, assuming conditional indepen­
dence with respect to each Hi, the belief in hypothesis at the root is: P{Hi \
e\e\..., e^) = ^P{Hi) n£ . i P{e^\E,\ where 7 = lP(e\e\ . . . , e^)]-'
and 7 can be computed using the constraint J2i P{Hi\e^, e^, . . . , e^) = 1.
For example, for the hyper alert of FTP Globbing Buffer Overflow attack, we

108 Chapter 4

get evidence [high, matched, matched, unknown, unknown] from the corre­
sponding leaf nodes, i.e.. Interest, OS, Services/Ports, Applications and User,
respectively. As Figure 4.1 shows, the root node represents the priority of hy­
per alert. Assume that we have the prior probabilities for the hypotheses of the
root, i.e., P(Priority = high) = 0.8 and P(Priority = low) = 0.2, and
the following conditional probabilities as defined in the CPT at each leaf node,
P(Interest = high \ Priority = high) = 0.70, P(Interest = high \ Priority = low)
= 0.10, P(OS = matched \ Priority = high) = 0,75, P(OS = matched \ Priority
= low) = 0.20, P(Services = matched \ Priority = high) = 0.70, P(Services =
matched \ Priority = low) = 0.30, P(Applications = unknown \ Priority = high)
= 0.15, P(Applications = unknown \ Priority = low) = 0.15, P(User = unknown
I Priority = high) = 0.10, P(User = unkown \ Priority = low) = 0.10, we then
can get 7 = 226.3468, therefore, P(Priority = high \ Interest = matched, OS
= matched, Service = matched. Applications = matched, User = unknown) =
0.9959. We regard this probability as the priority score of the alert. The current
CPTs are predefined based on our experience and domain knowledge. It is our
future work to develop an adaptive priority computation model so that the CPTs
can be adaptive and updated according to specific mission goals.

To calculate the priority of each hyper alert, we compare the dependencies
of the corresponding attack represented by the hyper alert against the configu­
rations of target networks and hosts. We have a knowledge base in which each
hyper alert has been associated with a few fields that indicate its attacking OS,
services/ports and applications. For the alert output from a host-based IDS,
we will further check if the target user exists in the host configuration. The
purpose of relevance check is that we can downgrade the importance of some
alerts that are unrelated to the protected domains. For example, an attacker may
launch an individual buffer overflow attack against a service blindly, without
knowing if the service exists. It is quite possible that a signature-based IDS
outputs the alert once the packet contents match the detection rules even though
such service does not exist on the protected host. The relevance check on the
alerts aims to downgrade the impact of such kind of alerts on further correlation
analysis. The interest of the attack is assigned by the security analyst based
on the nature of the attack and missions of the target hosts and services in the
protected domain.

Alert Time Series Formulation
After the above processes, we formulate each hyper alert into a univariate

time series. Specifically, we set up a series of time slots with equal time interval,
denoted as T, along the time axis. Given a time range H, we can have Â = H/T
time slots. Recall that each hyper alert A represents a sequence of alerts in the
same cluster in which all alerts have the same attributes except timestamp, i.e.,

Statistical Causality Analysis oflNFOSEC Alert Data 109

A = [^1, yl25 • • • 5 ^n] . where Ai represents an alert in the cluster. We denote
a{k), where /c = 0 , 1 , . . . , AT — 1, as the corresponding time series variable of
hyper alerts. An element of the time series a (A:), denoted as a ,̂ is the number of
alerts that fall in the i^^ time slot. Therefore, each element of a hyper alert time
series variable represents the number of alert instances within the corresponding
time slot. We currently do not use categorical variables such as port accessed
and pattern of TCP flags as time series variables in our approach.

GCT Alert Correlation
The next phase of alert processing is to apply GCT for pair-wise alert corre­

lation. Based on alert priority value and mission goals, the security analyst can
specify a hyper alert as a target (e.g., alert MstreamJDDOS against a database
server) with which other alerts are correlated. The GCT algorithm is applied to
the corresponding alert time series. Specifically, for a target hyper alert Y whose
corresponding univariate time series is y{k), and another hyper alert X whose
univariate time series is x{k), we compute GCT{x{k)^ vi^)) to correlate these
two alerts. For the target alert F , we compute such pair-wise correlation with
all the other alerts. As described in Section 2.0, the GCT index (GCI) g returned
by the GCT function represents the evidence strength if X is causally related
to Y. We record the alerts whose GCI values have passed the F-distribution
test as candidates of causal alerts, and rank order the candidate alerts according
to their GCI values. We then select the top m candidate alerts and regard them
as being causally related to alert Y. These candidate relationships can be fur­
ther inspected by other techniques or security analyst based on expertise and
domain knowledge. The corresponding attack scenario is constructed based on
the correlation results.

In alert correlation, identifying and removing background alerts is an impor­
tant step. We use Ljung-Box [20] test to identify the background alerts. The
assumption is that background alerts have characteristic of randomness. The
Ljung'Box algorithm tests for such randomness via autocorrelation plots. The
Null Hypothesis is that the data is random. The test value is compared with
critical values to determine if we reject or accept the Null Hypothesis.

However, in order to correctly remove the background alerts, expertise is
still needed to verify that a hyper alert can be regarded as a background alert.
In addition to expertise, we can also use other techniques, e.g., probabilistic
reasoning, for further inspection and verification. This is part of our future
work.

4. EXPERIMENTS
To evaluate the effectiveness and validity of our alert correlation mechanisms,

we applied our algorithms to the datasets of the Grand Challenge Problem

110 Chapter 4

(GCP) version 3.1 provided by DARPA's Cyber Panel program [6, 13], the
2000 DARPA Intrusion Detection Scenario SPecific datasets (LLDOS 1.0 and
LLDOS 2.0.2) [21] and datasets of the DEFCON 9 Capture The Flag (CTF) [9].
In this section, we describe our experiments with an emphasis on the GCP.

The Grand Challenge Problem (GCP)
The main motivation to use the GCP datasets is that the GCP has developed

multiple innovative attack scenarios to specifically evaluate alert correlation
techniques. In addition to the complicated attack scenarios, the GCP datasets
also include many background alerts. This makes alert correlation and scenario
construction more challenging. Other datasets, e.g., DEF CON 8 Capture The
Flag (CTF) [8], have relatively simple scenarios [22]. In the GCP, multiple
heterogeneous security systems, e.g., network-based IDSs, host-based IDSs,
firewalls, and network management systems, are deployed in several network
enclaves.

GCP alerts are in IDMEF (XML) format. We implemented our alert pro­
cessing system in Java. It can consume XML format alerts directly.

As described in Section 3, we first fuse and cluster raw alerts into more
aggregated and hyper alerts. In scenario I, there are a little more than 25,000
low-level raw alerts output by heterogeneous security devices in all enclaves.
After alert fusion and clustering, we have around 2,300 hyper alerts. In scenario
II, there are around 22,500 raw alerts that result in 1,800 hyper alerts.

The GCP definition includes complete information about the configuration
of the protected networks and hosts including services, operating systems, user
accounts, etc. Therefore, we can establish a configuration database accordingly.
Information of mission goals enables us to identify the servers of interest and
assign interest score for corresponding alerts targeting at the important hosts.
The alert priority is calculated based on our model described in Section 3.0.

In formulating hyper alert time series, as described in Section 3, we set the
time slot to 60 seconds. In the GCP, the whole time range is 5 days. Therefore,
each hyper alert time series x{k) has a size of 7,200, i.e., k=0, 1, 2,..., 7,199.

In GCT alert correlation, the first step is to identify and remove the back­
ground alerts. As described in Section 3.0, we apply the Ljung-Box statistical
test to all hyper alerts. We select the significance level a = 0.05. However,
in order to correctly remove the background alerts, expertise is still needed to
verify that a hyper alert can be regarded as background alert. In the GCP, by us­
ing this mechanism, we can identify background alerts such as "HTTP.Cookie"
and "HTTPJPosts". The next step is to select the alerts with high priority values
as the target alerts. In this step, we set the threshold /? = 0.6. Alerts with pri­
ority scores above (5 are regarded as important alerts and are selected as target
alerts. We then apply the GCT to correlate each target alert with other alerts

Statistical Causality Analysis of INFOSEC Alert Data 111

from which the background alerts identified by the Ljung-Box test are already
excluded.

For performance evaluation, we define two measures:

true causality rate
^ of correct causal alerts

total # of causal relationships

and

false causal rate =
of incorrect causal alerts

total # of causal alerts

Here, causal alerts refer to the causal alert candidates output by the GCT (i.e.,
passing the F-test) w.r.t. the target alerts. In experiments of the GCP and the
2000 DARPA Intrusion Detection Scenarios, we refer to the documents with
the ground truth to determine the causal relationships among the alerts.

Table 4. L Alert Correlation by the GCT on the GCP Scenario I. Target Alert: Loki

Alerti
HTTPJava

DB.IllegalFileAccess
DBJ^ewClient

DB-NewClient.Target
DBJTP.Globbing.Attack

HTTPJ^ctiveX

Target Alert
Loki
Loki
Loki
Loki
Loki
Loki

GCT Index
22.25
n.8i
1L12
10.84
10.84
10.68

Table 4.2. Alert Correlation by the GCT on the GCP Scenario I: Target Alert: DB.NewClient

Alerti
Loki

Plan JsfewCl lent
Planioki

HTTPJava
DBJ^ewClient-Target

DBJTP.Globbing-Attack
HTTPJKctiveX

DBJUegalFileAccess

Target Alert
DBJ^ewClient
DB_NewClient
DBJ^ewClient
DB^ewClient
DB.J^ewClient
DBJ^ewClient
DB^ewClient
DB^ewClient

GCT Index
115.56
14.50
13.06
12.84
12.84
12.84
12.84
10.76

In the GCP Scenario I, there are multiple network enclaves in which attacks
are conducted separately. The attack scenario in each network enclave is almost
the same. We selected a network enclave as an example to show the GCT
correlation results.

In this network enclave, there are a total of 370 hyper alerts. Applying the
Ljung-Box test on the hyper alerts, we identify 255 hyper alerts as background
alerts. According to the alert priority values calculated based on the mission-
goals and relevance to the protected networks and hosts, there are 15 hyper alerts

112 Chapter 4

Table 4.3. Alert Correlation by the GCT on the GCP Scenario I: Target Alert:
DBJllegalFileAccess

Alerti
HTTPJava

DBJSfewClient
Loki

Planioki
HTTP-ActiveX
Plan_NewClient

Target Alert
DBJllegalFileAccess
DBJllegalFileAccess
DBJllegalFileAccess
DBJllegalFileAccess
DBJllegalFileAccess
DBJllegalFileAccess

GCT Index
22.23
14.87
11.24
11.13
10.71
9.08

DB_IllegalFileAccess Plan_Loki

r >
LOKl

. ̂

DB_NewClient_Target

x-
^ \.

r ^
DB_New<^aeni

DB
FTP_Globbing_Attack

L J

Plan_NewCIient
L J

Figure 4.2. The GCP Scenario I: Correlation Graph on Database Server

whose priority values are above the threshold /3 = 0.6. Therefore, we have 15
hyper alerts as the target alerts, which are correlated with other alerts excluding
the identified background alerts. As an example, we select three alerts that are
related to the Database Server as the target alerts, i.e., Loki, DBJSfewClient and
DBJllegalFileAccess. Alert Loki indicates that there is a stealthy data trans­
fer via a covert channel. Alert NewClient means that a host on the network
initiates a connection to a remote service that is suspicious and uncharacter­
istic. Therefore, alert DBJJewClient denotes the connection activity from the
Database Server to an external suspicious site. Alert DBJllegalFileAccess oc­
curs when there is a file access (read or write) on the Database Server that
violates the access policy. DB and Plan represent Database Server and Plan
Server respectively. Table 4.1 shows the causal alert candidates correlated
with target alert Loki. Table 4.2 shows the alert candidates that are causally
related to target alert DBJJewClient. Table 4.3 shows the causal alerts re­
lated to target alcrtDBJllegalFileAccess. Alert DBJFTP.GlobbingAttack indi­
cates an FTP Globbing buffer overflow attack on the Database Server. Alert
DBJSfewClient.Target denotes an unusual connection activity from a host to the
Database Server. Among the candidate alerts which have passed the F-test, we
select the top 6 alerts according to their GCI values.

Figure 4.2 shows the correlation graph based on the correlation results of
alerts Loki, DBJsfewClient and DBJllegalFileAccess. Here, some expert knowl-

Statistical Causality Analysis of INFOSEC Alert Data 113

edge is needed to further inspect the causal alert candidates resulted from
GCT correlation in order to construct the correlation graph. In this case, we
do not include alerts such as HTTP Java and HTTP ActiveX in the scenario
construction because they are not likely to be correct causal alerts. In the
correlation graph, the directed edges represent the causal relationships and
the arrows show the causality directions. For example. Table 4.1 shows that
DBJ^TPXjlobbingAttack is a causal alert candidate with regard to alert Loki.
Such causal relationship is shown by a directed edge from
DBJ^TPJJlobbingAttack to Loki in Figure 4.2. A bi-directional edge indi­
cates a mutual causal relationship between two alerts.

Figure 4,2 shows that there are multiple types of relationships among the
alerts. First, there is a straightforward causal relationship that is obvious be­
cause of the nature of corresponding attacks. In Figure 4.2, we can see that alert
DBJFTPXjlobbingAttack is causally related to alerts Loki and DBJVewClient,
so is alert DBJ^ewClientJarget. Such causality indicates that the corresponding
activities represented by alert DBJFTP.Globbling Attack and alert
DBJ^ewClientJCarget cause the activities indicated by alert DBJSlewClient and
U)ki. The fact spreadsheet in the GCP document also supports the validity of
such causality. The ground truth shows that the attacker first gets root access
to the Database Server using the FTP Globbling buffer overflow attack, then
transports the malicious agent to the Database Server. The activity of agent
transfer is detected by an IDS that outputs alert DBJSfewClientSTarget, The
buffer overflow attack and initial malicious agent transfer are followed by a se­
ries of forthcoming autonomous attacks from/against the Database Server. Such
causal relationship is obvious and can also be discovered by other correlation
techniques because once the attacker obtained the root access to the victim using
the buffer overflow attack, he/she can easily launch other attacks from/against
the target. Therefore, a simple rule is to correlate the buffer overflow attack
with other following attacks at the same target.

Some indirect relationships among alerts can also be discovered by the GCT
correlation. As shown in Figure 4.2, we can see that alerts PlanXoki and
Plan NewClient all have causal relationship with alerts DBJllegalFileAccess
(triggered by activities of illegal access to files at the Database Server) and
DB NewClient (triggered by activities of connecting to a suspicious site). It is
hard to correlate them together via traditional correlation techniques because
they do not have a known relationship with the target alert DBJVewClient.
From the ground truth in the GCP document, we can see that the attacker first
compromises the Plan Server and then uses that host to break into the Database
Server. Alert PlanJVewClient indicates that the attacker downloads malicious
agent from the extemal site to the PlanJServer, Alert PlanXoki indicates the
attacker uploads sensitive information from the PlanJServer to the extemal site.

114 Chapter 4

The malicious code is later transferred to the Database Server after a buffer
overflow attack against the Database Server originated from the Plan Server.

Figure 4.2 also shows a pattern of loop relationships among alerts. We can see
that alerts DBJllegalFileAccess, Loki and DBJSfewClient have mutual causal
relationships with each other. Such pattern indicates that the occurrences of
these three alerts are tightly coupled, i.e., whenever we see one alert, we expect
to see another one forthcoming. The fact spreadsheet validates our results. The
malicious agent autonomously gets access to the sensitive files and collects data
(alert DBJllegalFileAccess), uploads the stolen data to an external site (alert
Loki), then downloads new agent software (alert DB-NewClient) and installs it
(alert DBJllegalFileAccess) on the Database Server, and then begins another
round of the same attack sequence. GCT correlation results show a loop pattern
of causal relationship among the corresponding alerts because these activities
occur together.

When we correlate each target alert with other alerts using the GCT, we have
some false causal alert candidates. For example, HTTP Java, HTTP ActiveX in
Table 4.1. Overall, in this experiment, the true causality rate is 95.06% (77/81)
and the false causality rate is 12.6% (10/87) in this network enclave.

Table 4.4. Alert Correlation by the GCT on the GCP Scenario II: Target Alert:
Plan.Service-Status

1 Alerti
PlanJIS-Generic-BufferOverFlow

Plan^egistry_Modified
IIS.Unicode.Attack

HTTPJava
HTTP.Shells

HTTP-ActiveX

Target Alert
Plan.Service.Status
Plan.Service.Status
Plan.Service.Status
Plan.Service-Status
Plan.Service.Status
Plan.Service.Status

GCT Index
20.21
20.18
18.98
17.35
16.28
1.90

Table 4.5. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan.Host.Status

Alerti
HTTPJava

PlanJIS-GenericBufferOverflow
Plan-Registry JVlodified
CGI.NulLByte-Attack

Port-Scan
HTTP-RobotsTxt

Target Alert
Plan-Host-Status
Plan.Host-Status
PlanJlost-Status
Plan-Host-Status
Plan-Host-Status
Plan-Host-Status

GCT Index
7.73
7.70
7.63
7.56
3.26
1.67

We also use the same network enclave as an example to show our results in the
GCP Scenario II. In this network enclave, there are a total of 387 hyper alerts.
Applying the Ljung-Box test to the hyper alerts, we identify 273 hyper alerts
as the background alerts. In calculating the priority of hyper alerts, there are 9

Statistical Causality Analysis of INFOSEC Alert Data 115

<• "

Plan Registry

Modified

^ /^

^

P^

k

^
Plan Service

Status
J

T J

Plan Host Status

J

f
US Buffer
Overflow

>

Figure 4.3, The GCP Scenario II: Correlation Graph of Plan Server

hyper alerts whose priority values are above the threshold /? = 0.6. Therefore,
we have 9 hyper alerts as the target alerts, which are correlated with other alerts
excluding the identified background alerts. As before, based on the mission
goals and alert priority, for example, we select two alerts, Plan,Service.Status
and PlanJIostJStatus, as the targets, then apply the GCT to correlate other alerts
with them. Table 4.4 and Table 4.5 show the corresponding GCT results. We
list the top 6 candidate alerts that have passed the F-test in the tables. The alerts
PlanHostStatus and PlanService.Status are issued by a network management
system deployed on the network. The true causality rate is 93.15% (68/73) and
the false causality rate is 13.92% (11/79).

After finding the candidate alerts, we construct a corresponding correlation
graph as shown in Figure 4.3. This figure shows that alerts IIS .Buffer.Overflow
and PlanJRegistryModified are causally related to alerts Plan.Service.Status
and PlanJHfostJStatus. The GCP document verifies such relationship. The at­
tacker launches IIS Buffer Overflow attack against the Plan Server in order to
transfer and install the malicious executable code on it. The Plan Server's
registry file is modified (alert Plan JRegistry Modified) and the service is down
(PlanJService.Status) during the daemon installation. Alert PlanJHost.Status
indicates the ''down" or "up" states of the Plan Server. The states are affected
by the activities of the malicious agent installed on the Plan Server. There­
fore, the ground truth described in the GCP document also supports the causal
relationships among the corresponding alerts. These relationships are repre­
sented by directed edges pointing to Plan.HostStatus from IIS JBuffer.Overflow,
Plan JiegistryModified and PlanService.Status in Figure 4.3.

However, the correlation result in the GCP Scenario II is not comprehensive
enough to cover the complete attack scenarios. By comparing the alert streams
with the GCP document, we notice that many malicious activities in the GCP
Scenario II are not detected by the IDSs. Therefore, there are some missing
intrusion alerts. In our approach, we depend on alert data for correlation and
scenario analysis. When there is a lack of alerts corresponding to the intermedi­
ate attack steps, we cannot construct the complete attack scenario. In practice,

116 Chapter 4

IDSs or other security mechanisms can miss some attack activities. We will
study how to deal with the "missing" attack steps in alert analysis and scenario
construction.

2000 DARPA Intrusion Detection Scenarios

In order to validate our approach using more case studies and compare with
the results of other approaches (e.g., [23]), we also applied our algorithms to
the 2000 DARPA Intrusion Detection Scenario datasets of LLDOS 1.0 and
LLDOS 2.02. Compared with GCP, the attack scenarios in LLDOS 1.0 and
LLDOS 2.02 are simpler. In both scenarios, the attacker performs a series of
attacks and eventually launches a DDoS attack. In this section, we report our
experimental results.

LLDOS l.O. In LLDOS 1.0, the attack series include IP scan, port scan,
sadmind buffer overflow attack, DDoS daemon installation and DDoS attack,
The network traffic is collected from the DMZ and from the inside part of the
evaluation network, denoted as 'inside network" [21]. We use Snort [27], a
popular IDS, to detect intrusions in the network traffic of the ''inside network"
and correlate the Snort alerts.

Snort outputs around 1,200 raw alerts. Alert fusion and clustering result in 30
hyper alerts of which 12 hyper alerts are regarded as target alerts for further anal­
ysis. For convenience, we denote the following: subnet! : 172.16.115.0/24,
subnet! : 172.16.113.0/24, subnets : 172.16.112.0/24, hostA
172.16.115.20, host^ : 172.16.112.10, host.C : 172.16.112.50, hostJ)
131.84.1.31, hostJE : 172.16.115.87, hostJ^ : 172.16.113.50, host.G
172.16.113.105, hostJI : 172.16.113.148, hostJ : 172.168.112.10, host J
172.168.112.105, hostJ:: 172.168.112.194.

As described in Section 3, we go through the steps of alert correlation and
apply OCT to the alerts.

We first select alert Mstream attack that corresponds to the Mstream DDoS at­
tack as the target alert, and apply GCT to correlate it with other alerts. Based on
the correlation results, we select a causal alert as the next correlation target alert.
For example, after each GCT correlation, we select the causal alert that is related
to hostJB (selecting hostA or host.C produces similar causal relationships that
make up the attack paths) as the target alert for the next GCT correlation. Ta­
ble 4.6 to Table 4.10 show the corresponding GCT correlation results with regard
to the selected target alerts, i.e., DDoS2.ombieHostJB, rshsootJIostJB, sad-
mindJBuffer^OverflowJIostJB and rpc.portmap^sadmindJiostJB. We construct
the attack scenario graph based on the GCT correlation results and alert analysis.

Figure 4.4 shows the DDoS attack scenario discovered in the "inside net­
work" of LLDOS 1.0. The true causality rate is 96.81% and the false causality
rate is 3.95%. In this experiment. Snort does not output alerts for the attacker's

Statistical Causality Analysis of INFOSEC Alert Data 111

Table 4.6, DDoS Attack: Target Alert: ms stream attack

Alerti
DDoS^ombieJlostJ^
DDoS-ZombieJiost-B
DDoS_ZombieJlost.C

Target Alert
Mstream_attack
Mstrearri-attack
Mstream-attack

GCT Index
200.55
198.67
193.51

Table 4.7. DDoS Attack: Target Alert: DDoS.Zombie.Host.B

Alerti
rsh-rootJlost j \ - S re
rsh-rootJiost.B.Src
rsh.rootJHost.C-S re

rshj-oot.Hostj\.Target
rsh.rootJIost.B.Target
rsh.rootJHost.C.Target

Target Alert
DDoS.ZombieTIost.B
DDoS.ZombieJlost.B
DDoSJZombieJlost.B
DDoS^ombieJiost.B
DDoS.ZombieJlost.B
DDoS.ZombieJIost.B

GCT Index
308.32
298.67
296.12
289.07
285.32
283.45

Table 4.8. DDoS Attack: Target Alert: rsh.rootJiost.B

Alerti
rsh.Host-B.Src

sadmind.BufferOverflow.Host.B
sadmind.BufferOverflow.Host.C
sadmind-BufferOverflow-Host_A

rshj-ootJHost-A.Target

Target Alert
rshj'oot.Host.B.Target
rshj-oot-Host-B.Target
rsh.root.Host.B.Target
rsh-root-Host.B-Target
rshj*oot.Host.B.Target

GCT Index
189.32
182.37
179.54
176.21
150.32

activities of installing the DDoS software on the hosts. Alerts
rsh.rootJiostAJSrc, rsh.rootJiostjBSrc, rsh.rootJiost.CSrc,
rsh.rootJIostA.Target, rsh.rootJiost B.Target and rsh.rootJIost.C.Target are
corresponding to the attacker's activities of transferring DDoS software to the
hosts. Our correlation mechanism can correctly correlate them with the alerts
DDoS Zombie that represent the the detection of the attacker controlling the
slave hosts to launch the DDoS attack. Figure 4.4 shows that our correlation
mechanism can correctly correlate attack alerts and construct the DDoS scenario
that is the same as the results of [23].

LLDOS 2.0.2. In LLDOS 2.0.2, the scenario is more complicated than that
of LLDOS 1.0. The attacker probes for host information using DNS HINFO
instead of the IP Sweep and rpcport scan. In addition, the attacker compromises
one host first from which he/she continues to compromise other hosts. In
LLDOS 1.0, the attacker attacks each host individually.

We use Snort to detect the intrusions in the "inside network" traffic and
analyze the output alerts. Snort outputs 870 raw alerts. We aggregate raw
alerts and get 26 hyper alerts. We identify 8 hyper alerts as target alerts. For
convenience, we denote Host A : 172.16.115.20, Host-B : 172.16.112.50,

118 Chapter 4

Table 4.9. DDoS Attack: Target Alert: sadmind.Buffer.OverflowJIost-B

Alerti
sadmind-BufferOverflow_Host-A

rpc-portmap-sadmind.Host-G
rpc-portmap_sadmind-Host_C
rpc«portmap-sadmind-Host.B
rpc_portmap-sadmind-HostJ\
rpc-portmap-sadmind-HostJE

Target Alert
sadmind-BufferOverflow.Host_B
sadmind_BufferOverflow_Host-B
sadmind-BufferOverflow-Host_B
sadmind-BufferOverflow_Host_B
sadmind-BufferOverflow_Host-B
sadmind-BufferOverflow_Host-B

GCT Index
230.32
212.37
209.25
201.12
198.65
176.83

Table 4.10. DDoS Attack: Target Alert: rpc_portmap_sadmind-Host-B

Alerti
1 ipScan.Subnet3

rpc-portmap-sadmind_Host-A
rpc-portmap-sadmind_HostJF

ipScan_Subnet2
ipScan_Subnetl

rpc_portmap-sadmind-HostJE

Target Alert
rpc_portmap-sadmind-Host3
rpc-portmap_sadmind-Host-B
rpc_portmap_sadmind-Host-B
rpc_portmap_sadmind-Host-B
rpc_portmap_sadmind_Host-B
rpc_portmap-sadmind-Host-B

GCT Index
218.32
192.37
176.65
156.15
141.78
132.39 1

IP_Sscan_
Subnet 1

IP_Sscan_
Subnet2

admind_Host_A

IP_Sscan_
Subnets

rpc_portmap_

sadmind_Host_B

rpc_j>ortmap_
~H sadmind_Hosi_C

Figure 4.4. LLDOS 1.0: DDoS Attack Scenario in the "inside network"

HOSLC : 172.16.117.132, HostX> : 172.16.115.87, HostJ!: 172.16.115.44,
HostJ^ : 172.16.113.207, HOSLG : 131.84.1.31.

Table 4.11. DDoS Attack: Target Alert: Mstream.attackJIost-G

Alerti
DDoS^ombie.Host.B

Target Alert
Mstream.attack.Host-G

GCT Index
387.19

We first select alert MstrearriMttackJIost.G as the target alert for correla­
tion. Table 4.11 shows the GCT correlation results. From the result, we con-

Statistical Causality Analysis of INFOSEC Alert Data 119

Table 4.12. DDoS Attack: Target Alert: DDoS.Zombie.Host.B

Alerti
sadmind-BufferOverflowJIost_B

web-Cgi.redirectJlost-D
ftp-PassOverflow-Host-B
web.cgi-redirectJiost-C
web.cgi.redirectJiost-E

Target Alert
DDoS^ombie.Host.B
DDoS^ombie.Host.B
DDoS^ombie.Host-B
DDoSJZombie_Host.B
DDoS^ombie.Host.B

GCT Index
272.31
265.04
265.04
251.57
230.19

Table 4.13. DDoS Attack: Target Alert: sadmind-BufferOverflow.Host.B

Alerti
ftp-PassOverflowJiost-A

webxgiJisjfpcount-Host_F
web-Cgi-finger_Host-C

Target Alert
sadmind_BufferOverflow«Host«B
sadmind-BufferOverflow_Host-B
sadmind-BufferOverflowJH[ost_B

GCT Index
225.30
217.19
187.19

Table 4.14. DDoS Attack: Target Alert: ftpJPassOverflowJiost.B

Alerti
sadmind-BufferOverflow_Host-B

ftpJPassOverflowJiost_A
web_cgi-finger-Host-C

Target Alert
ftpJPassOverflowJHost-B
ftpJPassOverflowJHost-B
ftp_PassOverflow_Host_B

GCT Index
265.31
253.42
213.19

tinue to choose alert DDoSJZombieJiost^ as the correlation target. Table 4.12
shows the correlation results. Snort outputs some false positive alerts related to
Web CGI, such as alert web.cgi.redirect, web-CgiJis.fpcount and webxgi-finger.
These alerts are unrelated to the DDoS attack scenario. Further inspecting the
alert information can easily filter out these alerts. The inspection and analysis is
based on expert knowledge. Therefore, in Table 4.12, we only have interests in
alerts sadmind-BujferOverflow-HostJB and ftp J'assOverflow-HostJS and select
them as the target alert for correlation. The results are shown in Table 4.13 and
Table 4.14. Table 4.15 shows the GCT correlation results with regard to alert
ftp-PassOverflowJiostA.

Figure 4.5 shows the attack scenario in the "inside network". The true causal­
ity rate is 97.34% and false causality rate is 4.89%. As Snort does not output
alerts corresponding to the attacker's activity of using DNS HINFO to probe
the host, we cannot retrieve the first step in the DDoS scenario, i.e., the stage of
probe is missed. We use the dash-line to represent the missing stage. The LL-
DOS 2.0.2 document shows that attacker first compromises Host A from which
he/she continues to compromise Host J using sadmind buffer overflow attack,
and then uses ftp to transfer the DDoS software to HostJB. We can see such
sequence of steps in Figure 4.5. In the figure, alert ftp J'ass.OverflowJiost-B
corresponds to the activity of DDoS software transfer. Figure 4.5 shows that

120 Chapter 4

Table 4.15. DDoS Attack: Target Alert: ftpJassOverflowJHostJ^

Alerti
sadmind..BufferOverflowJH[ostJ\

web_cgiJis>fpcount_Host_F

Target Alert
ftp_PassOverflow-Host_A
ftp-PassOverflow_Host_A

GCT Index
481.01
387.51

IP_Scan

(DNS HINFO
query

(DNS HINFO
query)

sadmind_Buffer

Overflow Host A

IDS didn't output alerts
of this IP probe

sadmind_buffer
overflow Host B

ftp_Pass_

pverflow_Host_B

DDoS_Zombie
Host_B

Mstream DDoS

V J

Figure 4.5. LLDOS 2.0.2: DDoS Attack Scenario in the "inside network"

we can construct the DDoS attack scenario correctly based on GCT alert cor­
relation.

DEF CON 9 Capture The Flag
As another case study, we applied our algorithms on the DEF CON 9 Capture

The Flag (CTF) datasets. We use Snort to analyze the network traffic and output
alerts for analysis. The DEF CON 9 CTF datasets are collected on 7 subnets.
However, some datasets in subnet EthO are corrupted. Therefore, we do not
include them in our analysis. Because there is no information available about
the network topology and host configuration, we cannot fully apply our model
of alert priority computation on the datasets. Therefore, we select the target
alerts for correlation based on domain knowledge.

As an example, we report results of alert analysis for subnet 4. Snort outputs
more than 378,000 raw alerts. Scanning related alerts account for 91% of the
total alerts. Alert ICMP Redirect Host accounts for about 3% of the total and
alert MISC Tiny Fragments accounts for 5.9% of the total. Other alerts include
Buffer Overflow, DDOS, DOS, DNS, TFTP, SNMP and Web-related attacks.

Applying our alert fusion and clustering algorithms, we can reduce the re­
dundancy of low-level alerts dramatically, in particular, scanning alerts. The
number of concrete high-level hyper alerts is about 1,300. We apply the Ljung-
Box test with the significance level a = 0.05 to all hyper alerts, and identify 754
hyper alerts as background alerts. For convenience, we denote the following:
HostA : 10.255.100.250, HostJB : 10.255.30.201, Host.C : 10.255.30.202,
HostX> : 10.255. 40.237.

Statistical Causality Analysis of INFOSEC Alert Data 121

We first select the alert DDOS Shaft Zombie targeting at Host A, and apply
the GCT to correlate it with other alerts. Based on the correlation results, we
select a causal alert as the next correlation target alert. For example, after
each GCT correlation, we select the causal alert that is oriented from host.C
as the target alert for the next GCT correlation. Table 4.16 through Table 4.18
show the corresponding GCT correlation results with regard to the selected
target alerts, i.e., DDoSJ^ombieJiostA, FTP.Command.OverflowJtiost.CSrc,
and alert FTP.CWD.OverflowJIost.CSrc. We construct the attack scenario
graph based on GCT correlation results and alert analysis.

Table 4.16. DefCon 9: Target Alert: DDOS.Shaft-Zombie-Host-A

1 Alerti
1 FTP.Command-Overflow_Host-B.Src

FTP-User-Overflow-Host.B-Src
FTP-Command-OverflowJHost.CSrc

WEB-CGI.ScriptAliasj\ccess
TFT.GetPasswd-Host-B-Src

FTP-Aix-Overflow-Host-B-Src
EXPERIMENTAL JvlISCJ^FS.Access

FTP.CWD.OverflowJlost.D.Src
WEB-CGLWrap.Access

FTP.Command-OverflowJlostJD.Src
FTP.CWD.OverflowJlost.C.Src

FTP.OpenBSDx86.0verflowJlostJD-Src
WEB-CGI-WebDistJ^ccess

Target Alert
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie
DDOS-ShaftJZombie
DDOS-Shaft-Zombie
DDOS-ShaftJZombie
DDOS.Shaft.Zombie
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie
DDOS-Shaft-Zombie

GCT Index
13.43
12.98
11.43
11.12
10.88
10.83
10.70
10.68
10.54
10.35
9.87
7.86
7.54

Table 4.17. DefCon 9: Target Alert: FTP-Command-Overflow-Host-C-Src

Alerti
Scan-NMAP-TCP

ICMPJ'ing-NMAP
WEB-MISC-Perl-Command

Xmas-Scan
RPC-Portmap-Request

FIN-Scan
NULL-Scan

Target Alert
FTP-Command-Overflow-Host-C-Src
FTP-Command-Overflow-Host-C-Src
FTP.Command-Overflow-Host-C-Src
FTP.Command-Overflow-Host-C-Src
FTP.Command.OverflowJiost-C-Src
FTP.Command.OverflowJIost-C-Src
FTP-Command-Overflow-Host-C-Src

GCT Index
11.27
10.93
10.75
10.23
10.17
10.13
10.11

Figure 4.6 shows the attack scenario targeting Host A according to the net­
work activities in subnet 4. We can see that the attackers first launch a series
of port scanning, e.g., NMAP and RPCJPortmap. Then multiple FTP Buffer
Overflow attacks are launched against the target in order to get root access. The
attackers also launch some Web-related attacks against the target. There are
also some other attack scenarios that our algorithms are able to find; many of
them are port scanning followed by Buffer Overflow attacks.

122 Chapter 4

Table 4.18. DefCon 9: Target Alert: FTP.CWD.Overflow.Host.C.Src

Alerti
Scan.NMAPJ^ULL
ICMPJ>ingJvIMAP

WEB-MISCJ»erLCommand
Xmas.Scan

SYN FIN.Scan
NULL.Scan

Target Alert
FTP.CWD.Overflow.Host-C.Src
FTP.CWD.Overflow.Host.C.Src
FTP.CWD.Overflow.Host.C.Src

FTP.Command.OverflowJlost.C.Src
FTP.CWD.Overflow.Host.C.Src
FTP.CWD.Overflow.Host.C.Src

OCT Index
12.72
12.12
11.87
11.63
11.27
10.92

Scanning

(ICMP, NMAPTCP,FIN

NULL, Xmas, nN&SYN)|

RFC Portmap Request
• \ \

\ . \

^

FTP Overflow

(Command/User)

from Host B

TFT GetPasswd

from Host B

FTP Overflow

(Command/CWD)

from Host C

FTP Overflow

(Command/CWD ,

/OpcnBSDx86)

from Host D

DDOS Shaft

Zombie Host A

Web Access Attempts

(CGI Script Alias, Wrap,

ISS, CGI-WebDist)

Figure 4.6, DefCon 9: A scenario example of victim Host A

Discussion

In our experiments, the results from the GCP and the 2000 DARPA Intrusion
Detection Scenarios show that our approach can correlate alerts that have sta­
tistical causal relationships. However, as the GCP results show, we have false
causal alert candidates resulted from GCT correlation that can result in false
scenarios. One reason is that a large amount of background alerts can increase
the false correlations. For example, we have a relatively high false causality
rate in the GCP because the GCP has a lot of background alerts. Another rea­
son is that, in our experiments, we do not have and use any training data sets.
Therefore, it is different from traditional anomaly detection in which training
data is used to construct the baseline that can reduce the false positive rate. In
the DEF CON 9 dataset, our approach also finds some reasonable scenarios.
Because of the nature of the DEF CON 9 dataset, we cannot comprehensively
evaluate the success rate of our alert correlation method.

The key strength of our approach is that it can discover new alert correlations.
Another advantage of our approach is that we do not require a priori knowledge
about attack behaviors and how attacks are related when finding candidate alert

Statistical Causality Analysis oflNFOSEC Alert Data 123

correlations. In addition, our approach can also reduce the workload of security
analysts in that they can focus on the causal alert candidates output by the GCT
for further analysis. They do not have to assess all alerts and investigate all
possible correlations. This is especially helpful when an attack is in progress
and the security analysts need to figure out the attack scenarios in a timely
fashion.

The time series used in our approach is based on the alert count instead of
other categorical variables such as port access and pattern of TCP flag. The
intuition is that if two attacks are related or have causal relationships, their
occurrences should be tightly correlated because the causal attack triggers the
resulting attack. Some experimental work and theoretical analysis have been
presented in [1], [3], [2]. However, it is important to consider categorical
variables when constructing attack scenarios. We will address this issue in our
future work.

One challenge to our approach is background alert identification. Using the
Ljung-Box test cannot cover all the background alerts. The limit of our approach
is that we still need expert knowledge to further inspect the causal alert candi­
dates resulted from GCT alert correlation when constructing attack scenarios.
Human intervention has limits in automating attack scenario constructions. In
future work, we will develop new correlation algorithms, in particular, proba­
bilistic reasoning, and will integrate other existing correlation algorithms, e.g.,
prerequisite-consequence approach, for alert correlation in order to reduce the
false correlation rate and improve the accuracy of scenario analysis.

5. RELATED WORK
Recently, there have been several proposals on alert correlation and attack

scenario analysis.
Porras et al. design a ''mission-impact-based" correlation system, named M-

Correlator [26]. The main idea is to evaluate alerts based on security interests
and attack relevance to the protected networks and hosts. Related alerts are
aggregated and clustered into a consolidated incident stream. The final result
of the M-Correlator is a list of rank ordered security incidents based on the
relevance and priority scores, which can be further analyzed by the security
analyst. This approach focuses on the incident ranking instead of attack scenario
analysis. The security analyst needs to perform further correlation analysis.

Valdes and Skinner [29] develop a probabilistic-based alert correlation mech­
anism. The approach uses similarities of alert attributes for correlation. Mea­
sures are defined to evaluate the degree of similarity between two alerts. Alert
aggregation and scenario analysis are conducted by toughening or relaxing the
similarity requirement in some attribute fields. However, it is difficult for this

124 Chapter 4

approach to correlate alerts that do not have obvious (or predefined) similarities
in their attributes.

In the approach proposed by Debar and Wespi [7], alert clustering is ap­
plied for scenario construction. Two reasoning techniques are used to specify
alert relationships. Backward-reasoning looks for duplicates of an alert, and
forward-reasoning determines if there are consequences of an alert. These two
types of relationships between alerts are predefined in a configuration file. The
main limitation of this approach is that it relies on the predefined duplicate and
consequence relationships between alerts.

Goldman et al. [10] build a correlation system that produces a correlation
graph, which indicates the security events that aim to compromise the same
security goal, with IDS alerts as the supporting evidence of the security events.
The reasoning process is based on the predefined goal-events associations.
Therefore, this approach cannot discover attack scenarios if the attack strat­
egy or objective is not known.

Some other researchers have proposed the framework of alert correlation and
scenario analysis based on the pre-condition and post-condition of individual
alerts [4], [5], [23]. The assumption is that when an attacker launches a scenario,
prior attack steps are preparing for later ones, and therefore, the consequences of
earlier attacks have a strong relationship with the prerequisites of later attacks,
The correlation engine searches for alert pairs that have a consequences and
prerequisites match and builds a correlation graph with such pairs. There are
several limitations with this approach. First, a new attack may not be paired
with any other attack because its prerequisites and consequences are not yet
defined. Second, even for known attacks, it is infeasible to predefine all possible
prerequisites and consequences. In fact, some relationships cannot be expressed
naturally in rigid terms.

Our approach differs from prior work in that it focuses on discovering new
and unknown attack strategies. Instead of depending on the prior knowledge of
attack strategies or pre-defined alert pre/post-conditions, we correlate the alerts
and construct attack scenarios based on statistical and temporal relationships
among alerts. In this respect, our approach is analogous to anomaly detection
techniques.

We also notice that alert correlation has been a research topic in network
management for decades. There are several well-known approaches such as
case-based reasoning system [19], code-book [18], and model-based reasoning
systems [16, 24]. In network management system (NMS), event correlation
focuses on alarms resulted from network faults, which often have fixed patterns.
Whereas in security, the alerts are more diverse and unpredictable because the
attackers are intelligent and can use flexible strategies. We nevertheless can
borrow ideas in NMS event correlation for INFOSEC data analysis.

Statistical Causality Analysis of INFOSEC Alert Data 125

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach for correlating INFOSEC alerts and

constructing attack scenarios. We developed a mechanism that aggregates and
clusters raw alerts into high level hyper-alerts. Alert priority is calculated and
ranked. The priority computation is conducted based on the relevance of the
alert to the protected networks and systems. Alert correlation is conducted based
on the Granger Causality Test, a time series-based causal analysis algorithm.
Attack scenarios are analyzed by constructing a correlation graph based on the
OCT results and on alert inspection. Our initial results have demonstrated the
potential of our method in alert correlation and scenario analysis. Our approach
can discover new attack relationships as long as the alerts of the attacks have
statistical correlation. Our approach is complementary to other correlation
approaches that depend on hard-coded prior knowledge for pattern matching.

We will continue to study statistical-based approaches for alert correlation,
and develop algorithms to detect background alerts, develop techniques to in­
tegrate categorical variables such as pattems of TCP flags, and study how to
reduce false causality rate. We will also develop other correlation algorithms,
in particular, probabilistic reasoning approaches, to integrate multi-algorithms
for alert correlation and scenario analysis. We will also study how to handle
missing alerts of attack steps in scenario analysis. One approach may be to
insert some hypothesis alerts and look for evidence to either support or degrade
the hypothesis from other sensor systems. We will validate our correlation
algorithms on alert streams collected in the real world.

ACKNOWLEDGMENTS
This research is supported in part by a grant from DARPA (F30602-00-1-

0603) and a grant from NSF (CCR-0133629). We thank Joao B.D. Cabrera
of Scientific Systems Company for helpful discussions on time series analysis
and Granger-Causality Test. We also thank Giovanni Vigna of University of
Califomia at Santa Barbara, Alfonso Valdes of SRI International and Stuart
Staniford of Silicon Defense, as well as the anonymous reviewers for their
valuable comments and suggestions.

REFERENCES

[1] J. B. D, Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran, and R. K.
Mehra. Proactive detection of distributed denial of service attacks using mib traffic variables
- a feasibility study. In Proceedings of IFIP/IEEE International Symposium on Integrated
Network Management (IM 2001), May 200L

[2] J. B. D. Cabrera and R. K. Mehra. Extracting precursor rules from time series - a classical
statistical viewpoint. In Proceedings of the Second SIAM International Conference on Data
Mining, pages 213-228, Arlington, VA, USA, April 2002.

126 Chapter 4

[3] J.B.D. Cabrera, L.Lewis, X. Qin, W. Lee, and R.K. Mehra. Proactive intrusion detection
and distributed denial of service attacks - a case study in security management. Journal of
Network and Systems Management, vol. 10(no. 2), June 2002.

[4] S. Cheung, U. Lindqvist, and M. W. Fong. Modeling multistep cyber attacks for scenario
recognition. In Proceedings of the Third DARPA Information Survivability Conference and
Exposition (DISCEXIII), Washington, D.C., April 2003.

[5] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection framework.
In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 202-215,
Oakland, CA, May 2002.

[6] DAPRA Cyber Panel Program. DARPA cyber panel program grand challenge problem
(GCP). http://ia.dc.teknowledge.com/CyP/GCP/, 2003.

[7] H. Debar and A. Wespi. The intrusion-detection console correlation mechanism. In 4th
International Symposium on Recent Advances in Intrusion Detection (RAID), October 2001.

[8] DEFCON. Def con capture the flag (ctf) contest, http://www.defcon.org. Archive accessible
at http://wi2600.org/mediawhore/mirrors/shmoo/, 2000.

[9] DEFCON. Def con capture the flag (ctf) contest, http://www.defcon.org. Archive accessible
at http://smokeping.planetmirror.com/pub/cctf/defcon9/, 2001.

[10] R.P. Goldman, W. Heimerdinger, and S. A. Harp. Information modleing for intrusion report
aggregation. In DARPA Information Survivability Conference and Exposition (DISCEXII),
June 2001.

[11] C.W.J. Granger. Investigating causal relations by econometric methods and cross-spectral
methods. Econometrica, 34:424-428, 1969.

[12] IETF Intrusion Detection Working Group. Intrusion detection message exchange format.
http://www.ietf.org/intemet-drafts/draft-ietf-idwg-idmef-xml-09.txt, 2002.

[13] J. Haines, D. K. Ryder, L. Tinnel, and S. Taylor. Validation of sensor alert correlators.
IEEE Security & Privacy Magazine, January/February, 2003.

[14] J.Hamilton. Time Series Analysis, Princeton University Press, 1994.

[15] A.J. Hayter. Probability and Statistics for Engineers and Scientists. Duxbury Press, 2002.

[16] G. Jakobson and M. D. Weissman. Alarm correlation. IEEE Network Magazine, November
1993.

[17] K. Julisch and M. Dacier. Mining intrusion detection alarms for actionable knowledge. In
The 8th ACM International Conference on Knowledge Discovery and Data Mining, July
2002,

[18] S. Kliger, S. Yemini, Y. Yemini, D. Oshie, and S. Stolfo. A coding approach to event
correlations. In Proceedings of the 6th IFIP/IEEE International Symposium on Integrated
Network Management, May 1995.

[19] L. Lewis. A case-based reasoning approach to the management of faults in communication
networks. In Proceedings of the IEEE INFOCOM, 1993.

[20] G.M. LjungandG.E.P. Box. On a measure oflackoffit in time series models. InBiometrika
65, pages 297-303, 1978.

[21] MIT Lincoln Lab. 2000 DARPA intrusion detection scenario specific datasets.
http://www.il.mit.edu/IST/ideval/data/2000/2000_rfato_mdea:./lim/, 2000.

[22] P. Ning, Y. Cui, and D.S. Reeves. Analyzing intensive intrusion alerts via correlation. In
Proceedings of the 5 th International Symposium on Recent Advances in Intrusion Detection
(RAID), October 2002.

Statistical Causality Analysis of INFOSEC Alert Data 127

[23] P. Ning, Y Cui, and D.S. Reeves. Constructing attack scenarios through correlation of
intrusion alerts. In 9th ACM Conference on Computer and Communications Security,
November 2002.

[24] Y A. Nygate. Event correlation using rule and object based techniques. In Proceedings
of the 6th IFIP/IEEE International Symposium on Integrated Network Management, May
1995.

[25] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann Publishers, Inc, 1988.

[26] P. A. Porras, M. W. Fong, and A. Valdes. A Mission-Impact-Based approach to INFOSEC
alarm correlation. In Proceedings of the 5th International Symposium on Recent Advances
in Intrusion Detection (RAID), October 2002.

[27] Snort, http://www.snort.org.

[28] W. Stallings. SNMP, SNMPv2, SNMPvS, and RMON1 and2. Addison-Wesley, 1999.

[29] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proceedings of the 4th Inter­
national Symposium on Recent Advances in Intrusion Detection (RAID), October 2001.

Chapter 5

UNDERSTANDING NETWORK SECURITY
DATA: USING AGGREGATION, ANOMALY
DETECTION, AND CLUSTER ANALYSIS FOR
SUMMARIZATION

Dave DeBarr
The MITRE Corporation

Abstract: This chapter discusses the use of off-line analysis techniques to help network
security analysts at the ACME Corporation review network alert data
efficiently. Aggregation is used to summarize network events by source
Internet Protocol (IP) address and period of activity. These aggregate records
are referred to as meta-session records. Anomaly detection is then used to
identify obvious network probes using aggregate features of the meta-session
records. Cluster analysis is used for further exploration of interesting groups
of meta-session records.

Keywords: Intrusion Detection, Aggregation, Anomaly Detection, Cluster Analysis, Data
Mining

1. INTRODUCTION

Intrusion detection analysts at the ACME Corporation^ spend much of
their time reviewing network security data. They analyze alerts from
Network-based Intrusion Detection Systems (NIDS) in order to determine an
appropriate response. Possible ''actions" include: ignoring the alert,
checking the target server to ensure appropriate security patches have been
applied, adding/modifying firewall rules, or removing a compromised host
from the network (for further investigation/clean-up).

Not their real name.

130 Chapters

Unfortunately, the network sensors generate an enormous amount of
data. For example, over the course of a week, the NIDS sensors generated
over 35,000 alerts. To investigate these alarms, the analysts usually look at
other traffic from the same source IP address around the same time period.
Pre-aggregating this contextual information in summary form is a useful
time-saving step for the analysts.

There have been many projects involving the use of data mining for
intrusion detection. Typically, these projects focus on mining either network
packet data or individual audit records in order to make inferences. This
chapter focuses on the use of meta-session records instead of individual
event records. These aggregate records summarize network events by source
IP address and period of activity, thus reducing the amount of data to be
reviewed and providing contextual information for individual alerts. We
also demonstrate the use of anomaly detection to identify "obvious" (though
often otherwise undiscovered) probes, and the use of cluster analysis to
explore groups of similar meta-session records.

2. THE ACME NETWORK

Figure 5-1 depicts the general layout of the ACME Corporate network.
The network is divided into three zones. The "Intemet" zone is extemal

to the ACME Corporation. The ''De-Militarized" Zone (DMZ) contains
A C M E ' S public servers; supporting protocols such as Domain Name
Services (DNS), the Simple Mail Transfer Protocol (SMTP), the Hyper Text
Transfer Protocol (HTTP), and the File Transfer Protocol (FTP). The
"intranet" zone contains ACME's private servers and workstations.

There are three major types of network-based sensors: NIDS, firewalls,
and event loggers. The NIDS sensors monitor network packet traffic,
employing user-defined signatures to generate alerts. For example, an HTTP
request containing the string "/root.exe" generates a "CodeRed root.exe"
alert. The alerts are considered to be high-priority events because they are
typically generated by malicious activity. Although the extemal NIDS may
also generate alerts, these extemal alerts are used only for context
information. Often, the firewalls will block the malicious activity.

The firewalls employ user-defined rules to determine if network data
should be passed, dropped, or rejected; but only drops or rejects generate
event records. A "Drop" message indicates that data has been discarded
without notifying the sender, while a ''Reject" message indicates that data
has been discarded and the sender has been notified explicitly. Because the
firewall event data rarely requires action on the part of the network security
analyst, these are considered to be low priority events.

Understanding Network Security Data 131

External
NIDS

Intranet
NIDS^ogger

Private Servers
and Workstations

Intranet
Firewall

DMZ
NIDS/Logger

Public Servers
("demilitarized" zone)

Figure 5-1. The ACME Corporate Network

The event loggers are used to identify User Datagram Protocol (UDP)
exchanges and Transmission Control Protocol (TCP) connections seen
"inside" the ACME Corporate network. A "TCP attempt" message indicates
the event logger has seen TCP activity, while a "UDP attempt" message
indicates the event logger has seen UDP activity. These loggers provide
useful context information. For example, a connection from a host that
generated alerts from the external NIDS, or drops/rejects from the firewall,
may warrant further investigation.

The event records from each sensor are collected in a centralized
database. Each event record contains 16 elements:
1. Sensor Location: "Intranet", "DMZ", or "External"
2. Sensor Type: "NIDS", "firewall", or "logger"
3. Priority: " 1 " for high-priority alert, "2" for low-priority alert, "3" for

firewall drops/rejects, "4" for event logger records
4. Event Type: descriptive label for the event; e.g. "Drop", "Reject", "TCP

attempt", "UDP attempt", "WEB-IIS CodeRed v2 root.exe access", etc.
5. Event Start Date and Time: year, month, day, hour, minute, and second

for the first packet of the event
6. Duration: number of seconds between the first and last packets of the

event
7. Source IP Address

132 Chapter 5

8. Source IP Address Type: "E" for external, "R" for reserved (e.g. 1.1.1.1),
"P" for private (e.g. 10.0.0.1), "M" for multicast, "I" for intranet, or "D"
for DMZ

9. Source IP Address Subtype: "N" for ACME network addresses, "B" for
ACME broadcast addresses, "O" otherwise.

10. Destination IP Address
11. Destination IP Address Type: "E", "R", "P", "M", "I", or "D" (see

"Source IP Address Type" for meanings)
12. Destination IP Address Subtype: "N", "B", or "O" (see "Source IP

Address Subtype" for meanings)
13. Protocol: "I" for Internet Control Message Protocol (ICMP), "T" for

TCP, "U" for UDP, or "O" for other
14. Source Port or ICMP Type: an integer representing the source port for

TCP or UDP protocol events, or an integer representing the message type
for ICMP packets (e.g. ICMP type 3 messages indicate data has been
prohibited from reaching an intended destination)

15. Destination Port or ICMP Code: an integer representing the destination
port for TCP or UDP protocol events, or an integer representing the
message code for ICMP packets (e.g. ICMP type 3 messages with code
13 indicates that communication has been administratively prohibited)

16. Common Destination Port Flag: indicates the destination port is
considered to be common (e.g. TCP ports 21, 25, 53, 80, etc; or UDP
ports 53, 111, 161, 162, etc.)'
A subset of the attributes for some sample events is shown in Table 5-1.

These events are shown in the order they were recorded by the sensors.

Table 5-1.
Sensor
DMZ
Firewall
External
NIDS
DMZ
NIDS
DMZ
NIDS

Abbreviated Sample of Network
Priority
3

2

1

1

Event
Drop

WEB-IIS cmdexe
access
WEB-IIS cmd.exe
access
WEB-IIS ISAPI .ida
attempt

Security Event Data
Protocol
UDP

TCP

TCP

TCP

Source
External
192.0.2.176
External
192.0.2.176
External
192.0.2.176
External
192.0.2.176

Destination
DMZ
192.168.242.175:500
DMZ
192.168.242.175:80
DMZ
192.168.242.175:80
DMZ
192.168.242.175:80

The firewall event is considered low priority, because the firewall
actually blocked access to UDP port 500; but the alerts from the DMZ NIDS
are a possible cause for concern. An external host was able to send likely
malicious HTTP requests to a server on the DMZ, Fortunately, this
particular server is not vulnerable to this particular exploit; but it's useful to

The SANS 'Top 20" Vulnerabilities list was used to identify "common" ports

Understanding Network Security Data 133

identify other activity from the same host, surrounding the time of the alert.
This is where aggregation helps.

3. AGGREGATION

Event records are aggregated by source IP address and period of activity
for two major reasons:
1. to provide contextual information for alerts to be reviewed
2. to reduce the number of records to be reviewed

A 30 minute time-out period is used to aggregate events from the same
source IP address. Using the sample data from Table 5-1: if the next event
occurs 31 minutes after the fourth event, the next event would generate a
new meta-session record. Because the aggregation engine is designed to
operate on a stream of event data, a 60 minute timeout is used to generate
intermediate output for long-running periods of activity (thus freeing up
memory used to maintain state for the meta-session). Each meta-session
record includes the following elements:
1. Source IP Address (including Type and Subtype information)
2. Time Range
3. Destination IP Address Range
4. Destination IP Address Count
5. Maximum Number of Common Ports per Destination Address
6. Count of Event Types
7. Priority of Highest Priority Event
8. Perimeter Crossing Count: for example, the number of events from an

extemal source seen on the DMZ or intranet
9. Event List: a list containing up to 5 distinct event types, sorted by priority

Table 5-2 shows the meta-session record corresponding to the events
shown in Table 5-1. The maximum priority for the events was one (Max
Pri). Two of the events from the extemal IP address were recorded on the
DMZ (Crossing Count). There was only one destination address (Dst Addr
Count), but two "common" ports were targeted (Max Ports). The three event
types are listed in the far right-hand column, with the firewall message also
indicating the destination port.

Table 5-2. Abbreviated Example of a Meta-Session Record
Source

External
192.0.2.176

Max
Pri

1

Crossing Dst Max
Count Addr Ports

Count
2 1 2

Event
Types

3

Event List

WEB-IIS cmd.exe access
WEB-IIS ISAPI .ida attempt
Drop (udp:500)

134 Chapters

By aggregating the event records into meta-session records, we were able
to aggregate 7,560,570 event records generated over the course of a week
into 914,241 meta-session records, a reduction of more than 87%^ with the
added benefit of providing instant context for those alerts that need to be
reviewed. Less than 10% of the meta-session records covered an hour of
activity, and only 35 of the meta-session records contained more than 5 types
of events. Using anomaly detection for the aggregate features allows for
easy detection of intrusive probes that might otherwise be missed by an
analyst or the network sensors.

4. ANOMALY DETECTION

Anomaly detection involves identifying unusual values, but the keys to
using anomaly detection effectively revolve around monitoring relevant
variables and setting appropriate detection thresholds. As Stefan Axelsson
points out in his survey of intrusion detection systems, "The problems with
[anomaly detection] rest in the fact that it does not necessarily detect
undesirable behaviour, and that the false alarm rates can be high."

In order to identify network probes, three variables can be monitored
independently:
1. Destination IP Address Count: an unusually large destination address

count is likely to indicate the meta-session contains host scanning
behavior; i.e. the source host is looking for active hosts connected to the
destination network

2. Maximum Number of Common Ports per Destination Address: an
unusually large port count is likely to indicate the meta-session contains
port scanning behavior; i.e. the source is looking for active services
running on a particular host

3. Count of Event Types: an unusually large count of event types is likely to
indicate the meta-session contains vulnerability scanning behavior; i.e.
the source is testing for susceptibility to a variety of known exploits
In order to identify "normal" values for the "Destination IP Address

Count" and the "Maximum Number of Common Ports per Destination
Address", we restricted our profiling efforts to meta-session records that
contained no firewall drops/rejects or NIDS alerts. In order to identify
"normal" values for the "Count of Event Types", we included the NIDS

^ Although the techniques discussed in this paper can be appHed to events where the source IP
address is an ACME host, all results reported in this chapter pertain to events where the
source IP address belongs to an external host (for privacy reasons).

Understanding Network Security Data 135

alerts as well (allowing us to quickly identify those meta-sessions involving
more focused attacks).

The histogram in Figure 5-2 illustrates the distribution of destination IP
address counts for a week's worth of these meta-session records. The most
noticeable feature of this graph is the presence of multiple peaks, indicating
a mixture of distinctive behaviors within the observed data. The majority of
these meta-sessions have very few destination IP addresses. In fact, over
99% of these meta-sessions have less than 10 destination IP addresses.

. 1 .

1 29 61 93 130 171 212 263

Dst IP Count

Figure 5-2, Distribution of Destination IP Address Count Values

A model-based clustering algorithm, known as MCLUST, was used to
generate a mixture model for this data. The initial model was built using a
random sample of two-sevenths of the meta-session records from the first
week; and the Bayesian Information Criterion (BIC) measure was used to
determine the number of components in the data. Using the sample data
provided and a fixed-width variance for each component (like the K-means
clustering algorithm), two components were identified: one group of meta-
sessions with mean value 1.13 and the other group with mean value 248.40.

By determining the mean and standard deviation of the log likelihood of
the data for each of the next four weeks of data, we were able to generate a
test for continued efficacy of this model. Any future log-likelihood values
falling at least three standard deviations below the mean log-likelihood value
would indicate the model needs to be rebuilt. In our example, the cut-off
threshold is -73,634 (keep in mind that we're talking about the log-
likelihood of observing tens of thousands of values).

136 Chapters

A sample from each of the two groups from the week of training data was
reviewed to determine if they contained host scans. As you might suspect,
the group with the smaller number of destination IP addresses per meta-
session did not appear to contain any host scans, while the group with the
larger number of destination IP addresses per meta-session appeared to
contain only host scans! To identify host scans, we want to flag values that
would not be likely to be considered similar to the values found in our
"normal" group (the one without host scans). Because the maximum
possible value for a member of group one is 124, we chose 124 as our
threshold value; i.e. meta-sessions with more than 124 destination addresses
are labeled as suspected host scanning episodes.

As mentioned earlier, the 101 meta-session records belonging to the
group with the larger mean appeared to have been generated by host scans
that did not trip any rules on either a firewall or a NIDS! These scanning
episodes were directed against 3 subnets within the DMZ. They included 44
scans for UDP port 38293 (Norton Anti-Virus), 20 scans for TCP port 1433
(Microsoft SQL Server), and 14 scans for TCP port 21 (FTP). Although
these particular scans do not appear to have resulted in successful exploits, it
might be prudent to add firewall rules to restrict requests to valid servers
only.

To estimate performance of our host scan detection test, we selected a
random sample of data from the entire population of meta-session records
for a sixth week of data (remember, we used 1 week of data for training and
4 weeks of data for validation). The results are shown in Table 5-3.

Table 5-3. Host Scan Test Results for a

Actuals Unknown
Not Host Scan
Host Scan

Random Sample of Meta-Sessions
Predictions

Not Host Scan
5

91
3

Host Scan
0
0
1

The estimated detection rate for the test is 25% (95% confidence interval:
1%-81%), while the estimated false alarm rate is 0% (95% confidence
interval: 0%-98%). Unfortunately, there were not enough host scans present
in the sample to get smaller confidence intervals around the estimated
detection and false alarms rates; but there were enough samples to provide a
better estimate of the base rate for host scans. The estimated base rate for
host scans is 4% (95% confidence interval: 1%-10%).

The 124 address threshold seems a bit high, and it will obviously miss
some host scans; but there's almost always a trade-off between the detection
rate and the false alarm rate. For our purposes, we have chosen to
emphasize minimizing the false alarm rate. In the future, if firewalls are able

Understanding Network Security Data 137

to provide an automated response to temporarily block the sources of
suspected host scans, we believe this will also require an emphasis on
minimizing the false alarm rate.

The 3 host scans that our test misclassified appeared to be the result of
worm activity involving attempted connections to apparently randomly
selected IP addresses. These meta-sessions involved attempted connections
to only one or two hosts, but other meta-session records indicated sporadic
efforts to contact different addresses within the ACME network. The
"unknown" values appear to be the result of back scatter or chaff, a
consequence of a third party's use of spoofed addresses. To get a better
estimate of the false alarm rate (a smaller confidence interval), we reviewed
a random sample of 30 of the 624 suspected scans from this same week of
test data.

Good news: all 30 of the suspected host scans appear to be host scans.
This gives us an estimated false alarm rate of 0%, with a 95% confidence
interval ranging between 0 and 12%. As a note of interest, 4 of these 30
scans all targeted the same TCP port in lANA's unassigned range; and all 4
of these scans made it past the firewall. This might be indicative of a new
trojan port that requires a new firewall rule.

Unlike the number of destination addresses, the distribution of values for
the maximum number of common ports per destination address appeared to
have only one component. Nevertheless, we employed a similar strategy for
building a model that can be tested for changes in the future. The change
detection threshold for this model was also established as a log-likelihood
value that falls three standard deviations below the mean for the next four
weeks of data (-21,050). The values for the maximum number of common
ports appear to have a tighter distribution than the values for the number of
destination addresses. The mean value for the two-sevenths random sample
from the first week of data was 0.68. Because we're only monitoring ports
with common vulnerabilities, some meta-sessions actually have a value of
zero for the maximum number of common ports per destination address.

To identify a threshold value for detecting port scans, we used a heuristic
based on the survival function of the exponential probability distribution.
We took the mean value of the test sample, plugged it into the following
equation, and solved for X.

E x p (- X / B) = 1/N

where
• B is the mean value for the ''normal" (training) sample
• N is the number of meta-session records in our training sample

Meta-sessions targeting more than 6 common ports for any destination
address were labeled as port scans, but there appeared to be very few port
scans in our data. In fact, there were no port scans found in the earlier

138 Chapters

sample of 100 meta-session records used for testing; so our estimated base
rate for port scans is 0%, with a 95% confidence interval between 0 and 4%.

The seven meta-sessions in the test data that were labeled as port
scanning episodes appear to have been labeled correctly, so our estimated
false alarm rate is again 0%, but our 95% confidence interval is between 0
and 41%! This broad confidence interval is one of the pitfalls of using real-
world data to estimate performance, but it does preclude the difficulties of
attempting to "manufacture" representative test data. The only note of
interest for the port scan test data was the presence of two hosts from the
same source network targeting ports on the same destination address.

Like the values for the maximum number of common ports per
destination address, the values for the number of event types also had a
unimodal distribution. The mean of the two-sevenths sample from the first
week of data was 1.12, and the change detection threshold for the resulting
model was a log-likelihood of -22,076. To identify a threshold value to
detect vulnerability scans, we used the same heuristic based on the survival
function of the exponential probability distribution (solving the equality
mentioned earlier for X). Meta-sessions with more than 10 event types were
identified as vulnerabihty scans.

Vulnerability scans appeared to be very scarce in the test data. There
were no vulnerability scans in the earlier sample of 100 test records. In fact,
only one meta-session was labeled as a vulnerability scan in the entire test
set. This record was indeed a vulnerability scan. The source appeared to be
trying to identify the type of platform for the destination host, and then the
source launched a series of exploit attempts against the secure shell port.

For all three types of anomaly detection tests, we tended to error on the
side of caution by emphasizing the minimization of false alarms; but the
heuristics could easily be adjusted to maximize the detection rate. The labels
are not mutually exclusive (for example, an attacker could conduct a host
scan, followed by a port scan and a vulnerability scan in the same meta-
session); but the flagged records can be easily prioritized by reviewing
suspected vulnerability scans, followed by port scans, then host scans.
Within these groupings, the individual meta-sessions can be ordered by the
maximum number of events per host; i.e. giving priority to meta-sessions
that involved a scan followed by focus on a particular host.

5. CLUSTER ANALYSIS

While unusual observations may be indicative of activity that requires
our attention, the opposite is often true as well. Very common activities
typically do not require intervention on the part of the network security

Understanding Network Security Data 139

analyst. Grouping meta-sessions can be useful for analyzing data in bulk.
For example, one week of data contained a total of 1,731 meta-sessions
involving only "ICMP Destination Unreachable (Communication
Administratively Prohibited)" messages. In order to review these meta-
sessions, it's useful to group together meta-sessions with similar
characteristics.

We used the Partitioning Around Medoids (PAM) algorithm to
summarize groups of meta-sessions with similar characteristics. Because
PAM uses medoids rather than means to represent each group of
observations, it is more robust than the K-means clustering algorithm.
Medoids are records whose average dissimilarity to all other records in the
group is minimal. A medoid can be thought of as a prototype for the group it
represents.

The average silhouette value was used to identify the optimal number of
clusters for summarizing a set of meta-session records. The silhouette value
is near one for a record that fits well with its cluster, and near negative one
for a record that does not fit well with its assigned cluster.

To cluster meta-session records, we use the continuous attributes of the
meta-session record (eliminating variables with no variance and the variate
with the smallest variance for each pair of correlated variables). For the
"ICMP Destination Unreachable", we used the following attributes to build
the model:
• number of events observed on the Intranet
• number of events observed on the DMZ
• number of seconds between the first and last events of the meta-session
• number of destination IP addresses

To measure the dissimilarity between any two meta-session records, we
used the Euclidean distance for vectors containing normalized values for the
attributes mentioned above. The optimal model for the "ICMP Destination
Unreachable" meta-sessions had 6 partitions, with the average silhouette
value for this model being 0.71. The medoids for this model are listed in
Table 5-4.

Table 5-4. Prototypes for the "ICMP Destination Unreachable" Meta-Session Groups
Group Member Intranet DMZ Time Range Destination

Count Records Records Count
1
2
3
4
5
6

1,288
131
9
14
4
285

0
0
0
1
3
0

1
3
16
0
0
14

1
1,282
1,411
1
1
21

1
2
14
1
3
1

140 Chapter 5

The largest group, group one, consists of single 'ICMP Destination
Unreachable" replies directed toward DMZ hosts, while the smallest group,
group five, consists of multiple "ICMP Destination Unreachable" messages
directed toward intranet hosts (a relatively rare occurrence).

A principal components projection of the meta-session records is shown
in Figure 5-3. The groups are shown by elliptical rings. Although much of
the variance of the values is lost when projecting from the initial set of four
variables down to two variables for plotting, a diagram such as this makes it
easy to visualize outliers. Group 5 appears off to itself in the upper right-
hand comer, because it's unusual for intranet hosts to receive "ICMP
Destination Unreachable" replies.

clusplot(pam(x = data, k = 6, stand = TRUE))

Component 1
These two components explain 64.28 % of the point variability.

Figure 5-3. Plot of Cluster Analysis Results

In this particular instance, the 1,731 meta-session records can be
effectively summarized by a list of 6 prototypes, allowing the analyst to
focus attention on groups of interest.

Cluster analysis can also be used to group together meta-session records
with event lists that are similar, but not exactly the same. Over the course of
a week, there were only 26 distinct event lists that appeared in 168 or more
meta-sessions; however, there were 4,830 distinct event Hsts that appeared in
less than 168 meta-sessions. For example, there was only one meta-session
with the following single-item event list:
• WEB-CGI /cgi-bin/ access

Understanding Network Security Data 141

To find similar meta-sessions, we grouped the infî equent events lists by
again using the PAM algorithm. This time, however, we measured the
distance between two meta-sessions by using the Jaccard dissimilarity
coefficient for the tokens in the event lists. For example, the dissimilarity
value between the following single-item event lists would be 0.50, because
they only share two of the four distinct tokens.
• WEB-CGI /cgi-bin/ access
• WEB-CGI calendar access

The 4,830 distinct event lists formed a total of 47 groups in the optimal
model, where the average silhouette value was 0.36 (not perfect, but still
useful for summarization purposes). The group containing the "WEB-CGI
/cgi-bin/ access" event is listed in Table 5-5.

Table 5-5. Sample Grouping of Meta-Session Records with Infrequent Event Lists
Event List Id

1

2

3

4

5

6

7

8

Highest
Priority Event

1

2

2

2

2

2

2

2

Number of
Meta-Sessions

1

1

1

1

1

1

1

1

Event[l]

WEB-CGI
/cgi-bin/ access
WEB-CGI
calendar access
WEB-CGI
calendar access
WEB-CGI
calendar access
WEB-CGI
calendar access
WEB-CGI phf
access
WEB-CGI
register, cgi access
WEB-CGI swc
access

Event[2]

WEB-CGI
register, cgi access
WEB-MISC
intranet access
TCP Attempt
(tcp:53)

The prototype of this group is event list number 2. The prototype event
list and the highest priority for the list can be used to represent each group of
meta-sessions. Again, this summarized view allows both a reduction in data
and an increase in understanding. Comparing the group in Table 5-5 to the
group in Table 5-6, it is easy to see there are indeed significant differences
between the two groups. The first row in Table 5-6 is the prototype for this
small group.

142 Chapter 5

Table 5-6. Contrast Grouping of Meta-Session Records with Infrequent Event Lists
Event List Id Highest Number of Event[l] Event[2] Event[3]

Priority Meta-Sessions
Event

1 1 1 NNTP
AUTHINFO
USER
overflow
attempt

P2P
GNUTella
GET
(top: 119/

NNTP
AUTHINFO
USER
overflow
attempt

P2P
GNUTella
GET
(top: 119)

TCP attempt
(tcp:119)

6. CONCLUSIONS

This chapter describes the use of aggregation for data reduction, anomaly
detection for probe identification, and cluster analysis for summarization.
The techniques demonstrated are independent of the specific sensors used to
generate the network security data. The only requirements for the data
included the presence of IP address and port information, along with
distinctive labels for alerts generated by the NIDS.

By using aggregation, we are able to replace many individual event
records with a single aggregate record. For example, consider the "script
kiddie" who simply tries to launch an exploit against every possible address
in your network. The flow of individual alerts to the console could be
overwhelming. A single meta-session record can be used to replace these
alerts, and anomaly detection can be used to flag the meta-session as a host
scanning episode.

A simple form of anomaly detection can be used to discover probes that
may not generate alerts. For instance, a single week of data contained over a
100 host scans that were missed by both the firewalls and the NIDS. By
monitoring relevant variables, with the desired emphasis on minimizing false
alarms, it's possible to use anomaly detection effectively for identifying
probes.

Cluster analysis is useful for grouping together similar records for
review. By providing effective summaries, it allows an analyst to focus
attention on only those groups requiring further investigation.

Although the work described here illustrates a potentially useful
approach to anomaly detection, further work is needed to improve the

This is actually a false alarm, the result of a signature searching for the string "GET".

Understanding Network Security Data 143

detection rate. One possible approach might involve building a probe
classification model, using multiple features from the meta-session records
simultaneously. Active learning could be used to minimize the amount of
labeled data required to perform the classification task.

ACKNOWLEDGEMENTS

The research discussed in this chapter was conducted at MITRE with the
help of many people, including (but not limited to): Eric Bloedom, Lisa
Talbot, Bill Hill, David Wilbum, Josh Gray, Clem Skorupka, and Dan Ellis,

REFERENCES

[I] S. Axelsson, Intrusion Detection Systems: A Taxonomy and Survey. Technical
Report No 99-15, Chalmers University of Technology: Department of Computer
Engineering, 2000.

[2] D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu, ADAM: Detecting Intrusion
by Data Mining, Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, 2001.

[3] J. Campione, et al., SANS/FBI Top 20 List: The Twenty Most Critical Internet
Security Vulnerabilities, Version 3.23, May 2003. <http://www.sans.org/top20/>

[4] C. Fraley and A. Raftery, MCLUST: Software for Model-Based Clustering,
Discriminant Analysis and Density Estimation, Technical Report No 415, University
of Washington: Department of Statistics, 2002.

[5] S. Jajodia and D. Barbara, Applications of Data Mining in Computer Security
(Advances in Information Security, Volume 6), Kluwer Academic Publishers, 2002.

[6] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis, John Wiley & Sons, 1990.

[7] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, A Comparative Study
of Anomaly Detection Schemes in Network Intrusion Detection, Proceedings of the
Third SIAM Conference on Data Mining, 2003.

[8] W. Lee, S. Stolfo, and K. Mok, A Data Mining Framework for Building Intrusion
Detection Models, Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 1999,

[9] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, The 1999 DARPA Off-Line
Intrusion Detection Evaluation, Computer Networks, 579 - 595, October 2000,

[10] SANS Institute, TCP/IP and tcpdump Pocket Reference Guide, June 2002,
http://www.sans.org/resources/tcpip.pdf

[II] R. Thomas, Bogon List, Version 2.0, www.cymru.com/Documents/bogon-Ust.html,
April 2003.

[12] W. Venables and B. Ripley, Modern Applied Statistics with S, Fourth edition,
Springer Verlag, 2002.

PART III

TECHNIQUES FOR MANAGING
CYBER VULNERABILITIES

AND ALERTS

Chapter 6

EARLY DETECTION OF ACTIVE INTERNET
WORMS

Vincent H. Berk, George V. Cybenko, and Robert S. Gray
Institute for Security Technology Studies, Thayer School of Engineering, Dartmouth College

Abstract: An active Internet worm is malicious software that autonomously searches for
and infects vulnerable hosts, copying itself from one host to another and spread­
ing through the susceptible population. Most recent worms find vulnerable hosts
by generating random IP addresses and then probing those addresses to see which
are running the desired vulnerable services. Detection of such worms is a manual
process in which security analysts must observe and analyze unusual network or
host activity, and the worm might not be positively identified until it already has
spread to most of the Internet. In this chapter, we present an automated system that
can identify active scanning worms soon after they begin to spread, a necessary
precursor to halting or slowing the spread of the worm. Our implemented system
collects ICMP Destination Unreachable messages from instrumented routers,
identifies message patterns that indicate malicious scanning activity, and then
identifies scan patterns that indicate a propagating worm. We examine an epi­
demic model for worm propagation, describe our ICMP-based detection system,
and present simulation results that illustrate its detection capabilities.

Keywords: Security, Worms, Propagation Models, Detection, Active Response

1. INTRODUCTION
An active Internet worm is malicious software (or malware) that autonomously

spreads from host to host, actively searching for vulnerable, uninfected systems.
The first such worm was the 1988 Intemet worm, which spread through vulner­
able Sun 3 and VAX systems starting on November 2, 1988. [17], This worm
exploited flaws in the sendmail and f ingerd code of that time, and through
the rsh service and a password-cracking library, also exploited poor password
policies. The worm collected the names of target hosts by scanning files, such
as . rhos t s and .forward, on the local machine, and then attempted to in­
fect those hosts through the finger, sendmail, and password-guessing exploits.

148 Chapter 6

Although the exact number of infected machines is unclear, the worm infected
enough machines to disrupt normal Intemet activity for several days due to high
network traffic and CPU loads,

Recent examples of active worms include Code Red v2, which exploited
a flaw in Microsoft's Intemet Information Services and infected 360,000 ma­
chines [12], and Sapphire/Slammer, which exploited a flaw in Microsoft's SQL
Server and infected 75,000 machines [11]. Code Red, Sapphire/Slammer and
most other recent active worms find vulnerable machines by generating random
(or pseudo-random) IP addresses and then probing to see if the desired vulner­
able service is running at those addresses. Compared to the 1988 Intemet, the
modem Intemet has so many hosts that random probing is an effective way to
find vulnerable machines. The 1988 worm would have needed years (or even
centuries) to find even one existing machine if it had used random probing.

In addition to using random probing, most recent worms probe as quickly
as possible, so that the worm can spread to most vulnerable machines before
system administrators have time to shut down infected machines and repair
the exploited security hole. In fact, since current response is entirely man­
ual, a worm only has to spread faster than human response time to succeed.
Sapphire/Slammer, the fastest spreading worm to date, far exceeded human
response time by infecting most vulnerable machines within five minutes of
its launch [11]. Clearly, if the Intemet community wants to halt the spread of
a worm, rather than simply cleaning up afterward, some form of automated
detection and response is needed. Here, we will focus on the problem of detec­
tion, and present an automated system that can identify active scanning worms
soon after they begin to spread. Worm authors, when faced with such a detec­
tion system, might switch from address scanning to stealthier techniques for
identifying potential targets, including the older, but effective, techniques of
the 1988 worm. For this reason, we also will give a brief overview of potential
techniques for detecting slow-moving or stealthy worms.

In the rest of this chapter, we present background on Intemet worms and a
model for their propagation, describe the architecture of our prototype worm-
detection system, DIB:S/TRAFEN, and examine simulation results that illus­
trate the system's detection performance. Finally, we examine future directions
for both worm authors and worm defenders.

2. WOR]MS AND THEIR PROPAGATION

The first step in detecting an active worm is to understand how active worms
propagate, and to develop a general propagation model that can be used as
the starting point for detection algorithms. First, we compare active worms
with other types of malware, and then we present an epidemic model for worm
propagation.

Early Detection of Active Internet Worms 149

Worms and Viruses
Over the last several years, there has been frequent discussion of the differ­

ence between viruses and worms. In the early days after the 1988 Internet worm,
Eichin et al. [7] referred to this new event as an 'Intemet virus'', stating that it
bore no resemblance to the biological equivalent of a worm. Today, however,
most experts refer to it as the ''Morris worm", indicating that biological equiv­
alence no longer dictates the terminology. Figure 6.1 is an inheritance graph
showing current, commonly accepted relationships in terminology. Viruses and
worms are both part of the larger category of malicious code. A related member
of the malicious-code group is rootkits and backdoors, pieces of software often
installed on compromised systems by hackers to enable them to easily regain
control of the machine in the future. Rootkits are associated with the so-called
''auto-rooters", pieces of software that offer a nice GUI to the hacker, making
computer intrusion child's play. A disturbing detail is that many of these tools
can perform multiple attacks (exploits) with various target selection strategies,
eliminating the need for any understanding from the hacker. The tools often
are easier to use than most security products.

Another related member of the malicious-code family is spy ware, software
that ships and installs with bona fide programs and relays information from the
user's computer back to a data center without the user's explicit consent. This
implies that the user often is not aware that spy ware programs are present on the
system, increasing the risk that private, or even privileged, information might
be stolen. Spyware is gaining more attention lately, largely because software
packages are increasing in size and complexity, making detection of spyware
much more difficult. In addition, spyware programs tend to remain on the
system even when the program to which it was originally attached is removed.

Where other malicious code is intended for controlled use, viruses and worms
are designed to propagate without control. This makes them very dangerous,
since there are no bounds on their spread, and their workings are fully decen-

MAUCIOUS CODE

SPYWARE I ROOTKITS/
BACKDOORS

AUTONOMOUS \

AUTO-ROOTERS

VIRUSES WORMS

Figure 6.1. A partial hierarchy of malicious code (or malware).

150 Chapter 6

tralized. Where rootkits and backdoors provide the hacker with full control of
a system, worms and viruses need to be fully autonomous, following the same
algorithm over and over again for each newly infected system. There is no
reason, however, why the two cannot be combined, creating a massively (self-)
propagating piece of malware that leaves backdoors for the hacker to enter all
infected systems at will. Regarding terminology, worms and viruses can be
viewed as separate types of autonomous malware (as we prefer and depict in
Figure 6.1), or viruses can be viewed as a broad category of which worms are a
special case. Whether worms are their own category or a subcategory has little
effect on the discussion of their properties, so we leave it to the reader to form
their own opinion.

The difference between worms and viruses lies in their method of propa­
gation. In short, viruses require carriers, where worms facilitate their own
propagation. Worms often use an attack strategy that actively selects targets
and opens connections to those targets. The worm then launches an exploit,
and, if successful, propagates by copying its code to the new system and then
running that code. The new system now is infected and will behave the same as
the system that infected it, resulting in two copies of the worm, both looking for
new systems to infect. This spread continues until most vulnerable systems are
infected, or until a built-in timer stops the propagation and switches the worm to
another mode, such as a massive Distributed Denial of Service (DDOS) attack
using all the infected systems as drones.

In contrast to worms, viruses need a carrier to propagate. Traditionally,
viruses bind to executable files, the system boot sector, or both. This ensures
that the virus is loaded into memory at boot time, or whenever a program is
loaded. Once active in memory, the virus binds to the operating system and tries
to infect the boot sector and every program that is run. This will guarantee its
spread, since infected executables that are run on clean systems will infect the
boot-sector of that system, leading to subsequent infection of that system's other
programs as well. This technique requires executable files to be shared between
computers, imposing a natural limit on how fast the virus can spread. Recently,
however, viruses have been designed to piggy-back on bona fide communication
mechanisms such as email. Email viruses often rely on the recipient to open
the email and run the attached viral executable, which, in turn, will attempt to
send itself to all e-mail address in the user's address book. This is the reason
that such viruses often come from your best friend. Virus writers use many
techniques to hide the actual virus from the user, such as embedding the viral
code inside a Screensaver or game. A more sophisticated approach is to include
a macro in the e-mail that will run the viral code as soon as the e-mail is opened
(without the user having to open the viral attachment itself). This approach,
however, requires an email client that understands and automatically interprets
and runs such macros. Email viruses, with or without automatic execution of

Early Detection of Active Internet Worms 151

the viral attachment, show propagation patterns very similar to those of active
worms.

Worm Spread
The propagation pattem and autonomous behavior that classifies worms leads

to a clearly identifiable three-step algorithm: (1) target selection, (2) infection
attempt, and (3) code propagation (when the infection attempt succeeds). In­
tuitively, the faster a worm can identify and infect new vulnerable targets, the
faster it can propagate. This is important, since historically it seems that slow
and "silent" worms do significantly worse than fast and 'loud" worms, in terms
of the peak number of infected systems. The major reason for the success of
fast worms is the minimal response time that they provide to take appropriate
countermeasures. Successful response mainly depends on human factors, since
it usually involves system administrators learning about new worm events, and
then identifying and patching or removing any vulnerable systems in their net­
works. Given the limits of human response time, the initial propagation of a
new worm can proceed unobstmcted, giving fast worms the chance to reach
a "critical mass", namely, infect enough systems to create and sustain an epi­
demic. In the next section, we will back these intuitive explanations with some
basic epidemiology.

The target-selection algorithm is crucial to the success of a worm, and worm
authors have shown stunning creativity in this part. Proposed or observed
approaches include (1) random (directed or hitlist), (2) sniffing, and (3) name
(email addresses, system files, DNS). In addition, many worms have combined
these three techniques with varying results. The most common, and easily
implemented, algorithm is random generation of target IP addresses. This
method has gained popularity on the IPv4 Intemet, since the IPv4 Intemet is
densely populated. Selecting a random IP address has a high chance (between
5% to 15%) of hitting an existing machine. A larger address space, like IPv6,
would mitigate this problem since it would take years to even find a populated
IP address by random scanning.

To improve the chance of finding vulnerable machines, many worm authors
employ techniques in which they direct the random target selection. By pre­
ferring address ranges that are densely populated or address ranges that are
suspected to contain a large number of vulnerable machines, the worm can
propagate significantly faster. As an example of the latter case, the vulnera­
bility that the worm exploits might be typical of home computers. The worm
author would attempt to identify up front which target ranges hold the most
home computers (dial-up and cable-modem ISPs) and then program the worm
to prefer targets in those address ranges. Alternatively, the worm can be pro­
grammed to select targets only from a list of known targets. This approach

152 Chapter 6

usually is called "hitlist propagation", and is most effectively used as an ini­
tial propagation method before defaulting to random propagation [18]. Such a
hitlist would contain IP addresses that are known to be vulnerable systems, and
thus would need to be constructed before the worm was released. Construction
of hitlists can be done slowly over the course of months by randomly scanning
the Internet. To avoid attacking the same system multiple times during propa­
gation, the list can be split in half every time a worm instance propagates. One
half is kept by the infecting system, while the other half is given to the newly
infected system. Hitlists are an effective way of establishing a critical mass of
infected systems.

Scanning activity can be difficult to hide, since intrusion-detection and traffic-
monitoring systems can notice the pattem of one machine actively connecting
to many other machines. A technique that has been frequently discussed, al­
though not used in implemented worms yet, is passively sniffing the network
(or inspecting application-level traffic) to identify reachable IP addresses that
likely are running a service that the worm can exploit. As an example, a con­
tagion worm might have two exploits, one for Web clients and one for Web
servers. [18]. A copy of the worm on a Web server attempts to infect any Web
client that requests a page, while a copy of the worm on a Web client attempts to
infect any Web server to which the client connects. Fortunately, this approach
is applicable only for some services, since the worm must see enough traffic to
build up a reasonably sized set of potential targets. For example, if the worm
only had an exploit for Web servers and was passively sniffing the network to
identify other Web servers, it might see little or no traffic for any Web server
other than the one already infected, particularly given the prevalence of switched
Ethemet. On the other hand, a worm exploiting a vulnerability in email servers
will have a better chance of succeeding, since email servers contact each other
to exchange email. As long as users on the local network make moderate to
heavy use of email, the worm will be able to identify a significant number of
email servers that it can attempt to infect. As an added bonus for the worm
author, such an email worm would be equally successful in densely or sparsely
populated address spaces.

When the address space is only sparsely populated, random scanning (even
to construct a hitlist) can be an impossible task, and thus other methods need
to be employed. In addition to the passive network sniffing discussed above, a
worm can use DNS names rather than IP addresses to identify systems. When
a top-level domain name is acquired, DNS servers often will reveal the names
of the associated mail exchange server and Web server. Even if these names
are not obtainable directly from the DNS system, the worm author can make
an educated guess as to what the names of existing systems would be. Imag­
ine that the worm acquired the domain exampledomain,com, A logical nam­
ing scheme would suggest that www,exampledomain,com would be the Web

Early Detection of Active Internet Worms 153

server and mail exampledomain, com would be the mailserver. A list of other
names would include wwwl, ns, nsl, dns, dnsl, nameserver, ftp, smtp, pop3
or skywalker. Names from Greek mythology also are very popular. The worm
author's creativity can be endless, and techniques that have been used for many
years in password crackers also can be used to construct hostnames. If a site
has a hostname sparc09, for example, it is worth trying sparcOl, sparc02, ...
sparc99 as well. Additionally, hostnames can be gleaned from many other
sources. The 1988 worm [7] used the .rhosts file to obtain hostnames of other
systems in the network. Similarly, most operating systems maintain small name
databases as a backup for when the DNS system fails. Other sources can be
email addresses, which have the basic structure username@domainname, and
provide domain names for the process above. Obtaining the addresses or names
of potential targets from information stored on the currently infected machine
often is called topological scanning. [18] Although most worms today use some
form of random target selection, the introduction of IPv6 means that it is no
longer the guaranteed fastest way to propagate. Future worms most likely will
employ combinations of the above techniques to facilitate their propagation.
In addition, viruses that use normal network traffic as a carrier will become
increasingly popular, since they do not need to select their own targets.

After a target is selected, the worm will attempt to infect it. If successful,
the worm will run a copy of itself on the newly compromised system. The two
general approaches to code propagation are the use of a central repository or
the use of cloning. Although a central repository allows more control (since
it is contacted at every propagation), it is also at risk of counter attack, effec­
tively stopping worm propagation. Therefore, most worms are simply cloned
when propagated. Evolutions of the central-repository technique, however, or
programming worm copies to create their own peer-to-peer network for com­
mand distribution, will provide significant control capabilities for hard-to-stop
worms [18].

Epidemics

To get a feel for the factors that govern worm (as well as virus) propagation,
most researchers take to the classic epidemiological equations. These models
describe biological epidemics quite well, and have proven to be very applicable
to their cyber equivalents. We will introduce these models here and refer to
further reading for a more in-depth coverage of the topic.

In its most basic form, the behavior of a single host is described by the
SIR (Susceptible-Infective-Recovered) model as shown in Figure 6.2. For a
given worm, the 5-state (susceptible) indicates the host is vulnerable to that
worm. The /-state (infective) indicates that the host is infected and spreading
the worm. The i?-state (recovered/removed) means that the host is not (or no

154 Chapter 6

longer) of interest to the epidemic. The reasons for being in the i?-state may
vary, most often the host simply was not vulnerable to the worm in the first
place, or the host was patched (whether infected or not). Altematively, the
host might be disconnected from the network, either to prevent infection or
further propagation. For any worm, only a marginal portion of all the hosts
are vulnerable, i.e., in the group of susceptibles S. The majority of Internet-
connected hosts will be in the i?-group, and not be involved in the spread of the
epidemic. The transitions between the states are given below, keeping in mind
that the transitions apply to the state of a host for one particular infection only:

S -^ I (infection)
I —> R (patching or disconnection)

And furthermore:

S —̂ R (uninfected system patched)
I -^ S (infection removed, but system not patched)
R —> S (susceptible system reconnected to the network)
R —> I (infected system reconnected to the network)

The first two transitions are the most common case, and account for the
majority of the total number of state transitions made during an epidemic. They
model the infection of vulnerable systems (S—>I transition), and the patching or
removal of infected systems (S—>R transition). Many systems generally are not
vulnerable to a certain worm attack, and such systems do not change state and
largely remain in their i?-group. The classic epidemic equations from Kermack
and McKendrick focus on these two transitions (see Daley and Gani [6]) for
modeling the spread of an infection in continuous time. The population Â
is constructed from the three groups S, / , and R, which change over time
as defined by s{t), i(t), and r{t), where ô is the time at which the infection
begins. Note that N = s(t) + i{t) + r{t), meaning that the population size is
assumed constant, which is acceptable considering that we defined R to contain
disconnected, not just patched, systems. The population changes over time can
be defined as

Figure 6.2. The SIR (Susceptibles-Infectives-Recovered) model is probably the most popular
way of identifying the groups in an epidemic, and its transitions form the basis for a broad range
of mathematical models.

Early Detection of Active Internet Worms 155

(a) ^ - --(3si (b) -^^=Psi^ 7z (c) ^ = 7^ (6.1)

The parameter /3 models the transition S^I and 7 models the transition I-^R.
Intuitively, p is the likelihood of one particular infected system contacting (and
infecting) one particular susceptible system in dt time. Likewise, 7 is the
likelihood that one particular infected system is patched or disconnected in dt
time. Putting a number to these factors is not easy since it is different for each
worm. The general principals discussed in the previous section, however, lead
to some guidelines. First, the rate at which a worm can infect new systems is
limited by the rate at which it can contact other systems (which determines /?).
This rate is either limited by parallelism or by bandwidth, whichever reaches its
limit first, and these factors are determined by the capabilities of the infected host
and the target-selection algorithm of the worm. The most effective propagation
would be when the worm uses up all the bandwidth that the host has to offer,
thus, the closer a worm can approach this limit, the better its chances are for
fast propagation. There are several factors involved that make this easier or
harder. The first factor is the protocol that the worm uses to propagate. When
the worm uses a fire and forget protocol (like UDP), it most easily can use all of
the bandwidth since it never has to wait for a retum packet. When a connection-
oriented protocol (such as TCP) is used, however, the worm will need to wait
for an acknowledgment from the target host before it can send the attack data.
The choice is not always up to the worm author since most services (and hence
most vulnerabilities) are built using connection-oriented protocols.

The latency between initiation and acknowledgment, however, can be filled
with connection requests to other potential targets when the worm interleaves
them properly. With appropriate programming, which may include the worm
generating its own connection requests and bypassing the operating system's
network stack, the worm can hide most of the latency associated with connection-
oriented protocols. For example, one thread in the worm would craft requests
packets, transmit those packets, and log the outstanding connection in a table,
while a second thread constantly would check (sniff) for retum packets and
attempt to match them with the entries in the table. Every several seconds the
worm traverses the entire table to fault connection requests that have not had
a response within a worm-defined timeout period. By making this table suffi­
ciently large, the worm should be able to fill the available bandwidth without
needing to run thousands of concurrent copies of itself on the infected host.
Although such an approach makes the worm more complex and more difficult
to implement correctly, the added burden might be well worth the increased
propagation speed.

156 Chapters

Given this discussion, the average time that each connection takes can be
calculated as

T = r X tiatency + (1 " ^) X Uimeout (6.2)

where r is the reachability based on the target-selection algorithm. A perfect
hitlist would give r = 1, and random target selection on the current Internet
would give r « 0.1.

When a worm does use a hitlist for initial propagation, the worm would have
two different values for (3, one value for the hitlist part of the propagation, and
a second smaller value for the remaining (random) part of the propagation. In
addition, IQ (the initial number of infected systems) for the second part would
be the number of infected systems after the hitlist propagation is complete. For
completely random target selection, /? can be defined as

13= ^ x - (6.3)

where N is the size of the address space (2^^ in case of IPv4) and a is the number
of concurrent scanning threads. In the case of a worm that implemented a fully
parallel scan through the construction of its own request packets, a might be
defined quite high (even if the worm itself only used the two threads described
above). In the equations, dt is the same as the unit of r, meaning that if r is
calculated in seconds, dt in Equations 6.1 also is in seconds. For a perfect hitlist
(where every IP address is indeed a susceptible host), we instead could define
/?as:

P=^><- (6.4)
OQ T

where SQ is the number of systems that are initially susceptible (assuming
that the hitlist holds all susceptible systems). The second factor - essentially
calculates the average number of successful connections a single infected host
can complete in dt time (not all of those are necessarily susceptibles). When
network bandwidth is the limiting factor, rather than worm parallelism, the
second factor can be replaced with a division of the available network bandwidth
by the size of the infection packetstream.

The 7 parameter (the I-^R transition) can be harder to model since it mostly
depends on actions of the system administrator. (See Figure 6.3.) It will take
security personnel some time to discover a newly launched worm, and then
they will need to analyze the worm and possibly write a patch. System admin­
istrators then must leam about, download, and install the new patch. Another
option for system administrators is the disconnection of infected machines from
the network. Both processes, patching and disconnection, are hard to model,
and likely are not governed by a fixed rate. Note that in the Kermack and
McKendrick model, the transition is dependent only on the current size of the

Early Detection of Active Internet Worms 157

Figure 6.3. Spread of Code Red v2 versus the epidemic equations for different values of 7.
The vertical axis represents the total number of infected systems at any given time, and the
horizontal axis is the time in hours. Parameter /3 was calculated based on Equations 6.2 and 6.3
and the characteristics of Code Red v2 on a per-second basis: Code Red v2 used 100 concurrent
scanning threads (a = 100), with an average reachability of r = 3^ and a default timeout on no
response of 21 seconds (based on the default Windows NT timeout, exponential back-off with
3 retries after 3, 6, and 12 seconds). This gives (6.2) r = 3^ x 1 + (1 - 3^) x 21 = 19. The
address space was IPv4, and thus N = 2^^ gives (6.3) 13 ^ ,^ x ^ = l.2?> x 10"^. Notice
how the total number of systems infected (surface area under the graphs) decreases with higher
values for 7. Code Red v2 data was collected at TRIUMF Canada (http://www.triumf.ca), which
generously made the data available to us for this research.

group of infected systems, which could be too simple a dependency to model
the behavior of security personnel and system administrators.

Additional Transitions. The other transitions in the SIR model are interesting
for further study. The S-^R transition models uninfected systems that are
vulnerable to the worm under consideration, but get patched or disconnected
before they are infected. Although this process might be underway before the
worm is launched (i.e., a patch for the worm's exploit is available a priori),
only its effect on the worm should be modeled. Patching that occurs before the
worm is released simply decreases 5o. Below is an extended set of differential
equations taking into account all six transitions from the graph:

dr

- r]i -h (r + 9i

- ^i + ST — 6i

- ST — C,T -\- r]i

158 Chapter 6

(6.5)

(6.6)

(6.7)
ai;

The S—>R transition is governed by the parameter 77 and is taken to be de­
pendent on the size of the group of infectives over time. This is parallel to
the I-^R transition, and indicates that administrators will patch uninfected sys­
tems, as well as infected ones, with greater urge as the worm propagates. It
can be argued, however, that it should be multiplied by the size of the group of
susceptibles as well, since the chance that administrators patch or disconnect
uninfected systems decreases as there are fewer systems uninfected. The I—>S
transition (represented by 6) also is taken to increase and decrease as the group
of infected systems grows and shrinks. This means that the larger the group of
infected systems, the greater the number of systems that will be cleaned, but not
patched. A good example of this was the propagation of the Code Red v2 worm.
Although Code Red v2 could be removed from a system by rebooting, the sys­
tem would be susceptible to re-infection after the reboot. The R—>S transition
{C, in the equations) is most likely due to uninfected, yet susceptible, systems
being taken off-line and then reconnected to the network later. The R—>I tran­
sition (modeled by e) will be small, representing the infected systems that are
taken off-line and later reconnected, allowing them to continue spreading the
infection. One final note on these four transitions is their relative insignificance
compared to (3 and 7. Even for very small values of 9, e and C the equations
can be unrealistically imbalanced. The interested reader is encouraged to try
different values for all parameters and see how the epidemic curve behaves.

3. RESPONSE

The best way to respond to an epidemic is to prevent it in the first place. His­
tory has shown, however, that there have always been unpatched vulnerabilities.
Moreover, with software getting more and more complex, it is unlikely that this
will change. Software vendors put significant effort into distributing patches to
mend security holes in their software, but not nearly enough users install such
patches promptly. Often people are not aware of security updates, and many
others get tired of the continuous stream of updates, inadvertently leading to
disregard. Patching does decrease the size of the pool of susceptibles, however,
effectively limiting the damage any worm can do. The most obvious solution
would seem to be automated patching services, although the necessary basis of
trust is lacking. Few security experts would trust another piece of software to
secure the system, arguing that such a service would itself be a target for attack,

Early Detection of Active Internet Worms 159

The scenario is clear; once the security service is compromised, specifically the
central server from where the patches actually come, the attackers can distribute
a patch that installs a vulnerability that later can be exploited in a massive worm
attack. It would even be possible to distribute the initial copies of the worm
though such a service and use it as the initial group of infectives, creating a very
broad critical mass. Needless to say, such a situation would be devastating.

Thus, although automated patching does have its place, automated response
after the worm is launched must be a critical part of an effective defense. When
we consider the epidemic equations, the two parameters that govem the majority
of all transitions are (5 and 7. An epidemic can be reduced by either lowering
(3 or increasing 7. Figure 6.3 shows how increasing the value of 7 reduces
the number of hosts affected by the epidemic (surface area under the graph).
We now will discuss several ways of influencing these parameters as a form of
active response to worms.

Increasing 7. A common way of avoiding communication with infected
systems is the "blacklist*'. This is a technique often used within the security
community to filter out IP addresses that have shown aggressive behavior in
the recent past. A similar technique could be used to collect IP addresses of
systems that are known infectives. This list would grow as the worms propa­
gate. Routers and firewalls across the world would have to implement filtering
rules to disallow traffic from any of these IP addresses. This effectively cuts
infected systems off the network by blocking them from communicating, there­
fore increasing 7. The R-group will increase, and there will be relatively more
disconnected, infected systems than normal. Problems with this approach are
the implementation requirements. Moore et al. [13] conclude that practically
all of the Intemet's major connections need to employ blacklist filters for this
technique to be effective. In addition, the list of blocked IP addresses needs
to be continually updated and, as the list grows, it will incur a significant load
on all the participating routers and firewalls. Additionally, a fast and accurate
detection system needs to be in place to determine which systems should be
added to the blacklist. Another common problem that this technique poses is
the ability for attackers to perform a DOS attack on arbitrary hosts or networks.
Attackers can spoof malicious traffic, making it seem like it came from a par­
ticular network, and get the worm response system to blacklist or filter out all
traffic from that network, effectively disconnecting it from the Intemet.

Reducing (5, Since (5 govems the growth of the worm, worm authors will try
to maximize (5 to speed up the propagation, the security community, in turn,
must try to minimize it. A technique that has been discussed by Williamson [19]
is to reduce the number of new connections that a host may initiate per times-
lice. A connection is counted as new when it connects to an IP address that it
was not communicating with in the recent past. Known IP addresses (i.e., those
with which a machine communications often, such as mail or DNS servers) are

160 Chapter 6

stored in a list of a given size and will never incur a delay. For the unknown IP
addresses, however, the connection limit is imposed incrementally. A worm,
which created a list of hundreds of IP addresses to contact, would incur a de­
lay between itself and the previous connection request. The connection limit
is suggested at five new connections per second, which is the effective scan­
ning speed of the Code Red v2 worm, meaning that only the fastest of worms
will be hindered.^ An additional argument for implementing this method is
the minimal overhead it puts on the system, while putting a direct limit to /?.
Some server systems, however, would suffer badly from this method, since they
usually have more active outbound connections. Consider, for example, DNS
or email servers, both of which will connect to many other systems based on
the name queries or email messages sent by the users. A similar difficulty is
encountered on multi-user systems, where multiple users are logged on at the
same time. This technique works better on ''static" servers like webservers that
mainly listen for incoming connections. Additionally, it may be possible for a
worm to circumvent the rate-limiting mechanisms by crafting packets instead
of traversing the TCP/IP stack.

A second technique is "traffic content filtering". It is based on the idea
that routers and/or firewalls will test all traffic flowing through against a set of
known, viral signatures. When a malicious signature is detected, the packet is
dropped, effectively limiting the propagation of malicious code and decreasing
/?. The technique, however, requires very elaborate signatures and matching on
port/protocol combinations, since the sheer volume of traffic traveling through
large routers creates a fair possibility that smaller signatures would be matched
in regular, bona fide traffic. As Moore et al. discuss [13], for application during
a new worm event, this approach requires the signature to be generated as early
as possible. Signature-capable routers would need to be in widespread use, as
well as a mechanism to quickly and securely distribute new signatures. Once
again, this defense system allows for a DOS attack when an attacker is able to
insert a falsified signature that would block all traffic for a particular service.
In addition, this system would put a tremendous overhead on critical network
routers on the Intemet, since signature matching (especially when the pool of
signatures is large) is very processor intensive. Combined with the need to
re-assemble each fragmented packet, to avoid overlooking fragmented attacks,
this cure might be difficult to deploy widely.

Conclusion. The general mantra for this section is the need for very early
detection of new worm events. Whatever the response will be, it will never
be useful if the alert and classification come too late. Considering that the
Sapphire/Slammer worm [11, 1] propagated in just several minutes, it is clearly
not humanly possible to generate the alerts. Although automated alert and
response systems would be up to the task, they are at the risk of becoming
the target themselves, potentially being more dangerous than any regular worm

Early Detection of Active Internet Worms 161

could ever be. It seems, therefore, that there will always remain a delicate
balance between human interaction and machine automation. We can envision
a system in which the monitoring and detection is done automatically, such that
alerts and signatures are generated for a human first responder to assess. Next
the human responder can decide which (if any at all) of the active response
mechanisms to activate, allowing an appropriate response to the event.

4. EARLY DETECTION OF SCANNING WORMS

Our prototype system for detecting scanning worms collects ICMP Desti­
nation Unreachable (or ICMP-T3) messages from instrumented routers, aggre­
gates these messages to identify scanning activity, and then looks for pattems
of scanning activity that indicate a propagating worm. The system, whose ar­
chitecture is shown in Figure 6.4, has two major components, the Dartmouth
ICMP BCC: System or DIB:S, which aggregates the ICMP-T3 messages into
scans alerts, and our Tracking and Fusion Engine or TRAFEN, which identifies
propagating worms based on their scanning activity. TRAFEN, which uses a
Multiple Hypothesis Tracking [16] (MHT) framework, assigns likelihoods to
sets of alerts or observations that appear to be correlated, thus forming tracks of
related observations. By defining the likelihood functions so that observations
are highly correlated only if they appear to represent worm activity, TRAFEN
can quickly and accurately detect a scanning worm. In this section, we present
background on ICMP-T3 messages, describe the DIB:S and TRAFEN compo­
nents, and examine the detection capabilities of the prototype system.

ICMP-T3 Messages and Instrumented Routers

When a source machine attempts to contact a nonexistent or unreachable
machine, an Intemet router, somewhere between the source machine and the
target network, will determine that the packets can go no farther. This router,
if configured to do so, will send an ICMP-T3 message to the source machine.
Scanning worms, through the process of probing randomly selected IP ad­
dresses, will attempt to contact many unreachable or nonexistent machines,
such as machines protected by a firewall or addresses from an unassigned part
of the Intemet. If this scanning activity produces enough ICMP-T3 messages,
we can infer the presence of a propagating worm through its unique scanning
pattem, specifically, the growth in scanning activity as the worm infects more
and more machines.

Table 6.1 shows the responses we received when we probed selected address
ranges on the Intemet. The data, which was obtained for a separate project, is
skewed slightly, since we scanned only populated address ranges. Many address
ranges simply are unassigned, and contain no reachable machines at all. The
two most significant numbers are the high response rates (25% average) and the

162 Chapter 6

^
^ ' " " " ~ •

Worm
Alerts

oCdn

TRAFEN

Analysis
Station

y i SrcIP or DstIP =
' 10.0.0.1
1 10.0.0.11

'CMP fR„„,eO
V Unreachable \ / ,

\

1 •

' i

Analysis
Station

SrcIP or DstIP=
10.0.0.10
10.0.0.20

Messages

Collection
Station

y

DIB:S

^ (^ ' ' (Router 1]

V.-^ 1
X •

\ 1 i
I Router 1 i

Figure 6,4. The combined DIBS:S and TRAFEN system. ICMP Unreachable messages with
the same source or destination address are sent to the same analysis station.

Requests
No response
Echo replies
ICMP-T3
Other

PING
24.[0-128]/16

1628977
1258388
244445
77361
48783

100%
77.3%
15.0%
4.7%
3.0%

PING
[209-211].[32-64]/16
6487973
4911425
636135
398841
550472

100%
75.7%
9.8%
6.0%
8.5%

TCP/80
[209-211].[32-64]/16
1171298 100%
800636 68.4%
37707 3.2%
104555 8.9%
228400 19.5%

Table 6.1. Responses to random probing on the Internet - ICMP echo request on the 24.0/16 -
24.128/16 networks. ICMP echo and TCP port 80 request on the 209.32-64/16 - 211.32-64/16
networks

numbers of ICMP-T3 messages retumed (6.2% average). The latter number,
although seemingly low, means that a significant fraction of scan attempts will
produce an ICMP-T3 message at some router. Thus, if we can collect and
analyze ICMP-T3 messages from multiple, distributed routers, we will have
enough messages to detect a worm's unique scanning activity.

Due to privacy concerns, we have chosen not to sniff for ICMP-T3 messages,
but instead to ask network providers and other organizations to forward the
ICMP-T3 messages from their routers to our analysis systems. These forwarded
messages are essentially a Blind Carbon Copy (BCC) of the original ICMP-
T3 message, which is a legitimate action since the generating router was a
participant in the original conversation. Although site policy may require that
no response be sent to the source machine, the router can remain silent to

Early Detection of Active Internet Worms 163

the outside world while still sending the ICMP-T3 messages to the analysis
systems. In particular, there was no response to 75% of our probes, but many
of these probes may have gone through routers that were instructed to silently
ignore unsolicited traffic. These routers could easily forward ICMP-T3s to the
analysis systems, while still dropping the original packet without a response
to the sender. ^ This approach allows broader coverage, while still respecting
the security policies of individual organizations. We currently provide router
patches for the LINUX kemel to provide the ICMP-T3 forwarding ability.

ICMP-T3 messages come in several different flavors, [14] two of which are of
particular interest for detecting scanning activity: Network Unreachable (Code
0) and Host Unreachable (Code 1). A router generates a Network Unreachable
message when a desired network cannot be reached. This might happen when a
packet is sent to an IP address that resides in an unassigned portion of the Intemet
address space. Far more commonly, a router generates a Host Unreachable
message when a router cannot find the addressed host in its network. This
might happen when the packet could be routed to the correct network, but the
router responsible for that network could not locate a machine in its network
that bears the requested IP address.

The feature that makes analyzing ICMP-T3 messages useful is their message
body. When a router builds a Destination Unreachable message, it includes the
IP header, and at least the first eight bytes of the body of the original message
(i.e., the message that provoked the ICMP-T3 response) as the pay load of the
ICMP-T3 message. For TCP and UDP, this includes the source and destination
port numbers. Scanning systems thus will reveal both their IP address and their
target port.

DIB:S

The primary task of DIB: S is to collect ICMP-T3 data and identify blooms of
scanning activity. The instrumented routers, described in the previous section,
send carbon copies of their ICMP-T3 messages to one or more collectors, which,
in tum, will forward the messages to one or more analyzers. Each analyzer is
assigned an IP address range within which it will look for scanning activity,
and more analyzers can be spawned dynamically as needed (with appropriate
updates to the assigned address ranges). When an ICMP-T3 message arrives at
a collector, the collector extracts the embedded content, sends one copy of the
message to the analyzer associated with the embedded source IP address, and
sends another copy to the analyzer associated with the embedded destination
IP address. Depending on the number of analyzers and the particular source
and destination IP addresses, the two copies might go to the same analyzer, in
which case only one copy is actually sent. An analyzer will see all information
about a specific range of IP addresses, regardless of the routers from which the

164 Chapter 6

information came. Organizing the analysis by source and destination address,
rather than the generating router, is critical, since randomly scanning worms
will hit many different networks, and the resulting ICMP-T3 messages will
come from many different routers. Thus, the scanning activity is much more
visible when viewed across routers, rather than at a single router.

The analyzers keep a history of the ICMP-T3 messages received for a par­
ticular IP address over the last Ai seconds. DIB:S will generate alerts in six
cases. Only two are relevant to worm detection - in the last Ai seconds, on
the same port p and using the same protocol P, one host has contacted N dif­
ferent IP addresses (Case 1), or one host has been contacted by N different
IP addresses (Case 2). These are classical scanning patterns, both observed
during worm propagation, although Case 2 also can indicate a failed server for
which requests keep arriving. The other four cases, which involve one machine
contacting another single machine N times or on N different ports, generally
are not observed during worm propagation, but instead during service failure
or manual attacks. The DIB:S alerts contain the case number, the embedded
source and destination IP address, the protocol, and, if available, the source and
destination port numbers. Analyzers will not issue the same alert twice within
Ai seconds, If one IP address is scanning two different ports, however, DIB:S
will issue two separate alerts.

The proper values for the parameters N and Ai depend on the number of
participating routers, but several general things can be said. A lower value of A'̂
increases the chances of false positives, and any value below N = A makes the
system unusable. Although higher values will lead to more accurate detection,
the moment of detection will be later, possibly too late. Experimentation has
shown that 5 < A/" < 15 gives the best results. Similarly, smaller values for
At will give a very inaccurate view of events, since alerts on fast scanning
IP addresses will be frequently re-issued, and slower-scanning worms will not
be detected at all. Higher values of At, however, put a serious performance
penalty on the analysis system since each packet has to be remembered for
a longer time. Proper values during experimentation were determined to be
300 < At < 14400. We will consider these two parameters in more detail in
a later section.

TRAFEN
TRAFEN (TRacking And Fusion ENgine) was not implemented specifically

for the detection of active worms, but instead is a prototype process query sys­
tem [3]. A process query system (PQS) is a software system that allows users to
interact with multiple data sources in new and powerful ways. In a traditional
DBS, users express queries as constraints on the field values of records stored
in a database or arriving from a sensor network, as allowed by SQL and its

Early Detection of Active Internet Worms 165

variants for streaming data. In contrast, a PQS allows users to d^fmo. processes,
and to make queries against databases and real-time sensor feeds by submitting
those process definitions. The PQS parses the process description and performs
sequences of queries against the available data sources, searching for evidence
that instances of the specified process or processes exist. Depending on the
capabilities of the PQS and the problem domain, the process description might
be specified as a rulebase, a Kalman filter [4], a Hidden Markov Model [15],
or any of a number of other representations. A major innovation of the PQS
concept is the virtual process-description machine that it presents to the pro­
grammer, Such a system abstracts away the details of observation collection,
management, and aggregation, and allows the developer to focus on the task of
defining and implementing an appropriate process description.

TRAFEN parses the process model, subscribes to the required event streams
dynamically, and then uses traditional tracking algorithms to match incoming
events with the process model, most commonly using an implementation of
Reid's multiple hypothesis tracking (MHT) algorithm [16]. Reid's algorithm
keeps multiple hypotheses, where each hypothesis is a set of tracks of related
events. Each event is represented only once in each hypothesis, and each hy­
pothesis aims to represent an accurate view of the world. Each new incoming
event (in our case the DIB.S alerts) is added to every track in every hypothe­
sis, thus creating an exponential number of new hypotheses. Next, the process
query is used to assign a likelihood, representing the accuracy of the track under
the current process model, to all the tracks in all the hypotheses. The likeli­
hood of each hypothesis then is calculated as the combined likelihood of its
tracks. Finally, the hypotheses are ranked by likelihood, and only the topmost
hypotheses are kept, with the rest pruned to keep the exponential growth under
control.

To apply TRAFEN to a particular problem domain, the developer must define
an XML message format for the observations, and must provide (1) a definition
of "process state", and (2) a function that measures the likelihood that particular
observations are correlated (i.e., the likelihood that an observation is related to a
previously established track). For our active-worm detection, the observations
are the scan alerts from the DIB.S analyzers, and for simplicity, the proba­
bility assigned to a track is the probability that the track represents a worm.
TRAFEN subscribes to the DIB:S Alert stream and picks out the Case 1 and
Case 2 alerts (since those are the most relevant for worm detection). TRAFEN
passes the filtered observations to a dynamically loaded, simplified version of
Reid's Multiple Hypothesis Tracking algorithm [16]. The tracking algorithm,
if it is receiving the first observation ever, will create a one-observation track
with a very low probability. The low probability reflects the fact that a single
observation of scanning activity does not by itself indicate a worm. For subse­
quent observations, the MHT algorithm iterates through each active hypothesis

166 Chapters

and each track inside the hypotheses. For each track, it calculates the likelihood
that the observation is related to a track, or, in other words, that a scan represents
a continuation of the worm scanning activity represented in the track.

The likelihood calculation, then, is the heart of the MHT algorithm, and in our
current implementation, is essentially rule-based. After initial experiments, we
arrived at three straightforward rules. Rule 1: If a machine scans the same port,
using the same protocol, as the machines already in a particular track, the type
match is high (0.9); otherwise the type match is low (0.1). This rule captures the
fact that an active worm typically scans for and exploits one particular vulnerable
service, although the rule could be extended easily to take into account those
worms that scan two or more related service ports. Rule 2: If a machine
performs a scan only a short period of time after a previous series of scans, the
time match should be higher than if the scans occur farther apart, which captures
the fact that an active worm must scan continuously if it wants to propagate
quickly. We assign a time match of 1.0 if the new scan occurs 10 seconds or
less after a previous scan, a time match of 0.0 if a new scan occurs 300 seconds
or more after a previous scan, and a time match scaled linearly between 0 and
1 if the scan is between 10 and 300 seconds after the previous scan. Although
the exact thresholds have little effect on tracking performance, these thresholds
are best for fast-moving worms. Rule 3: Finally, if the type match is low, the
overall likelihood that the new scan is related to the tracked scans is set low,
again 0.1. Two scans on different destination ports likely do not represent the
same active worm, no matter how closely together those two scans occur in
time. If the type match is high, the overall likelihood is set between 0.675 and
0.925, scaled linearly according to the time match. Again, the exact values of
0.675 and 0.925 do not have a significant effect on tracking performance, as
long as the high end of the range is greater than our worm detection threshold
in later sections. Since the probability of an initial single-observation track is
set to a low value, and since the track likelihood is a moving average of these
individual likelihoods, the rules ensure that it takes several observations for the
track probability to increase significantly, reflecting the fact that only a series
of scans can indicate a worm.

Overall, the TRAFEN framework allowed us to produce a working worm
detector (given the DIB:S input) in only a few hours, and provides the flexibility
to extend the tracking system later through more complex models. Next, we will
examine the detection performance of the current ruleset, and discuss extensions
to the current DIB:S/TRAFEN system.

Simulating Worms
DIB:S and TRAFEN currently are deployed at Dartmouth College, with in­

strumented Dartmouth routers sending their ICMP-T3 messages to our DIB:S

Early Detection of Active Internet Worms 167

installation. This initial local deployment is not enough to analyze the detec­
tion performance of the system, however, and we turn to simulated worms for
that purpose. We developed two different worm simulations, one small-scale
and one large-scale. The small-scale simulation allows us to run hundreds of
worms through the DIB:S/TRAFEN system in rapid succession, allowing us
to explore the parameter space and fine-tune the system for specific environ­
ments. The large-scale simulation is essentially the same, but it simulates a
worm propagating over the entire Internet, allowing system evaluation under
more realistic conditions. The volume of ICMP-T3 messages generated in
the large-scale simulation can be massive, and take significantly longer to run
through the DIB:S/TRAFEN system. The large-scale simulation verifies the
results obtained with the small-scale simulation, however.

Small-Scale Worm Simulation Our small-scale worm simulator is designed
to run worms on address spaces of one million addresses or less. The number
of reachable hosts and the number of susceptible hosts is configurable, and each
susceptible host is simulated individually. We assume that each reachable sys­
tem is reachable from all connected hosts, using a given latency distribution,
and we do not explicitly simulate routers. Instead, the generation of ICMP-
T3 messages is done based on address ranges. For example, when the router
coverage is set to 10%, ICMP-T3 messages are generated for a fixed 10% of
the addresses (and only for those addresses within the 10% that do not corre­
spond to a reachable host). For a random address probe, the simulation first
checks whether the address is associated with a vulnerable host, then whether
it is associated with a reachable host, and finally, if not reachable, whether the
address is covered by an instrumented router. When the probe hits a vulnera­
ble host, the worm propagates to that host, and the newly infected host starts
scanning as well. In our experiments, typical network parameters are a space
of 10^ - 10^ addresses of which 5-15% are reachable and 100-1000 hosts are
vulnerable. The only worm-specific parameter is the worm's scan rate, and the
worm selects random target addresses uniformly distributed through the address
space, with the random seed for each worm instance derived from the current
(simulated) time and the address of the infected machine.

Large-Scale Worm Simulation The large-scale worm simulator, developed by
fellow ISTS Researchers Michael Liljenstam, Yougu Yuan, BJ Premore, and
David Nicol [10], aims to be an accurate representation of the current Internet.
The address space contains 2^^ addresses and is subdivided into Autonomous
Systems between which simulated BGP-routers route traffic. The simulation
is divided into two tiers, the macroscopic level and the microscopic (or net­
work) level. The BGP-routers are simulated at the macroscopic level, where
a stochastic version of the epidemic model is used to model the total flow of
infection packets between autonomous systems. At this level, only the size of
the flow and the source of the flow (a distribution of autonomous systems) is

168 Chapter 6

simulated. Then, for several representative (1-128) autonomous systems, the
actual networks and the infected, susceptible, and reachable hosts are simulated
at the microscopic or packet level. The ICMP-T3 messages are generated at the
border of participating autonomous systems, under the assumption that those
autonomous systems are connected by a single gateway. The actual IP addresses
of the infected systems are used to ensure accurate simulation of the expected
traffic. The ICMP-T3 forwarding routers only look at arriving scan packets,
sending ICMP-T3 messages to a real DIB:S/TRAFEN system when a scan hits
an IP address that was not represented by an actual host. The generation of
ICMP-T3 messages is rate limited at 3 per second per router.

Detection Capabilities

Small-Scale Worm Simulation, Figure 6.5 shows the detection performance
of DIB:S and TRAFEN for a simulated Sapphire/Slammer worm. The y-axis is
the percentage of vulnerable machines that are infected at the time of worm de­
tection, and the x-axis is the router coverage. Each line in the graph corresponds
to a different network size. For each network size, 75% of the addresses were
unreachable, 25% of the addresses were reachable, and 0.1% of the addresses
were reachable and vulnerable. For example, for a network size of 500,000
unique addresses, 375,000 addresses are unreachable, 125,000 are reachable,
and 500 are vulnerable. The reachable 25% corresponds to our observed data
from the scans of selected populated address ranges, while the vulnerable 0.1 %,
although large, corresponds to a vulnerability in Web, mail, database, or other
widely installed software. Each data point in the graphs is an average across
ten simulated worms, and each simulated worm probed 100 target addresses
per infected machine per second, slightly lower than, but consistent with, the
average Sapphire/Slammer scan rate. DIB:S had to receive N = 5 ICMP-T3
messages for the same IP address before issuing a scan alert to TRAFEN, and
DIB:S maintained a history window of A^ = 300 seconds. Each simulation
run continued until the worm infected all vulnerable machines, and TRAFEN
was assumed to have detected the worm as soon as the probability of a track
containing the relevant scanning activity went above a likelihood threshold of
0.9, a constant value used in all experiments.

As seen in Figure 6.5, the detection performance improves significantly as
the router coverage increases from 1% to 2%, but then levels off at different,
roughly constant, values for the different network sizes. For a network size of
500,000, for example, the infection percentage starts at a peak of 5% when the
router coverage is 0.5, but drops quickly to around 2% as the coverage increases.
The straightforward reason is that, for router coverages of 2% and higher, DIB:S
receives enough ICMP-T3 messages to reliably detect the scanning activity of
the first few infected machines. Thus, at these higher coverages, the detection

Early Detection of Active Internet Worms 169

Network Size = 100,000 — i -
Network Size = 200,000 — x -
Network Size = 300,000 •--^•
Network Size = 400,000 Q
Network Size = 500,000 - - »

~-^V X-'

:S:::::^::v*r::^:r:4.:^B;:;:g;-^ -*̂ .:̂ :.:*::::;

Router Coverage (percent)

Figure 6.5. Detection performance with the small-scale simulation. The x-axis is the router
coverage, and the y-axis is the percentage of vulnerable machines already infected at the time
that an active worm is detected.

always will take place within a fixed number of infected machines, no matter
whether the coverage is 2% or 10%. For router coverages below 2%, however,
DIB:S will not receive enough ICMP-T3 messages to reliably detect all scanning
activity, and correspondingly more machines will be infected before DIB:S can
conclude that a worm is present. The critical message of this graph is that
router coverage of 2% provides just as good detection performance as higher
coverages, meaning that we need only a modest number of instrumented routers,
and that we need only transmit and process a manageable volume of ICMP-T3
messages.

In addition, the detection performance improves as the network size in­
creases. The explanation is simply that DIB:S detection performance is de­
pendent not so much on the percentage of machines infected so far, but on the
absolute number of infected machines and the amount of scanning activity that
the worm generated while infecting those machines. Overall, in terms of our
ability to detect the worm early and eventually protect the largest percentage
of vulnerable, but not yet infected, machines, we can keep the router coverage
fixed, and still do better and better as the network size increases. Alternatively,
for a larger network, we can achieve the same detection performance with a
smaller router coverage.

Large-Scale Simulation. The large-scale simulation allows us to explore
these network-size results further. The large-scale simulation used 2"̂ ^ ad­
dresses, and instrumented routers were placed at the border of class-B sized

170 Chapter 6

networks. Each of those class-B networks were assumed to have 50% unused
address space, and each router was rate limited at 3 ICMP-T3 messages per sec­
ond. Two worms were simulated for router coverages varying from 1 class-B
participating router up to 64 class-B participating routers, The first worm, a sim­
ulated version of Code Red v2, scanned at a rate of 5.65 scans per second with
a population of 380,000 susceptible hosts, and the second worm, a simulated
version of Sapphire/Slammer scanned at a rate of 4000 scans per second with
a population of 120,000 susceptible hosts. The DIB:S parameters were N = 5
and At = 7200 for the Code Red v2 worm, and iV = 5 and At = 3600 for the
Slammer/Sapphire worm. The higher values of Ai are necessary since the num­
ber of instrumented routers is small compared to the size of the address space.
Although the number of incoming ICMP-T3s was very large, the chances that
one infected system hits the small group of participating routers several times
is minimal. Therefore, accurate detection over time requires larger values for
At. The lower At value for Sapphire/Slammer allowed faster simulation runs,
but did not affect detection performance. Finally, for simulation convenience,
the recovery parameter 7 was set to 0.

Figure 6.6 shows the resulting detection performance as a function of router
coverage. For 2 class-B instrumented routers (which corresponds to a 0.003%
router coverage). Code Red detection occurs at 0.2% infection of the suscep­
tible population, dropping to 0.03% for 16 class-B networks. For 4 class-B
networks. Slammer detection occurs at 0.01% infection of the susceptible pop­
ulation, dropping to 0.005% for 16 class-B networks. The drastic increase in
detection performance compared to Code Red v2 is due to the vastly increased
scanning speed of the Sapphire/Slammer worm, and the smaller number of sus-
ceptibles (i.e., more scans were necessary to find one vulnerable system). An
important note, however, is that TRAFEN failed to detect the Slammer worm
with a coverage of 1 or 2 class-B networks, since at these coverages, even
the overwhelming scanning activity of Slammer did not cause those routers to
generate enough ICMP-T3 messages (due to the ICMP-T3 rate limiting).

The simulations for the Code Red v2 worm were run again with a simulated
background noise of 1.41 coincidental random probes on the worm's target
port per class-B network per second, which corresponds to the background
noise observed at the start of the real Code Red v2 worm infection. In other
words, participating routers would see, on average, 1.41 unrelated scan packets
per second, and thus might generate ICMP-T3s that have no connection with
the propagating worm. The results, also shown in Figure 6.6, show that this
modest noise level does not affect detection performance. Similar noise results
have been obtained for Slammer/Sapphire, although not yet with the large-scale
simulation.

N and At. There are many parameters within the DIB:S and TRAFEN
systems that affect detection performance. Two of the most important are

Early Detection of Active Internet Worms 171

Detection Performance

Code Red (no noise) — i —
Code Red (noise) —x—

Slammer/Sapphire (no noise) - - * - -

A 0.015 ^

40 60 80 100
Number of Instrumented Class B Networks

Figure 6,6, Detection performance for the Internet-scale simulated Code Red v2 and Sap­
phire/Slammer worms.

% 3

g 2

5 6 7 8
Number of Scans, N, Before Alert

Figure 6.7. Detection performance for different values of Â , the number of ICMP-T3 messages
required for the generation of a scan alert.

Â , the number of ICMP-T3 messages per generated DIB:S alert, and At, the
size in seconds of the DIB:S history window. Figure 6.7 shows the detection
performance for a small-scale Sapphire/Slammer simulation as a function of A ,̂
while Figure 6.8 shows the detection performance as a function of At. For both

172 Chapter 6

100 150 200
Seconds in Aggregation Window

Figure 6,8, Detection performance for different values of At, the length, in seconds, of the
history window over which ICMP-T3 messages are aggregated.

graphs, the network size is 500,000, and the number of vulnerable machines is
500. When N is varied, A^ is held fixed at 300 seconds, and when At is varied,
N is held fixed at five ICMP-T3 messages per alert. In Figure 6.7, we see that
detection performance decreases as A'̂ increases, particularly when the router
coverage is only 1%. At lower coverages and higher values of A ,̂ DIB:S might
not see enough ICMP-T3 messages to actually generate an alert, and scanning
activity will go unreported. In Figure 6.8, we see that detection performance
is very poor for the lowest values of At, and then after an initial improvement
decreases steadily as At increases. The very poor performance is due to the
fact that when the history window is too small, ICMP-T3 messages will age out
before enough messages are received to produce an alert. The steady decrease
in performance after the initial improvement is arguably illusory, since when At
is small, DIB:S will generate multiple scan alerts for the same source address,
whereas when At is large, DIB.S will generate only one scan alert per source
address (during the worm's initial propagation). Although the multiple alerts
per source address drive the track probability in TRAFEN above the detection
threshold quite quickly, multiple scans from the same source address are not,
in fact, a reliable indicator of worm activity. They could merely indicate an
intense, but manual, scanning effort. In the current system, therefore. At must
be kept high enough to avoid ''duplicate" alerts within too short a time period.

Early Detection of Active Internet Worms 173

Future Extensions
The current ruleset is simple enough that it can lead to false positives. Al­

though our experiments have shown that random scanning noise does not affect
detection performance, not all scanning noise is random. For example, attack­
ers constantly scan TCP port 80 looking for vulnerable Web servers. If many of
these scans coincidentally occur within seconds of each other, TRAFEN incor­
rectly will detect a worm that exploits Web servers. The goal of an improved
TRAFEN ruleset is to quickly detect an exponential increase in scanning ac­
tivity (i.e., detect the worm) without incorrectly classifying non-exponential
behavior as exponential (i.e., avoid false positives). We must detect the worm
even if it is spreading slowly, and we must separate simultaneous exponential
and non-exponential processes in case a worm and a human attacker coinciden­
tally are targeting the same port at the same time. There are several modeling
techniques that can be used to detect a wide range of worms while still min­
imizing false positives, but we are particularly interested in Hidden Markov
Models [15], which (loosely speaking) allow a system to infer the state of an
unobservable generation process through statistical properties of the observed
effects of that process. Hidden Markov or other models could be defined for
the scanning activity associated with worms, machine failures, and the simul­
taneous, but unrelated, activity of individual attackers. The MHT algorithm
then could hypothesize about the type (worm, host failure, coincidental) of the
observed scanning activity, rather than just the likelihood that the scanning ac­
tivity represents a worm. Additionally, these new models can be applied at
different time scales, allowing detection of worms spreading at arbitrary rates,
thus removing the time dependency which currently makes DIB:S/TRAFEN
most effective only for fast spreading worms.

Simultaneously, we are working to deploy additional instrumented routers
within the networks of selected partners. As seen with the large-scale simu­
lation results, a coverage of 4 to 16 class-B networks is enough for accurate
detection. Achieving such coverage may be administratively difficult, but is
entirely achievable with the cooperation of only a few medium- to large-sized
organizations. Altematively, large portions of the Internet address space are
unassigned. If these unassigned address ranges were routed to a system that
provided no response to the sender, but merely forwarded appropriate alerts to
DIB:S/TRAFEN, we would gain significant data with minimal risk o f noise".
Unassigned address ranges never should be contacted in normal Internet com­
munication.

In terms of scalability, if DIB:S is installed at a single, central location, the
network bandwidth will limit the number of incoming ICMP-T3 messages. This
limit is not as serious as it might appear, however. Even with 64K instrumented
routers covering 4 Class-A networks, for example, the routers would generate

174 Chapter 6

only approximately 200 Mbps of ICMP-T3 messages (at a three per second
ICMP-T3 rate limit). In addition, if 200 Mbps is too much network traffic
for a single collector site for some reason, DIB:S can be distributed almost to
an arbitrary degree. Instrumented routers can send their ICMP-T3 messages to
''nearby" collectors, and the analyzers, each of which is in charge of a particular
address range, can be distributed throughout the Intemet.

ICMP-T3 messages are not the only data source that can provide indica­
tions of worm activity. Although ICMP messages are particularly attractive
since they indicate scanning activity that spans multiple independent networks,
scan reports and other information from firewalls, intrusion-detection systems
and even host-based sensors also can be fed into the DIB:S/TRAFEN system,
serving as a useful complement to the ICMP-T3 data. The ICMP-T3 mes­
sages can provide useful additional information themselves, since passive OS
fingerprinting^ would allow DIB:S to infer the type of the operating system that
is performing the scan, adding to the hypothesis-generation ability of TRAFEN.
Two scans originating from a Linux and Windows machine respectively, for ex­
ample, most likely do not belong to the same worm.

Finally, regardless of how effective an early waming system is, there is no
use in detecting a worm unless something can be done. This can be as little
as informing system administrators or as much as having a framework in place
that will automatically reconfigure firewalls, and IDS systems as the epidemic
is occurring. Automated response will be a critical topic of future work, both
for our group and many others. Even so, early waming is always worthwhile.

5. FUTURE

Computers increasingly are taking on the role of home appliances, integrat­
ing such services as game and DVD playing, digital television recording and
playback, Intemet-based telephony, and traditional personal and home-office
computing. In addition, software from a small number of companies is finding
its way into more and more products, increasing the likelihood that a software
vulnerability will affect a large number of systems. Finally, broadband Intemet
now is commonplace in many homes, increasing the number of connected sys­
tems. With more connected computer systems, often with higher bandwidth,
and with more widely deployed software, worm and virus authors will continue
to have an ideal environment for their malicious code. There will remain a
desperate need for diversity in software and operating systems, decreasing the
likelihood of massively homogeneous vulnerabilities.

The increase in connectivity also has prompted a shortage in available IP
address space. Although this shortage mostly has been mended with Network
Address Translation (NAT), eventually a more stmctural solution will be needed.
Increasing the address space will bring with it the nice property that random

Early Detection of Active Internet Worms 175

scanning for vulnerable IP addresses will become nearly impossible, requiring
a significant change in the way authors write their worms. As an example,
consider IPv6, which offers 128 bits of address space versus the 32 bits available
in IPv4, and Code Red v2, which we analyzed for IPv4 in Figure 6.3. We
limit ourselves to propagation within a single IPv6 site, which has 2̂ "̂ possible
IP addresses. We assume 2^^ responding machines, of which 1/100^^ are
vulnerable. We pick 7 = 0, so that there is no recovery or removal and the worm
is free propagate. This makes r{t) a constant, leading to s{t) + i{t) = M being
a constant as well, and effectively rewrites the epidemic-model equations [6]:

dz
— = Psi = (5{M - i)i (6.8)

This also is known as the logistic growth equation, and it represents a worst-
case epidemic in which there are no recoveries or disconnects, and each infective
stays infective forever. Propagation speed will be higher than in a realistic
scenario, but the equation allows us to define the absolute limit on propagation
speed. Citing Daley and Gani [6] once more for the integral over (0,^), we
have

m = - ^ ^ l ^ ^ ^ - ^ M T (6.9) zo + (M - io)e-^^*

We can use this formula to find out how fast a worm would spread in the
fastest scenario, given ideal connectivity and no countermeasures. To do so,
we set

i(Te) = eM (6.10)

where e is the fraction of susceptibles infected (for example we could define
TEND by taking e = 0.95). Replacing the left-hand side of Equation 6.10
with Equation 6.9, and performing straightforward algebraic manipulation -
i.e., moving terms to isolate e and then inverting, simplifying, and taking the
natural log of both sides - we have

r , = ^ x l n (f (^) (6.10

Looking at Equations 6.8 and 6.11, we note two important properties. First,
realizing that 0{p) > 0{M) and that 0{M) ?a 0{i), it is clear that the
propagation time will be mostly dependent on 0. Second, the relationship
between propagation time and /? is a linear one. If (3 is doubled, ^ , which is
the propagation speed, also doubles. If the speed is doubled, the time it will

176 Chapters

take for all hosts to be infected will be halved. The linear relationship with /3,
as well as M, also can be clearly seen from Equation 6.11. Now we can fill
in the numbers for Code Red v2 in IPv4 space, assuming the initial number of
infected hosts is 10, and we are looking for how long it takes to infect 95% of
all susceptible hosts. Remembering that /? = 1.23 x 10~^ (see the caption of
Figure 6.3), we have a time in seconds of

1 , /0.95X (360000-10)

1.23 X 10-9 X 360000 V 10 x (1 - 0.95)

which is 30220/3600 = 8.4 hours, a good approximation of what we can read
from Figure 6.3 and thus verifying our equations. Now we fill in the numbers
for the Code Red v2 worm propagating within one IPv6 site. First, we calcu­
late r: r=: 2^^ 12^^ = 2"^^ ^ 10"^^. We obtain r by filling in Equation 6.2:
r = 10-1^ X 1 + (1 - 10-^^r) X 21 ?̂ 21. Finally, we obtain /? by filling in
equation 6.3: P= ^ x ^ ^ 2.5814 x 10"^^ With M = 2^Vl00 « 655,
the time to reach 95% propagation is:

1 , /0.95X (655-10)
2.5814 X 10-19 X 655 V 10 x (1 - 0.95)

which gives 4.2057 x 10^^, or over 1.3 billion years, and confirms the intuition
that an enlarged address space will pose a significant challenge to randomly
propagating worms.

This undoubtedly will lead to new and improved target selection techniques,
most of which were already discussed in the Worms and Viruses section. We will
mention two of them again, however, and suggest probable detection strategies.
To acquire IP addresses of hosts running a vulnerable service the worm could
sniff the network wire for traffic from that service. Mail and DNS servers
will be most vulnerable to this approach, since they constantly communicate
between peers. One possible way of detecting such a worm is by inserting bogus
communication into the network. By spoofing non-existent IP addresses and
so making fake queries to all the services in the network, sniffing worms can
be provoked to connect to these non-existent machines. The challenge would
be to make the fake communication look as real as possible, ensuring that the
worm could not distinguish between real and false events. Worms attempting
to connect to the non-existent addresses would provoke ICMP-T3 messages,
which could be fed into the DIB:S/TRAFEN system.

The DIB:S/TRAFEN system also can be used in the case of DNS explo­
ration. As noted before, worms can gain hostnames by probing DNS servers
and potentially trying whole ranges of possibly related hostnames (recall the
example with sparcOl, sparc02, ... sparc99), DIB:S could be configured to re­
ceive notification of all failed DNS queries, as a blind carbon copy from name

Early Detection of Active Internet Worms 177

servers. The analogy is simple: one IP address attempted to contact many host-
names on many different networks (and failed). This would be a clear bloom,
and TRAFEN soon would detect the worm when multiple hosts show the same
behavior. It will be difficult to infer what service the worm was exploiting, how­
ever, unless the DNS server occasionally responded with bogus IP addresses,
provoking ICMP-T3 generation.

Finally, worms will begin to use some of the same polymorphism techniques
as the most advanced viruses, such as encrypting and permuting basic code
blocks on each propagation, making signature-based detection more difficult.
Thus, inferring the existence of worms through their secondary network traffic
(such as ICMP-T3 messages), rather than using signatures, always will be an
important detection strategy, even fox previously seen worms.

6. RELATED WORK

In 1991, Jeffrey Kephart and Steve White already were working on analytical
models of computer viruses and the epidemics they cause [9]. The SIS model
that they described still makes sense in the active-worm arena, and can be
expanded easily to include I-R and R-S transitions. Other researchers, such as
Moore, Shannon, Voelker and Savage [13] and Zou, Gong and Towsley [21],
start from the same equations of Kermack and McKendrick [6] as we do, and
arrive at related, but distinct, worm-propagation models. These models differ
in how and if they include certain transitions and worm characteristics, but
are able to make similar predictions about how long it will take a worm to
spread through the Internet. In all of these models, the parameters goveming
the transitions are still basic. The formula we use for /?, for example, does not
take into account the dynamics of a saturated network, which was the primary
limiting factor on the Sapphire/Slammer worm. It remains to be seen if there
is a proper way to model the effect of Internet topology.

Systems such as NetBait [5] and Kerf [2] allow system administrators to
pose complex queries against distributed attack data. These systems, however,
cannot detect previously unseen attacks (for which no signatures are available),
and do not support real-time detection. On the other hand, Zou, Gao, Gong, and
Towsley have developed an approach based on Kalman filters for automatically
detecting worms based on their scanning activity. [20]. This work places ingress
and egress scan monitors at key network points, and collects the resulting scan
alerts. A Kalman filter, which has the advantage of being robust to missing
scan data, is applied to the scan alerts (for a particular port) to see if the pattem
of scanning activity matches their SIR-based model of worm propagation. For
an address space with 2^^ addresses (i.e., the Internet), monitoring coverage of
2^^/2^^, and 500,000 vulnerable machines, their system can detect a simulated
Code Red worm, and predict its overall infection rate, as soon as the worm

178 Chapter 6

infects approximately 5% of the vulnerable machines. From the standpoint
of our work, the Kalman filter has several attractive features compared to our
current ruleset, and could be a plug-in replacement for that ruleset within the
TRAFEN framework.

Both signature-based and anomaly-based [8] intrusion-detection systems can
detect worm scans and probes. These systems, however, see only the network
traffic that reaches a particular network boundary, and thus might not recognize
a scan or probe as evidence of a propagating worm. Some systems collect
and analyze data from distributed intrusion-detection sensors, and can provide
more insight into worm activity than stand-alone systems. Scans still might
be overlooked, however, if they hit any individual network only a few times.
By collecting ICMP-T3 messages from a broadly deployed set of instrumented
routers, DIB:S can detect a scan even if that scan never hits an individual
network more than once. On the other hand, distributed intrusion-detection
systems could provide additional data for TRAFEN.

7. CONCLUSION

Most current worms identify vulnerable machines through random probing
of the address space, as the Internet becomes more and more densely populated
with machines, such worms will be able to spread faster and faster. Fortunately,
it is possible to quickly detect such worms by looking for unusual pattems
in different kinds of network traffic. In this chapter, we explored the use of
ICMP-T3 messages for worm detection. When a connection request is made to
an IP address that is not populated by an actual system, routers along the path
may retum ICMP Destination Unreachable messages (ICMP-T3). The system
we developed, DIB:S/TRAFEN, collects ICMP-T3 messages forwarded from
participating routers, and looks for the distinct, bloom-like connection pattem
that worm-infected hosts exhibit while they are randomly scanning for targets.
Using both small-scale and large-scale simulated worms, we demonstrated that
our system is capable of detecting propagating worms early in their lifetime.
In particular, the large-scale simulation indicates that a router coverage of 16
class-B networks is enough to detect worms that spread at Code Red v2 and
Sapphire/Slammer rates before 0.03% of the vulnerable machines are infected.
These results, particularly since they involve a router coverage that would be
achievable in the real Intemet, are extremely promising. When DIB: S/TRAFEN
is fully deployed on the real Intemet, it will be able to detect active worms early
enough to take meaningful defensive action.

Detection is only half of the solution, however, and significant additional
research is needed to develop active-response systems that can slow or stop the
spread of a detected worm. In addition, we can expect worm authors to write
more worms that use altematives to random probing, requiring the inclusion of

Early Detection of Active Internet Worms 179

new data sources into the DIB:S/TRAFEN system, or requiring entirely new
detection approaches (such as "tricking" a worm into attempting to infect a
dummy server or client). Finally, it is important to note that diversity in op­
erating systems and server software, as well as appropriate maintenance and
patching procedures, mitigates the total damage that any individual worm can
do.

ACKNOWLEDGMENTS
Supported under Award Number 2000-DT-CX-KOOl (S-2) from the Office

of Justice Programs, National Institute of Justice, Department of Justice, with
additional support from DARPA under Contract Number F30602-00-2-0585.
Points of view in this document are those of the authors and do not necessarily
represent the official position of the United States Department of Justice.

Notes
1. This number is easily calculated, see the subscript of Figure 6.3, as well as observed from the actual

worm in our test environment.
2. RFC 1812 section 5.2.7.1 states that routers should be able to generate ICMP-T3s, not that they

should generate them.
3. Michael Zalewski wrote some of the first passive-fingerprinting code, which is available at http :

/ /www. steams.org/pOf /.

REFERENCES
[1] Microsoft SQL Sapphire Worm Analysis Technical Report, eEye Digital Security, 2003.

Available at http://www.eeye.com/html/Research/Flash/AL20030125.html.

[2] J. Aslam, S. Bratus, R. Peterson, D. Rus, B. Tofel, The Kerf Toolkit for Intrusion Analysis
Dartmouth College, In review, 2003.

[3] V. H. Berk, W. Chung, V. Crespi, G. Cybenko, R. Gray, D. Hernando, G. Jiang, H. Li, Y.
Sheng, Process Query Systems for Suerveillance and Awareness In Proceedings of the 7th
World Multifconference on Systems, Cybernetics and Informatics (SCI 2003), Orlando, FL,
July 2003.

[4] R. G. Brown, P. Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering,
John Wiley & Sons, 1983.

[5] B. N. Chun, J. Lee, H. Weatherspoon, Brent N. Chun and Jason Lee and Hakim Weather-
spoon, Netbait: A Distributed Worm Detection Service, Available at http://netbait.plain-
lab.org, 2003.

[6] D.J. Daley, J. Gani, Epidemic Modeling Cambridge University Press, 1999.

[7] M. W. Eichin, J. A. Rochlis, With Microscope and Tweezers: An Analysis of the Internet
Virus of November 1988, In Proceedings of the 1989 IEEE Computer Society Symposium
on Security and Privacy, May 1989.

[8] W. Fan, M. Miller, S. Stolfo, W. Lee, P. Chan, Using artificial anomalies to detect known
and unknown network intrusions, In Proceedings of the First International Conference on
Data Mining, November 2001.

180 Chapter 6

[9] J. O. Kephart, S. White, Directed-Graph Epidemiological Models of Computer Viruses, In
Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and
Privacy, May 1991.

[10] M. Liljenstam, Yougu Yuan, B. J. Premore, D. Nicol, A Mixed Abstraction Level Simula­
tion Model of Large-Scale Internet Worm Infestations, In Proceedings of Tenth IEEE/ACM
International Conference on Modeling, Analysis and Simulation of Computer and Commu­
nications Systems (MASCOTS 2002), October 2002.

[11] D. Moore, V. Paxon, S. Savage, C. Shannon, S. Staniford, N. Weaver, The Spread of the
Sapphire/Slammer Worm, Technical Report, CAIDA, 2003.

[12] D. Moore, C. Shannon, J. Brown, Code Red: A case study on the spread and victims of
an Internet worm. In Proceedings of the Second Internet Measurement Workshop (IMW
2002), November 2002.

[13] D. Moore, C. Shannon, G. M. Voelker, S. Savage, Internet Quarantine: Requirements for
Containing Self-Propagating Code, In Internet Quarantine: Requirements for Containing
Self-Propagating Code, April 2003.

[14] J. Postel, RFC 792: Internet Control Message Protocol, volume 792 of Request for Com­
ments, 1981.

[15] L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition, In Proceeding of the IEEE, 11, Num 2:257-286, 1989.

[16] D. B. Reid, An algorithm for tracking multiple targets, IEEE Transactions on Automatic
Control, AC-24:843-854, december 1979.

[17] E. H. Spafford, The Internet Worm: Crisis and Aftermath, Communications of the ACM,
32(6), June 1989.

[18] S. Staniford, V. Paxson, N. Weaver, How to Own the Internet in Your Spare Time, in
Proceedings of the 11th USENIX Security Symposium (Security '02), San Franciso, CA,
August 2002.

[19] M. Williamson, Throttling Viruses: Restricting propagation to defeat malicious mobile
code. Technical Report 172, HP Labs Bristol, 2002.

[20] C. Zou, L. Gao, W. Gong, D. Towsley, Monitoring and Early Warning for Internet Worms,
Technical Report TR-CSE-03-01, University of Massachusetts at Amherst, 2003.

[21] C. Zou, W. Gong, D. Towsley, Code Red Worm Propagation Modeling and Analysis, in
Proceedings of the 9th ACM Conference on Computer and Communication Security (CCS
2002), Washington, DC, November 2002.

Chapter 7

SENSOR FAMILIES FOR INTRUSION
DETECTION INFRASTRUCTURES

Richard A. Kemmerer and Giovanni Vigna
Reliable Software Group, Department of Computer Science, University of California Santa
Barbara

Abstract: Intrusion detection relies on the information provided by a number of sensors
deployed throughout a protected network. Sensors operate on different event
streams, such as network packets and application logs, and provide information
at different abstraction levels, such as low-level warnings and correlated alerts.
In addition, sensors range from lightweight probes and simple log parsers to
complex software artifacts that perform sophisticated analysis. Therefore, de­
ploying, configuring, and managing, a large number of heterogeneous sensors is
a complex, expensive, and error-prone activity.

Unfortunately, existing systems fail to manage the complexity that is inherent
in today's intrusion detection infrastructures. These systems suffer from two
main limitations: they are developed ad hoc for certain types of domains and/or
environments, and they are difficult to configure, extend, and control remotely.

To address the complexity of intrusion detection infrastructures, we devel­
oped a framework, called STAT, that overcomes the limitations of current ap­
proaches. Instead of providing yet another system tailored to some domain-
specific requirements, STAT provides a software framework for the development
of new intrusion detection functionality in a modular fashion.

According to the STAT framework, intrusion detection sensors are built by
dynamically composing domain-specific components with a domain-independent
runtime. The resulting intrusion detection sensors represent a software family.
Each sensor has the ability to reconfigure its behavior dynamically. The recon­
figuration functionality is supported by a component model and by a control
infrastructure, called MetaSTAT. The final product of the STAT framework is a
highly-configurable, well-integrated intrusion detection infrastructure.

Keywords: Security, Intrusion Detection, Intrusion Detection Infrastructures, Intrusion De­
tection Frameworks, Software Engineering, STAT.

182 Chapter 7

1. INTRODUCTION
In recent years, networks have evolved from a mere means of communi­

cation to a ubiquitous computational infrastructure. Networks have become
larger, faster, and highly dynamic. In particular, the Intemet, the world-wide
TCP/IP network, has become a mission-critical infrastructure for govemments,
companies, financial institutions, and millions of everyday users.

The surveillance and security monitoring of the network infrastructure is
mostly performed using Intrusion Detection Systems (IDSs). These systems
analyze information about the activities performed in computer systems and
networks, looking for evidence of malicious behavior. Attacks against a sys­
tem manifest themselves in terms of events. These events can be of a different
nature and level of granularity. For example, they may be represented by net­
work packets, operating system calls, audit records produced by the operating
system auditing facilities, or log messages produced by applications. The goal
of intrusion detection systems is to analyze one or more event streams and
identify manifestations of attacks.

Event streams are used by intrusion detection systems in two different ways,
according to two different paradigms: anomaly detection and misuse detection,
In anomaly detection systems [14, 17, 7, 34], historical data about a system's
activity and specifications of the intended behavior of users and applications
are used to build a profile of the ''normal" operation of the system. Then,
the intrusion detection system tries to identify patterns of activity that devi­
ate from the defined profile. Misuse detection systems take a complementary
approach [21, 23, 28, 20, 13]. Misuse detection systems are equipped with a
number of attack descriptions (or "signatures") that are matched against the
stream of audit data looking for evidence that the modeled attack is occurring.
Misuse and anomaly detection both have advantages and disadvantages. Mis­
use detection systems can perform focused analysis of the audit data and they
usually produce only a few false positives, but they can detect only those at­
tacks that have been modeled. Anomaly detection systems have the advantage
of being able to detect previously unknown attacks. This advantage is paid for
in terms of the large number of false positives and the difficulty of training a
system with respect to a very dynamic environment.

The intrusion detection community has developed a number of different
tools that perform intrusion detection in particular domains (e.g., hosts or net­
works), in specific environments (e.g., Windows NT or Solaris), and at differ­
ent levels of abstraction (e.g., kernel-level tools and alert correlation systems).
These tools suffer from two main limitations: they are developed ad hoc for
certain types of domains and/or environments, and they are difficult to config­
ure, extend, and control remotely.

Sensor Families for Intrusion Detection Infrastructures 183

In the specific case of signature-based intrusion detection systems, the sen­
sors are equipped with a number of attack models that are matched against a
stream of incoming events. The attack models are described using an ad hoc,
domain-specific language (e.g., NFR's N-code [27]). Therefore, performing
intrusion detection in a new environment requires the development of both a
new system and a new attack modeling language. As intrusion detection is
applied to new and previously unforeseen domains, this approach results in
increased development effort.

Today's networks are not only heterogeneous; they are also dynamic. There­
fore, intmsion detection systems need to support mechanisms to dynamically
change their configuration as the security state of the protected system evolves.
The configuration and management of a large number of sensors raises multi­
ple issues.

One issue is the static configuration of the data sources used for analysis.
The ad hoc nature of existing IDSs does not allow one to dynamically configure
a running sensor so that new event streams can be used as input for the security
analysis. This is a limitation because new attacks may have manifestations in
event streams that are not currently analyzed by a specific IDS. Being bound
statically to a single source of events may result in limited effectiveness.

A second issue is the static configuration of the attack models used for anal­
ysis. Most existing intrusion detection systems (e.g., [28]) are initialized with
a set of signatures at startup time. Updating the signature set requires stopping
the IDS, adding new signatures, and then restarting execution. Some of these
systems provide a way to enable/disable some of the available signatures, but
few systems allow for the dynamic inclusion of new signatures at execution
time.

A third issue is the relatively static configuration of responses in existing
intrusion detection systems. In most cases it is possible to choose only from a
specific subset of possible responses. In addition, to our knowledge, none of
the systems allows one to associate a response with intermediate steps of an
attack. This is a severe limitation, especially in the case of distributed attacks
carried out over a long time span.

Finally, managing a large number of sensors requires an effective control
infrastructure. Most systems provide some sort of management console that
allows the Security Administrator to remotely tune the configuration of spe­
cific sensors. This reconfiguration procedure is mostly performed manually
and at a very low level. This task is particularly error-prone, especially if the
intrusion detection sensors are deployed across a very heterogeneous environ­
ment and with very different configurations. The challenge is to determine if
the current configuration of one or more sensors is valid or if a reconfiguration
is meaningful.

184 Chapter?

This chapter describes a framework for the development of intrusion de­
tection systems, called STAT, and a sensor control infrastructure, called Meta-
STAT, which have been developed to address the issues above and to overcome
the limitations of existing approaches.

The STAT framework includes a domain-independent attack modeling lan­
guage and a domain-independent event analysis engine. The framework can
be extended in a well-defined way to match new domains, new event sources,
and new responses. The framework has been used by the authors to develop
a number of different intrusion detection systems, from a network-based in­
trusion detection system, to host-based and application-based systems, to alert
correlators.

The resulting set of intrusion detection systems can be seen, in Software En­
gineering terms, as a software family. Members of the family share a number
of features, including dynamic reconfigurability and a fine-grained control over
a wide range of characteristics [33]. The STAT framework is the only known
framework-based approach to the development of intrusion detection systems.
Our experience with the framework shows that by following this approach it
is possible to develop intrusion detection systems with reduced development
effort, with respect to an ad hoc approach. In addition, the approach is advanta­
geous in terms of the increased reuse that results from using an object-oriented
framework and a component-based approach.

The configuration of sensors in the STAT family can be controlled at a very
fine grain using the MetaSTAT infrastructure. MetaSTAT provides the basic
mechanisms to reconfigure, at run-time, which input event streams are ana­
lyzed by each sensor, which scenarios have to be used for the analysis, and
what types of responses must be carried out for each stage of the detection
process. In addition, MetaSTAT supports the explicit modeling of the depen­
dencies among the modules composing a sensor so that it is possible to auto­
matically identify the steps that are necessary to perform a reconfiguration of
the deployed sensing infrastructure.

The result of applying the STAT/MetaSTAT approach is a "web of sensors",
composed of distributed components integrated by means of a communica­
tion and control infrastructure. The task of the web of sensors is to provide
fine-grained surveillance inside the protected network. The web of sensors im­
plements local surveillance against both outside attacks and local misuse by
insiders in a way that is complementary to the mainstream approach where a
single point of access (e.g., a gateway) is monitored for possible malicious ac­
tivity. Multiple webs of sensors can be organized either hierarchically or in a
peer-to-peer fashion to achieve scalability and to be able to exert control over
a large-scale infrastructure from a single control location.

This chapter is structured as follows. Section 2 introduces the STAT frame­
work. Section 3 presents a family of intrusion detection systems developed

Sensor Families for Intrusion Detection Infrastructures 185

using the framework. Section 4 describes the MetaSTAT control infrastruc­
ture, shared by all the IDSs in the family. Section 5 presents relevant related
work. Finally, Section 6 draws some conclusions.

2. THE STAT FRAMEWORK
The State Transition Analysis Technique [10] is a methodology to describe

computer penetrations as attack scenarios. Each attack scenario is represented
as a sequence of transitions that characterize the evolution of the security state
of a system. In an attack scenario states represent snapshots of a system's
security-relevant properties and resources. A description of an attack has an
"initial" starting state and at least one "compromised" ending state. States are
characterized by means of assertions, which are predicates on some aspects of
the security state of the system. For example, in an attack scenario describing
an attempt to violate the security of an operating system, assertions would state
properties such as file ownership, user identification, or user authorization.
Transitions between states are annotated with signature actions that represent
the key actions that if omitted from the execution of an attack scenario would
prevent the attack from completing successfully. For example, in an attack
scenario describing a network port scanning attempt, a typical signature action
would include the TCP segments used to test the TCP ports of a host.

The characterization of attack scenarios in terms of states and transitions
allows for an intuitive graphic representation by means of state transition dia­
grams. Figure 7.1 shows a state transition diagram for a pedagogical example
of a STATL attack scenario specification. The attack scenario detects a Tro­
jan horse attack, where an apparently benign program (e.g., an MPS player)
is first downloaded by a user (first transition), and then installed and executed
(second transition). The Trojan horse program contains "hidden" functionality
(the warriors hidden in the Trojan horse) that allows the creator of the program
to take control of the user's account. When executed, the Trojan horse opens a
network connection back to an attacker controlled host that is outside the local
network, and it waits for commands to be executed (third transition). When
the scenario reaches the final state (represented as a double circle) the attack
is considered completed. Note that even though this scenario is fairly repre­
sentative of this type of attack, it is not to be considered a complete, detailed
specification.

In the early 1990s, the State Transition Analysis Technique was applied to
host-based intrusion detection, and a system, called USTAT [8, 9, 25], was de­
veloped. USTAT used state transition representations as the basis for rules to
interpret changes in a computer system's state and to detect intrusions in real­
time. The changes in the computer system's state were monitored by lever­
aging the auditing facilities provided by security-enhanced operating systems,

186 Chapter?

global Network myNetwork; -*— Scenario global variable

^ Scenario local variables
IPAddress source
IPAddress target r / ^ Transition action Transition assertion

VTD trojanPID; ^ \ /

[NetUpload u] I u.source.lsOutsldeO [HostBxec e] i e.host » target fcfe [QpenConnection o] : o.source ••> target &fc
e . f i l e " f i l e o.processiD » troja&PID

, , _ _ ^ Transition
target • u . target ;^ H hi Ir {trojanPID » e.processiD;} (victim • o . target;}

f i l e - u . f i l e ,) Final state
Initial state ^ —--.^^^^ ^ •—,,^^^^ ^ •—-——....^^^ y

/ > (^ Nonconsuming transition ^ s / " ' ^ ^ < ^ ^ ^ / ^ ^^" " ' ^ ^ . ' ^ ^ \
I \ I \ ^^^^ assertion f \ Consuming transition r \
V A Unwinding transition \ J / \ J \ J

"~~-- : - - - - ' ' ' r i l e . e x i s t s (f i l e) (log("Possible trojan Hŝ Hs attacking %a',

[Delete d] i d . f i l e - - f i l e State code block ''•'''*'f i le .name() , target . name () , victim.nameO ;>

Figure 7.1. A sample state transition diagram of an attack scenario. The attack is a very sim­
plified version of a Trojan horse installation attack. The first transition is fired when the upload
of a file from a host outside the local network is detected. The second transition fires when
the same file is executed. The final transition fires when the program being executed opens a
network connection to another host.

such as Sun Microsystems' Solaris equipped with the Basic Security Mod­
ule (BSM) [30]. The first implementation of USTAT clearly demonstrated the
value of the STAT approach, but USTAT was developed in an ad hoc way and
several characteristics of the first USTAT prototype were difficult to modify or
to extend to match new environments (e.g., Windows NT/2000).

During the 90s, the focus of intrusion detection shifted from the host and
its operating system to the network and the protocols used to exchange data.
Therefore, the natural evolution of state transition analysis was its direct appli­
cation to networks. The NetSTAT intrusion detection system was the result of
this evolution [32]. NetSTAT was aimed at real-time state-transition analysis
of network data. The NetSTAT system proved that the STAT approach could
be extended to new domains. However, NetSTAT was also developed ad hoc,
by building a completely new IDS that would fit the new domain.

In 1998, both NetSTAT and USTAT were used to participate in a DARPA-
sponsored intrusion detection evaluation effort. The evaluation exercises in­
cluded off-line analysis of audit logs and traffic dumps provided by the MIT
Lincoln Laboratory [19] and the installation of the systems in a large testbed at
the Air Force Research Laboratory (AFRL) [3, 4]. Intrusion detection systems
from a number of universities, research centers, and companies were tested
with respect to different classes of attacks, including port scans, remote com­
promise, local privilege escalation, and denial-of-service attacks. A detailed
description of the attacks used in the MIT Lincoln Laboratory evaluation can
be found in [16]. In both efforts the STAT-based systems performed very well
and their combined results scored at the highest level in the evaluations.

Participating in this event gave strong positive feedback on the research that
had been performed so far, and it also gave new insights into the STAT ap­
proach. In particular, running NetSTAT and USTAT at the same time revealed

Sensor Families for Intrusion Detection Infrastructures 187

a number of similarities in the way attack scenarios were represented and in
the runtime architecture of the systems. A closer analysis of the mechanisms
used by the STAT-based systems to match attack scenarios against a stream of
events suggested that the STAT-based IDSs could be redesigned as a family of
systems that leverages an object-oriented framework.

The approach taken was to factor-out the mechanisms and techniques used
by the intrusion detection analysis and to design an extension process that
would support the development of intrusion detection systems for many dif­
ferent target environments. The result of this redesign was the STAT Frame­
work. The STAT Framework consists of a domain-independent language, cal­
led STATL, and a runtime for the language, called the STAT Core. These el­
ements can be extended following a well-defined process to match a specific
target domain. Section 2.1 presents STATL, Section 2.2 describes the STAT
Core, and Section 2.3 describes the framework extension process.

2.1 STATL
A STATL specification is the description of a complete attack scenario. The

attack is modeled as a sequence of steps that bring a system from an initial
safe state to a final compromised state. This modeling approach is supported
by a state/transition-based language. One of the advantages of this approach
is that state/transition specifications can be represented graphically by means
of state transition diagrams (STDs). Therefore, even though STATL is pri­
marily a text-based language, the STATL development environment includes
a graphic editor that allows one to directly visualize the STD representing an
attack scenario.

2.1.1 STATL Overview. The STATL language provides constructs to
represent an attack as a composition of states and transitions. States are used to
characterize different snapshots of a system during the evolution of an attack.
Obviously, it is not feasible to represent the complete state of a system (e.g.,
volatile memory, file system); therefore, a STATL scenario uses variables to
record just those parts of the system state needed to define an attack signature
(e.g., the value of a counter or the ownership of a file). A transition has an
associated action that is a specification of the event that can cause the scenario
to move to a new state. For example, an action can be the opening of a TCP
connection or the execution of an application. The space of possible relevant
actions is constrained by a transition assertion, which is a filter condition on
events that could possibly match the action. For example, an assertion can
require that a TCP connection is opened with a specific destination port or that
an application being executed should be part of a predefined set of security-
critical applications.

188 Chapter?

It is possible for several occurrences of the same attack to be active at the
same time. A STATL attack scenario, therefore, has an operational semantics
in terms of a set of instances of the same scenario prototype. The scenario
prototype represents the scenario's definition and global environment, and the
scenario instances represent attacks currently in progress.

The evolution of the set of instances of a scenario is determined by the type
of transitions in the scenario definition. A transition can be consuming, non-
consuming, or unwinding. A nonconsuming transition is used to represent a
step of an occurring attack that does not prevent further occurrences of attacks
from spawning from the transition's source state. Therefore, when a noncon­
suming transition fires, the source state remains valid, and the destination state
becomes valid too. An example of a nonconsuming transition is given in Fig­
ure 7.1. The transition between states s i and s2 represents the execution of a
file. This step does not invalidate the previous state, that is, another execution
of the program may occur. Semantically, the firing of a nonconsuming tran­
sition causes the creation of a new scenario instance. The original instance is
still in the original state, while the new instance is in the destination state of
the fired transition. In contrast, the firing of a consuming transition makes the
source state of a particular attack occurrence invalid. Semantically, the firing
of a consuming transition does not generate a new scenario instance; it simply
changes the state of the original one. The transition between states s2 and s3
in Figure 7.1 is an example of a consuming transition. The transition is fired
when the executed Trojan program opens a connection. This invalidates state
s2. It is no longer necessary to check if the program is opening a network con­
nection since the program has already been identified as a Trojan. Unwinding
transitions represent a form of ''rollback" and they are used to describe events
and conditions that invalidate the progress of one or more scenario instances
and require the return to an earlier state. The transition between states s i and
sO in the example in Figure 7.1 is an unwinding transition. The deletion of the
uploaded file invalidates the condition needed for the attack to complete, and,
therefore, the scenario instance is brought back to the previous state before the
file was created.

2.1.2 STATL Syntax. This section presents STATL's syntax. It also
includes fragmentary examples for each of the syntax rules. In the syntax
rules, literal keywords are in boldface and other literal text is enclosed in single
quotes. Optional items are enclosed in square brackets '[', '] ' , items that may
appear zero or more times are enclosed in curly braces '{ ' , ' } ' . Altematives
are separated by '| ' and grouped with parentheses where necessary to indicate
associativity. Examples may include ellipses (...) to indicate that details have
been left out; the ellipses are not part of STATL.

Sensor Families for Intrusion Detection Infrastructures 189

Lexical Elements. STATL identifiers consist of letters, digits, and the
underscore character '_', and start with a letter. For example host_name and
IPadd r2 are identifiers. STATL identifiers are case-sensitive, so I P a d d r e s s
is different from IPAddress . STATL compound identifiers use standard
object-oriented dot notation, as in ''object.attribute". STATL keywords are re­
served words and may not be used as identifiers. For example, since s c e n a r i o
is a keyword, it may not be used as a variable name.

STATL includes two kinds of comments: any text between "/*" and ''*/"
(except "*/"), including the delimiters, is a comment. Any text following "II"
to the end of the line, including the '7/ " marker, is a comment. Whitespace may
appear anywhere in a STATL specification except within tokens (keywords,
identifiers, and multiple-character operators).

Data Types. STATL includes several built-in types: i n t and u - i n t in
various sizes, b o o l , s t r i n g , t i m e v a l (for timestamps), and t i m e r . It
also includes arrays, plus containers v e c t o r , s e t , l i s t , and map. It is
not possible to define new data types within a STATL scenario. Application-
specific types must be defined within the application-specific extension library
(see Section 2.3). For example, network-based scenarios may use different
types than host-based scenarios, but both use i n t and t i m e v a l .

Scenario. A scenario uses zero or more libraries of application-specific
types, events, functions, and predicates. A scenario has a name, may have
parameters, may contain constant and variable declarations, and most impor­
tantly, contains the states and transitions that define the ''attack signature" -
what to match and what to do with matches. A scenario may also define sup­
porting functions to be used in state and transition assertions and code blocks:

Scenario ::=
{ use LibrarylD {',' LibrarylD] ';' }
scenario ScenarioID
[ScenarioParameters]

[FrontMatter]
{State I Transition \ NamedAction}

{ FunctionDefinition }

A scenario must have at least one transition and two states - the initial state
and a final state. The initial state must have no incoming transitions, and final
states have no outgoing transitions. Scenario parameters are specified as a list
of comma-separated typed identifiers:

ScenarioParameters ::=

190 Chapter?

'(' Parameter {',' Parameter} ') '
Parameter ::= Type Parameterld

Example:

scenario example (string host, int count)
{ ... }

The example scenario has two parameters, h o s t and coun t . Parameters are
accessible by the scenario instances as global constants.

Front Matter, Scenarios may declare constants and variables:

Front Matter ::=
{{ConstDecl | VarDecl)}

ConstDecl ::=
const Type Constid { ' [' [size] '] ' } '=' InitialValue ';'

VarDecl ::=
[global] Type Varld { ' [' [size] '] ' } ['=' InitialValue] ';'

A variable declared "global" is shared by all instances of the scenario. A vari­
able not declared "global" is instantiated privately in each instance of the sce­
nario. Variables may be assigned initial values.

Example:

use tcpip;
scenario example
{
const int bufsize = 1024;
global int count = 0;
Host server;

} ' "

This example declares a constant integer b u f s i z e with value 1024 and de­
clares a global variable coun t with initial value 0. This variable will be shared
by all instances of the scenario. That is, if a scenario instance increments the
c o u n t variable, the update is seen by all other instances of the scenario. The
variable declaration in the example also includes a variable named s e r v e r
of type Host (a type defined in the network-based language extension called
t c p i p) . Because s e r v e r is a local variable (i.e., its declaration does not
contain the keyword global), each instance of the scenario will have its own
copy of s e r v e r .

Sensor Families for Intrusion Detection Infrastructures 191

State. "State" is one of the two fundamental concepts in STATL. States
have names so they can be referred to in transitions and in the graphical rep­
resentation of the scenario (i.e., in the STD). Each state may have an assertion
and a code block, but these elements are optional:

State ::=
[initial]
state Stateld

•{•
[StateAssertion]
[CodeBlock]

'}•

Exactly one state must be designated as the initial state. When a scenario
plugin is loaded into an IDS a first instance is created in the initial state.

The state assertion, if present, is tested before entry to the state, after testing
the assertion of the transition that leads to the state. A state's assertion is
implicitly True if none is specified. A state's code block is executed after the
incoming transition's assertion and the state's assertion have been evaluated
and found to be True and after the incoming transition's code block (if it exists)
is executed.

Example:

scenario example
{
const int threshold = 64;
int counter;

initial
state si { }

state s3
{
counter > threshold
{ log("counter over threshold limit"); }

}

} " "

In this example state s i is designated as the initial state. It has neither an
assertion nor a code block. State s3 has an assertion and a code block. The
assertion specifies that the value of local variable c o u n t e r is greater than the
value of constant t h r e s h o l d . The code block calls the built-in procedure
l o g to write a message to the IDS's log file.

Transition. 'Transition" is the second of the two fundamental concepts in
STATL. Each transition has a name and must indicate the pair of states that it

192 Chapter?

connects. Transitions may have the same source and destination state; that is,
loops are allowed. In addition, a transition must specify a type, must specify
an event type to match, and may have a code block:

Transition ::=
transition TransitionID '(' Stateld ' -> ' Stateld ') '
(consuming | nonconsuming | unwinding)

('[' EventSpec '] ' | Actionid)
[':' Assertion]
[CodeBlock]

•y

A transition's event is specified either directly (see section on EventSpecs) or
by reference to a named signature action (see section on NamedSigAction).
In the former case the transition's assertion is just the assertion in the transi­
tion. In the latter case, if the named signature action includes an assertion and
the transition also includes an assertion, then the resulting assertion is the con­
junction of the two assertions. An example is given later, after named signature
actions are defined.

A transition's code block is executed after evaluating the transition's asser­
tion and the destination state's assertion, and before executing the destination
state's code block. More precisely, the order of evaluation of assertions and
the execution of code blocks, after matching an event type (defined later), is as
follows:

1 evaluate the transition assertion. If True, then

2 evaluate the state assertion. If True, then

3 execute the transition code block, possibly modifying local and global
environments, and then

4 execute the state code block, possibly modifying local and global envi­
ronments^.

Transitions are deterministic, which means that every enabled transition fires
if its assertion and the destination state's assertion are satisfied. A transition's
code block may perform any computation supported by STATL and the IDS
extension in use, but is typically used to copy event field values into the global
or local environment for later reference.

Example:

use bsm, unix;

Sensor Families for Intrusion Detection Infrastructures 193

scenario example
{
int userid;

transition t2 (si -> s2)
nonconsuming

{
[READ r] : r.euid != r.ruid
{ userid = r.euid; }

}

} '"

In this example, t 2 is a nonconsuming transition that leads from state s i to
state s2. The event spec indicates that the transition should match events of
type READ, with a filter condition specifying that the e u i d and r u i d fields
of the event must differ for the transition to fire. The transition's code block
copies the e u i d field of event r into the local variable u s e r i d for later ref­
erence. Note that this scenario uses both bsm and u n i x extensions, which
define BSM events and UNIX-related abstractions, respectively.

EventSpec, ''Event specs" are the essential elements of transitions. They
specify what events (signature actions) to match and under what conditions.

EventSpec ::= (BasicEventSpec [SubEventSpec]) | Timer Event

BasicEventSpec ::= EventType Eventid

SubEventSpec ::= '[' EventSpec { ',' EventSpec } '] '
EventType ::= ANY |

ApplEventType '(' ApplEventType {'|' ApplEventType } ') '

An event spec is either a basic event spec optionally followed by a subevent
spec, or it is a timer event. A basic event spec identifies the built-in meta-event
"type" ANY, which matches any event, or an application-specific event type
(e.g., READ) or a disjunction of application-specific event types (e.g., (UDP |
TCP)), and a name that will be used to reference the matching event. A basic
event spec identifying a single type matches an event of the same type only. A
basic event spec that is the disjunction of two or more event types matches an
event of any of the types in the disjunction. A subevent spec identifies a set
of event specs. Subevent specs enable complex, tree-structured event patterns.
A subevent spec matches a set of subevents if each event spec in the subevent
spec matches one of the events in the set.

Example:

[(READ I WRITE) access] :

194 Chapter?

access.euid != access.ruid

Example:

[IP d l [TCP t l]] :
(d l . s r c == 1 9 2 . 1 6 8 . 0 . 1) && (t l . d s t == 23)

The first example is a USTAT event spec that matches read or write events in
which the effective and real user-ids differ. The second example is a NetSTAT
event spec (with a subevent spec) that matches any IP datagram containing a
TCP segment, with source IP address 1 9 2 . 1 6 8 . 0 . 1 and destination port 23.

The built-in meta-event type ANY is effectively the same as disjunction over
all application-specific event types, but is easier to specify (and more efficient
to implement as a special case).

NamedSigAction. A named signature action has a name and specifies an
event spec:

NamedSigAction ::=
action Actionid

'{•
('[' EventSpec '] ' | Actionid)
[':' Assertion]

'}'

Named signature actions may be used to improve clarity and maintainability
when multiple transitions have identical or similar actions; for example, having
the same action type but slightly different assertions. In such cases the common
part can be factored out, put into a named signature action, and then used in
the similar transitions.

Example:

use bsm, unix;
scenario example
{

action al
{

[WRITE r] : r.euid != 0
}

transition tl (si -> s2)
{
al: r.euid != r.ruid

}

transition t2 (si -> s3)
{
al: r.euid == r.ruid

Sensor Families for Intrusion Detection Infrastructures 195

}

} ' "

In this example transitions t l and t 2 both use named signature action a l as
their event spec, but with different assertions. This is equivalent to:

use bsm, unix;
scenario example
{

transition tl (si -> s2)
{

[WRITE r] : (r.euid != 0) && (r.euid != r.ruid)
}

transition t2 (si -> s3)
{

[WRITE r] : (r.euid != 0) && (r.euid == r.ruid)
}

} '"

CodeBlock. Transitions and states may have code blocks that are executed
after the corresponding transition and state assertions have been evaluated and
found to be True. A code block is a sequence of statements enclosed in braces:

CodeBlock ::=

{statement}

The statements in a codeblock can be assignments, for and while loops, if-
then-else, procedure calls, etc. Semantically, the statements in a STATL code
block are executed in order, in the context of the global and local environments
of the scenario instance in which the code block is executed.

Timers. Timers are useful to express attacks in which some event or set
of events must (or must not) happen within an interval following some other
event or set of events. Timers can also be used to prevent "zombie" scenarios
- scenarios that have no possible evolution - from wasting memory resources.

Timers are declared as variables using the built-in type t i m e r . There are
both local and global timers. All timers must be explicitly declared. Timers
are started in code blocks using the built-in procedure t i m e r ^ s t a r t . Timer
expiration is treated as an event, and these events may be matched by using
"timer events" as transition event specs.

Example:

scenario example

196 Chapter?

{

timer tl;

state si
{

{ timer_start(tl, 30); }
}

transition expire (sl->s2)
{ [timer tl] }

} ""

The code block of state s i starts timer t l , which will expire in 30 seconds
(i.e., at a time 30 seconds later than the timestamp on the event that led to state
s i) . The timer event t i m e r t l matches the expiration of the timer named
t l . When timer t l expires, transition e x p i r e will fire, leading to state s2.

Starting a timer that is already ''running" resets that timer. A single timer
may appear in multiple transitions; every enabled transition that has t i m e r t
as its event spec fires when the timer expires.

Assertions. Assertions appear as filter conditions in states and in event
specs (which are the matching element of transitions). STATL assertions are
built up from literal constants, variable and constant names, function calls, and
common arithmetic and relational operators. A STATL assertion is evaluated
at runtime in the context of the global and local environments of the scenario
instance where it is evaluated.

Assertions may use, but may not change, the value of any name in the global
or local environment. In addition, transition assertions may refer to the events
named in the event spec and to the fields of those events.

2.2 STAT Core

The STAT Core module is the runtime for the STATL language. The Core
implements the concepts of state, transition, timer, etc. In addition, the Core
performs the event processing task, which is the basic mechanism used to de­
tect intrusions by matching event streams against attack scenarios.

The STAT Core module has an event-based multi-threaded architecture (see
Figure 7.2). Events are sent to or received from the Core through four separate
event queues.

• The control queue is used to send control events to the Core. These
events modify the Core's behavior or its configuration (e.g., by request­
ing the activation of a new attack scenario).

• The info queue is used by the Core to publish control-related informa­
tion, such as the result of a reconfiguration request. The events in this

Sensor Families for Intrusion Detection Infrastructures 197

Event Providers

Figure 7.2. The STAT Core Architecture.

queue are used by external components (e.g., a MetaSTAT Proxy, see
Section 4) to monitor the status of a Core component.

• The input queue is the source of the event stream for the intrusion de­
tection analysis. Multiple extemal Event Providers (see Section 2.3) can
contribute events to this queue.

• The output queue is used by the Core to publish events related to the
intrusion detection process, such as detection alerts. This event queue
can be connected to the input event queue of another Core component to
realize a multi-core pipelined architecture.

The most important task of the Core is to keep track of active attack in­
stances, which are called, in STATL terms, scenario instances. The Core main­
tains a data structure for each scenario instance. The data structure contains the
current state of the scenario, its local environment, and the list of transitions
that are are enabled, that is, the transitions that may possibly fire. These transi­
tions have an associated action and a corresponding assertion, which, together,
represent the subscription for an event of interest. The set of all current event
subscriptions for all the active scenario instances is maintained by the Core in
an intemal database.

The Event Engine component of the Core is responsible for extracting events
from the input queue and matching each event against the active event subscrip-

198 Chapter?

tions. For each matching event subscription the tuple {scenariotransition ̂
event) is inserted in the set of transitions to be fired. There are three sepa­
rate sets depending on the type of transition: nonconsuming, consuming, and
unwinding.

Once all the enabled transitions have been collected, the transitions are fired
one by one. First, nonconsuming transition are fired. When a nonconsuming
transition of a scenario instance is fired, a new scenario instance is created.
The original instance becomes the parent of the new instance which, in tum,
becomes one of the original instance's children. The child instance has a copy
of the parent's local environment and a copy of the parent's timers. The state
of the child instance is set to the destination state of the transition that fired.
Then, the destination state code fragment is executed in the context of the child
instance. If the destination state is a final state the child instance is removed.
Otherwise, for each outgoing transition of the destination state a subscription
for the associated event is inserted in the event subscription database.

After all the nonconsuming transitions have been fired, consuming transi­
tions are fired. In the most common case, the instance state is changed to the
destination state, previous subscriptions are canceled, and new subscriptions
for the events associated with the transitions outgoing from the new state are
inserted in the event spec database. Then, the destination state code is executed.
If there are multiple enabled consuming transitions to be fired associated with
the same scenario instance, then for each transition firing, except for the last
one, a clone of the scenario instance is created. A cloned instance differs from
a child instance in that a clone instance has the same parent as the original
instance. After the creation of the clone, the execution process follows the
steps of the previous case. Another special case is represented by a scenario
instance that is in a state that can be the destination of an unwinding transition,
that is an unwindable state. In this case, if the instance has any descendants,
it is possible that at some time in the future one of the descendants may want
to unwind to the ancestor instance as it is in its current state. If the instance's
state changes because of the firing of a consuming transition, the system would
reach an inconsistent state. To avoid this, a clone instance is created and the
original instance is put in an inactive status. In the inactive status, the current
subscriptions of the instance are removed and they are not replaced with new
subscriptions. The instance will be restored to an active status if one of the
children actually unwinds to the instance in the specified state.

After both consuming and nonconsuming transitions have been fired, the
Core proceeds to fire the unwinding transitions. The firing of an unwinding
transition with respect to a scenario instance has the effect of undoing the steps
that brought the scenario instance to its current state. This means that other sce­
nario instances may be affected by the unwinding procedure. More precisely,
if we consider an unwinding transition from state Sx to state Sy we have to

Sensor Families for Intrusion Detection Infrastructures 199

STATL

Language

o Domain-Specific

Language Extension

Domain-specific
Attack Modeling

Language

Domain-specific

Event Provider

compilation

compilation

compilation

Language Extension

Module

Event Provider

Module

<• > ,

f \ 1/̂ V
Scenario

J Plugins

r

STAT
Core

' '

• \

' r ^
Intrusion

Detection

System

, I

Attack Scenarios

Figure 7.3. The STAT Framework extension process. The grayed boxes are the modules that
need to be developed to extend the framework. The other components are generated automati­
cally through either translation or compilation.

remove all the instances that were created by the series of events that brought
the unwinding instance from state Sy to state Sx- In the Core, this is achieved
by traversing back the parent/child chain until an instance in state Sy is found.
Then the instance subtree rooted in the last visited instance is removed.

After all the transitions have been fired, the Configuration Manager compo­
nent takes control of the Core. If a new control message is found in the control
queue, the necessary reconfiguration of the Core is performed, and then the
event processing is resumed in the new configuration.

2.3 STAT Extensions

The STATL language and the Core runtime are domain-independent. They
do not support any domain-specific features that may be necessary to perform
intrusion detection analysis in particular domains or environments. For exam­
ple, network events such as an IP packet or the opening of a TCP connection
cannot be represented in STATL natively. Therefore, the STAT Framework
provides a number of mechanisms to extend the STATL language and the run­
time to match the characteristics of a specific target domain.

The framework extension process is performed by developing subclasses
of existing STAT Framework C+-I- classes. The framework root classes are
STAT_Event, STAT.Type, STAT_Provider, STAT_Scenario,and ST-
AT_Response. In the following paragraphs, the extension process is pre-

200 Chapter 7

sented in detail. A graphic description of the extension process is given in
Figure 7.3.

The first step in the extension process is to create the events and types that
characterize a target domain. A STAT event is the representation of an element
of an event stream to be analyzed. For example, an IP event may be used
to represent an IP datagram that has been sent on a link. The event stream is
composed of IP datagrams and other event types, such as Ethemet frames and
TCP segments. All event types must be subclasses of the STAT-.Event class.
Basic event types can be composed into complex tree structures. For example,
it is possible to use a tree of events to express encapsulation, such as Ethemet
frames that encapsulate IP datagrams, which, in tum, contain TCP segments.

All of the types used to describe the components of an event and other auxil­
iary data structures must be subclasses of the STAT_Type class. For example,
the IPAddres s class is a type used in the definition of the IP event, and,
therefore, it is a subclass of STAT^Type.

A set of events and types that characterize the entities of a particular domain
is called a Language Extension. The name comes from the fact that the events
and types defined in a Language Extension can be used when writing a STATL
scenario once they are imported using the u s e STATL keyword. For example,
if the IP event and the IPAddress type are contained in a Language Exten­
sion called t c p i p , then by using the expression u s e t c p i p it is possible to
use IP events and IPAddres s objects in attack scenario descriptions.

The events and types defined in a Language Extension must be made avail­
able to the runtime. Therefore, Language Extensions are compiled into dy­
namically linked libraries (i.e., a ' ' . so" file in a UNIX system or a DLL file
in a Windows system). The Language Extension libraries are then loaded into
the runtime whenever they are needed by a scenario.

Attack scenarios are written in STATL, extended with the relevant Language
Extensions. For example, a signature for a port scanning attack can be ex­
pressed in STATL extended with the t c p i p Language Extension. STATL
attack scenarios are then automatically translated into a subclass of the ST-
AT_Scenario class. Finally, the attack scenarios are compiled into dynami­
cally linked libraries, called Scenario Plugins, When loaded into the runtime,
Scenario Plugins analyze the incoming event stream looking for events or se­
quences of events that match the attack description.

Once Language Extensions and Scenario Plugins are loaded into the Core it
is necessary to start collecting events from the environment and passing them
to the STAT Core for processing. The input event stream is provided by one
or more Event Providers, An Event Provider collects events from the external
environment (e.g., by obtaining packets from the network driver), creates STAT
events as defined in one or more Language Extensions, and inserts these events
into the event queue of the STAT Core.

Sensor Families for Intrusion Detection Infrastructures 201

Event Providers are created by subclassing the STAT_Provider frame­
work class. This class defines a minimal set of methods for initialization/fi-
nalization of a provider and the retrieval of events from the environment. An
Event Provider component is compiled into a dynamically linked library. An
Event Provider library module can be loaded into the STAT Core at runtime.
Once a Provider has been loaded, it has to be activated with specific param­
eters. The activated Event Provider will then start collecting events from the
extemal environment. A single Event Provider can be activated in many in­
stances and many different Event Providers can be loaded and activated at
one time. Each activation of an Event Provider is associated with a dedicated
thread. The thread uses the functions defined in the Event Provider module to
retrieve events from the environment and insert them into the Core event queue
for processing.

A runtime equipped with Language Extensions, Scenario Plugins, and Event
Providers represents a functional intrusion detection system. In addition, the
STAT Framework also provides classes that define Response Modules. A Re­
sponse Module is created by subclassing the STAT_Response class. A Re­
sponse Module contains a library of actions that may be associated with the
evolution of a scenario. For example, a network-based response action could
reset a TCP connection, or it could send an email to the Network Security Offi­
cer. Response Modules are compiled into dynamically linked libraries that can
be loaded into the runtime at any moment. Functions defined in a Response
Module can be associated with any of the states defined in a Scenario Plugin
that has been loaded in the runtime. This mechanism provides the ability to
associate different types of response functions with the intermediate steps of
an intrusion.

Figure 7.4 presents the high-level class structure of the STAT Framework.
The classes in the top part of the hierarchy are the STAT Framework classes.
The lower part of the hierarchy is represented by the classes used to create
a simple network-based intrusion detection system. The Language Exten­
sion Module is created by extending STAT^Event with subclasses IP, UDP,
and TCP, which represent instances of the corresponding protocol units. The
STAT_Type class is subclassed by IPAddres s and P o r t , which are used to
represent IP addresses and TCP/UDP ports, respectively. N e t S n i f f e r is an
Event Provider (a subclass of STAT^Provider) that reads the packets sent
on a network link and creates instances of the IP, UDP, and TCP events. The
three subclasses UDPFlood, RemoteBuf f e r O v e r f low, and P o r t s c a n
extend the framework with descriptions of three network-based attacks. Fi­
nally, the subclass NetworkResponse contains network-specific response
functions such as firewall reconfiguration directives and TCP connection shut­
down.

202 Chapter 7

. STAT_Objcct ,

STAT_Extcn»ion STAT Provider STAT_Sccntrio STATJRe»pon»e

STAT^Event STAT.Type

^ 1 - ^ r ^ — v ^ t -
IP UDP TCP Port IPAddres**

•J Zl..\.
C'̂ .TTJ^ - ^T"-Wt^TZ V-t '11 L'j jJ iJ l .

Portacan NotworKJletpoaae

RemotcBuffcrOvcrflow

STAT Framework Classes

Extension Classes

Figure 7.4. The STAT Framework class hierarchy.

3. THE STAT FAMILY
The framework described in the previous section has been used to develop

a number of STAT-based intrusion detection systems. These IDSs are con­
structed by extending the STAT runtime with a selection of Language Exten­
sions, Event Providers, Scenario Plugins, and Response Modules.

To be more precise, we developed an application, called xSTAT, that acts
as a generic wrapper around the STAT Core runtime. xSTAT can be config­
ured with different components. For example, xSTAT may load a network-
centered Language Extension (e.g., the t c p i p extension described in Sec­
tion 2), a network-based Event Provider, and some network attack scenarios.
The resulting system would be a network-based intrusion detection system,
similar to Snort [28] or ISS RealSecure [13]. Note that loading a different set
of components would create a completely different IDS. In addition, the STAT
Framework has been ported to a number of platforms, including Linux, Solaris,
Windows NT/2000/XP, FreeBSD, and MacOS X. Therefore, it is possible to
create IDSs for these platforms by recompiling the necessary components.

By extending the STAT runtime with different modules it is possible to pro­
duce a potentially unlimited number of IDSs. In the past few years, we con­
centrated on the most important applications of intrusion detection, and we
developed a family of intrusion detection systems based on the STAT Frame­
work. The following subsections give a brief description of the current toolset.

3-1 USTAT

USTAT was the first application of the STAT technique to host-based in­
trusion detection. Even though the type of analysis that is performed on the
event stream has mostly remained unchanged, the tool architecture has been
completely re-designed [25]. USTAT performs intrusion detection using BSM
audit records [30] as input. The record contents are abstracted into events
described in a BSM-based Language Extension. USTAT also uses a UNIX-
centered Language Extension that contains the definitions of a number of UNIX
entities, such as user, process, and file. USTAT uses a BSM-based Event

Sensor Families for Intrusion Detection Infrastructures 203

Provider that reads BSM events as they are produced by the Solaris audit­
ing facility, transforms them into STAT events, and passes them to the STAT
Core. The events are matched against a number of Scenario Plugins that model
different UNIX-based attacks, such as buffer overflows and access to sensitive
files by unprivileged applications.

3.2 NetSTAT
NetSTAT is a network-based IDS composed of a network-centered Lan­

guage Extension, an Event Provider that collects traffic from traffic dumps or
network links, and a number of scenarios that describe network-based attacks,
such as scanning attacks, remote-to-local attacks, and traffic spoofing. Net­
STAT is similar to other network-based intrusion detection systems. However,
it has some unique features that are the result of being part of the STAT fam­
ily. For example, NetSTAT scenarios can be written in a well-defined language
that has a precise semantics [5]. In addition, it is possible to perform stateful
analysis that takes into account the multi-step nature of some attacks. This is
in contrast to most existing network-based intrusion detection systems, which
are limited to the analysis of single packets and do not provide a well-defined
language for the description of multi-step scenarios.

3.3 WebSTAT and logSTAT
WebSTAT and logSTAT are two systems that operate at the application level.

They both apply STAT analysis to the events contained in log files produced by
applications. More precisely, WebSTAT parses the logs produced by Apache
web servers [1], and logSTAT uses UNIX syslog files as input. In both cases,
Language Extension modules that define the appropriate events and types have
been developed, as well as Event Providers that are able to parse the logs and
produce the corresponding STAT events.

3.4 AlertSTAT and afedSTAT
AlertSTAT is a STAT-based intrusion detection system whose task is to fuse,

aggregate, and correlate alerts from other intrusion detection systems. There­
fore, AlertSTAT uses the alerts produced by other sensors as input and matches
them with respect to attack scenarios that describe complex, multi-step attacks.
For example, an AlertSTAT scenario may identify the following three-step at­
tack. The first step is a scanning attack detected by a network-based intrusion
detection system, such as Snort or NetSTAT. This is followed by a remote
buffer overflow attack against a Web Server (as detected by WebSTAT). Next,
an alert produced by a host-based intrusion detection system (e.g., USTAT)
located on the victim host indicates that the Apache process is trying to ac­
cess the / e t c / e x p o r t s file on the local machine. The resulting alert is an

204 Chapter 7

aggregated report that conveys a much higher level view of the overall attack
process.

AlertSTAT operates on alerts formatted according to the lETF's Intrusion
Detection Message Exchange Format (IDMEF) proposed standard [2]. The
application is built by composing an IDMEF-based Language Extension with
an Event Provider that reads IDMEF events from files and/or remote connec­
tions and feeds the resulting event stream to the STAT Core. A number of at­
tack scenarios have been developed, including the detection of complex scans,
"many-to-one" and "one-to-many" attacks, island hopping attacks, and privi­
lege escalation attacks.

Another correlator, called afedSTAT, has also been developed. The afed­
STAT IDS uses the events contained in a database of alerts, called AFED,
which was developed by the Air Force Research Labs. In this case, the Event
Provider is a format translator. More precisely, the Event Provider used in
afedSTAT reads events from the database and transforms them into IDMEF
events as specified by the IDMEF Language Extension. As a consequence,
it was possible to reuse all of the scenarios developed for AlertSTAT in the
analysis of the AFED data without change.

3-5 WinSTAT and LinSTAT

WinSTAT and LinSTAT are two host-based systems similar to USTAT. Win­
STAT uses the event logs produced by Windows NT/2000/XP LinSTAT uses
the event logs produced by the Snare Linux kemel module [12]. These two
systems are an interesting example of component reuse to implement simi­
lar functionality in different environments/platforms. The Event Providers for
USTAT, LinSTAT, and WinSTAT are obviously different. However, some of
the entities used in scenarios are the same, and so are some of the scenarios
(e.g., a scenario that detects privileged access from unprivileged applications).

3.6 AodvSTAT and AgletSTAT

The versatility of the STAT Framework was tested in developing very dif­
ferent systems. A well-defined framework extension process is not only a good
way to develop a family of systems; it is also useful to produce proof-of-
concept prototypes in a short amount of time. This is the case for two sys­
tems, called AodvSTAT and AgletSTAT. AodvSTAT is an IDS that interprets
AODV [24] protocol messages and detects attacks against ad hoc wireless net­
works. AgletSTAT is an IDS that analyzes the events generated by a mobile
agent system, caWtd Aglets [18], and detects attacks that exploit mobile agents.

Sensor Families for Intrusion Detection Infrastructures 205

3.7 Family Issues

Developing a family of systems using an object-oriented framework has a
number of advantages. First, the members of the program family benefit from
the characteristics of the common code base. For example, all of the STAT
applications use extended versions of STATL, and, therefore, they all have a
well-defined language to describe attack scenarios. Second, it is possible to
embed command and control functionality within the shared part of the frame­
work. As a consequence a single configuration and control paradigm can be
used to control a number of different systems. This is an issue that is particu­
larly relevant for the domain of intrusion detection, and it is explained further
in Section 4. Third, by factoring-out the commonalities between members of
the family, it is possible to reuse substantial portions of the code. Finally, the
use of a framework-based approach reduces the development time and allows
one to build complete intrusion detection systems in a small amount of time.

4. METASTAT

MetaSTAT is an infrastructure that enables dynamic reconfiguration and
management of the deployed STAT-based IDSs. MetaSTAT is responsible for
the following tasks:

• Route control messages to STAT sensors and other MetaSTAT in­
stances. MetaSTAT components can remotely control STAT-based sen­
sors ^ through control messages. These messages may also cross the
boundary of a web of sensors if the infrastructure security policy allows
one to do so.

• Collect, store, and route the alerts produced by the managed sen­
sors. Alerts about ongoing attacks are collected in a database associated
with a single web of sensors. In addition, MetaSTAT components and
STAT-based sensors can subscribe for specific alerts. Alerts matching a
subscription are routed to the appropriate MetaSTAT endpoints. Alerts
can also be sent across webs of sensors, to support high-level correlation
and alert fusion.

• Maintain a database of available modules and relative dependen­
cies. Every STAT component is stored in a Module Database together
with meta-information, such as the dependencies with respect to other
modules and the operational environment where the module can be de­
ployed.

• Manage sensor reconfiguration. MetaSTAT uses the Module Database
and the information regarding the components that are active or installed

206 Chapter 7

Figure 7,5. Architecture of a web of sensors.

at each STAT-based sensor as the basis for controlling the sensors and
planning reconfigurations of the surveillance infrastructure.

4.1 Control Infrastructure
The high-level view of the architecture of the STAT-based web of sensors

is given in Figure 7.5. MetaSTAT uses a communication infrastructure, called
CommSTAT, to route messages and alerts between the different MetaSTAT end-
points in a secure way. CommSTAT messages are based on the IDMEF format,
which defines two events, namely H e a r t b e a t and A l e r t . This original set
of events has been extended to include STAT-related control messages that are
used to control and update the configuration of STAT sensors. For example,
messages to ship a Scenario Plugin to a remote sensor and have it loaded into
the Core have been added, as well as messages to manage Language Exten­
sions and other modules.

MetaSTAT-enabled sensors are connected iodi MetaSTAT proxy, which serves
as an interface between the MetaSTAT infrastructure and the sensors. The
proxy application performs preprocessing of messages, authentication of the
MetaSTAT endpoints, and integration of third-party applications into the Meta­
STAT infrastructure. When receiving messages from a MetaSTAT controller,
the proxy passes the control message on to the connected sensors, which ex­
ecute the control command. Three different classes of control messages are
supported:

Sensor Families for Intrusion Detection Infrastructures 207

Sensor Sensor

CommSTAT CommSTAT

Host

I ̂ JLanguage Extension
I ,^^^ library

Event Provider library

(a) Bare Sensor

Sensor

(b) Sensor with Event Provider

Scenario Scenario

CommSTAT

•j'EveiitPr6videt[!^

Scenario Plugin library

Specification

O Instances

o o o
Response Functions

(c) Sensor with Scenario Plugin (d) Scenario Plugin with Responses

Figure 7.6. Evolution of a STAT-based sensor.

• Install/uninstall messages. An install message copies a software com­
ponent to the local file system of a sensor, and an uninstall message
removes the component from the file system.

• Load/unload messages. A load message instructs a sensor to load a
STAT module into the address space of the sensor. After the processing
of the message is completed the loaded module is available for the sensor
to use. An unload message removes an unused module from the address
space of a sensor.

• Activate/deactivate messages. An activate message starts an instance
of a previously loaded STAT module. The activate message supports
the passing of parameters to a STAT module. It is common to activate
several instances of the same module with different parameters. A deac­
tivate message stops the execution of an instance.

The configuration of a STAT sensor can be changed at run-time through
control directives sent by the MetaSTAT controller to the proxy component re­
sponsible for the sensor. A set of initial modules can be (and usually is) defined
at startup time to determine the initial configuration of a sensor. In the follow­
ing paragraphs, an incremental configuration of a STAT-based sensor will be
described to better illustrate the role of each sensor module, provide a hint of

208 Chapter 7

the high degree of configurability of sensors, and describe the dependencies
between the different modules.

When a sensor is started with no modules, it contains only an instance of
the STAT Core waiting for events to be processed. The Core is connected
to a proxy, which, in turn, is connected to a MetaSTAT controller instance.
This initial ''bare" configuration, which is presented in Figure 7.6 (a), does not
provide any intrusion detection functionality.

The first step is to provide a source of events. To do this, an Event Provider
module must be loaded into the sensor and then activated. This is done through
MetaSTAT by requesting the shipping of the Event Provider shared library to
the sensor, and then requesting its loading and activation. An Event Provider
relies on the event definitions contained in one or more Language Extension
modules. If these are not available at the sensor's host, then they have to be in­
stalled and loaded. Once both the Event Provider and the Language Extensions
are loaded into the sensor, the Event Provider is activated. As a consequence,
a dedicated thread of execution is started to execute the Event Provider. The
provider collects events from an external source, filters out those events that are
not of interest, transforms the remaining events into event objects (as defined
by a Language Extension), and then inserts the event objects into the Core in­
put queue. The Core, in tum, consumes the events and checks if there are any
STAT scenarios interested in the specific event types. At this point, there are
no scenarios, and, therefore, there are no events of interest to be processed.
This configuration is described in Figure 7.6 (b).

To start doing something useful, it is necessary to load one or more Scenario
Plugins into the Core and activate them. To do this, first a Scenario Plugin
module, in the form of a shared library, is installed on the sensor's host. A
scenario may need the types and events of one or more Language Extension
modules. If these are not already available at the destination host then they
are installed and loaded. Once all the necessary components are available,
the scenario is loaded into the Core and activated, specifying a set of initial
parameters. When a Scenario Plugin is activated, an initial scenario prototype
is created. The scenario prototype contains the data structures representing the
scenario's definition in terms of states and transitions, a global environment,
and a set of activation parameters. The prototype creates a first instance of
the scenario. This instance is in the initial state of the corresponding attack
scenario. The Core analyzes the scenario definition and subscribes the instance
for the events associated with the transitions that start from the scenario's initial
state. At this point the Core is ready to perform event processing, as shown in
Figure 7.6 (c).

As a scenario evolves from state to state, it may produce some output. A
typical case is the generation of an alert when a scenario completes. Another
example is the creation of a synthetic event, which is a STAT event that is

Sensor Families for Intrusion Detection Infrastructures 209

generated by a scenario plugin and inserted in the Core event queue. The event
is processed like any other event and may be used to perform forward chaining
of scenarios.

Apart from logging (the default action when a scenario completes) and the
production of synthetic events (that are specified internally to the scenario def­
inition), other types of responses can be associated with scenario states using
response modules. Response modules are collections of functions that can be
used to perform any type of response (e.g., page the administrator, reconfig­
ure a firewall, or shutdown a connection). Response modules are implemented
as shared libraries. To activate a response function it is necessary to install
the shared library containing the desired response functionality on the sensor's
host, load the library into the Core, and then request the association of a func­
tion with a specific state in a scenario definition. This allows one to specify
responses for any intermediate or final state in any attack scenario. Each time
the specified state is reached by any of the instances of the scenario, the corre­
sponding response is executed. Responses can be installed, loaded, activated,
and removed remotely using the MetaSTAT component. Figure 7.6 (d) shows a
response library and some response functions associated with particular states
in the scenario definition.

At this point, the sensor is configured as a full-fledged intrusion detection
system. Event providers, scenario plugins, language extensions, and response
modules can be loaded and unloaded following the needs of the overall intru­
sion detection functionality. As described above, these reconfigurations are
subject to a number of dependencies that must be satisfied in order to suc­
cessfully load a component into the sensor and to have the necessary inputs
and outputs available for processing. These dependencies are managed by the
MetaSTAT component, and they are discussed in the next section.

4.2 Sensor Reconfiguration
The flexibility and extendibility supported by the STAT-based approach is

a major advantage: the configuration of a sensor can be reshaped in real-time
to deal with previously unknown attacks, changes in the site's policy, different
levels of concem, etc. Fine-grained configurability requires careful planning
of module installation and activation, and this activity can be very complex
and error-prone if carried out without support. For this reason the MetaSTAT
component maintains a database of modules and their associated dependencies
and a database of the current sensor configurations. These databases provide
the support for consistent modifications of the managed web of sensors. In
the following, the term module is used to denote language extensions, event
providers, scenario plugins, and response modules. The term external compo­
nent is used to characterize some host facility or service that is needed by an

210 Chapter 7

event provider as a source of raw events or by a response function to perform
some action. Extemal components are outside the control of MetaSTAT. For
example, a BSM event provider needs the actual BSM auditing system up and
running to be able to access audit records and provide events to the STAT Core.

Dependencies between modules can be classified into activation dependen­
cies Mid functional dependencies. Activation dependencies must be satisfied
for a module to be activated and run without failure. For example, consider a
scenario plugin that uses predicates defined in a language extension. The lan­
guage extension must be loaded into the Core before the plugin is activated.
Otherwise, the plugin activation will fail with a run-time linking error. Func­
tional dependencies are associated with the inputs of a module. The functional
dependencies of a module are satisfied if there exist modules and/or exter­
nal components that can provide the inputs used by the module. Note that a
module can successfully be activated without satisfying its functional depen­
dencies. For example, suppose that a scenario plugin that uses BSM events
has been successfully activated, but there is no BSM event provider to feed
BSM events to the Core. In this case, the scenario is active but completely
useless. The inputs and outputs of the different module types, and the relative
dependencies are summarized in Table 7.1.

Module

[Event
Provider

Scenario
1 Plugin

Response
Module

Language
Extension

Inputs

Extemal
event
stream
STAT
events,
synthetic
events
Parameters
from plu­
gin
None

Outputs

STAT
events

Synthetic
events

Extemal
response

None

Activation

Language
modules

Language
modules

Language
modules

Language
modules

Dependencies

Extension

Extension

Extension

Extension

Functional Dependencies

Extemal components

Scenario plugins, Event
providers

Extemal components

None

Table 7.7. Input and output, and dependencies of STAT sensor modules.

Information about dependencies between modules is stored in MetaSTAT's
Module Database.

Determining the functional dependencies on other modules requires that
two queries be made on the Module Database. The first query gets the in­
puts required by the module. The second query determines which modules are
generating the inputs that were returned from the first query. The results re­
turned from the second query identify the modules that satisfy the functional

Sensor Families for Intrusion Detection Infrastructures 211

dependencies of the original module. The functional dependencies on exter­
nal components are modeled explicitly by the database. In addition to de­
pendencies, the Module Database also stores information such as version and
OS/architecture compatibility information.

The Module Database is used by MetaSTAT to automatically determine the
steps to be undertaken when a sensor reconfiguration is needed. Since sen­
sors do not always start from a "bare" configuration, as shown in Figure 7.6
(a), it is usually necessary to modify an existing sensor configuration. There­
fore, the MetaSTAT component maintains a second database called the Sen­
sor Database, which contains the current configuration for each sensor. This
database is updated at reconfiguration time by querying the current configura­
tion of the sensor.

To be more precise, the term configuration is defined as follows: A STAT
sensor configuration is uniquely defined by a set of installed and activated
modules and available external components. The term installed is used to de­
scribe the fact that a module has been transferred to and stored on a file system
accessible by the sensor and in a location known by the sensor. The term acti­
vated is used to describe the fact that a module has been dynamically loaded in
a sensor as the result of a control command from MetaSTAT. The term loaded
has the same meaning as activated in relation to language extension modules.

A configuration can be valid and/or meaningful A configuration is valid if
all activated modules have all their activation dependencies satisfied. A con­
figuration is meaningful if the configuration is valid and all functional depen­
dencies are also satisfied.

4.3 Reconfiguration Example

To better describe the operations involved in a reconfiguration and the sup­
port provided by MetaSTAT, an example will be used.

Suppose that the Intrusion Detection Administrator (IDA) noted or was no­
tified of some suspicious FTP activity in a subnetwork inside the IDA's organi­
zation. Usually, the IDA would contact the responsible network administrator
and would ask him/her to install and/or activate some monitoring software to
collect input data for further analysis. The IDA might even decide to login
remotely to particular hosts to perform manual analysis. Both activities are
human-intensive and require considerable setup time.

MetaSTAT supports a different process in which the IDA interacts with a
centralized control application (i.e., the MetaSTAT console) and expresses an
interest in having the subnetwork checked for possible FTP-related abuse. This
request elicits a number of actions:

212 Chapter?

1 The scenario plugins contained in the Module Database are searched for
the keyword "FTP". More precisely the IDA's request is translated into
the following SQL query:

SELECT module_id, name, os_platform, description
FROM Module_Index
WHERE (name LIKE '%ftp%' OR

description LIKE '%ftp%')
AND type="plugin";

The following information is returned:

module,id

inodule_l

inodule_2

module_9

name

wu-ftpd-bovf

ftpd-quote-abuse

ftpd~protocol-verify

os^platf orm

Linux X86

Linux X86

Linux X86

description

BOVF attack
against
ftpd
QUOTE
command
abuse

FTP
protocol
verifier |

The IDA selects the wu-f t p - b o v f and f t p d - q u o t e - a b u s e sce­
nario plugins for installation.

2 The Module Database is examined for possible activation dependencies.
The wu-f t p - b o v f activation dependencies are determined by the fol-
lov îng query:

SELECT dep_module_id FROM Activation_Dependency
WHERE module_id="module_l";

The query results (not shown here) indicate that the scenario plugin re­
quires the f t p language extension. This is because events and pred­
icates defined in the f t p extension are used in states and transitions
of the wu-f t p - b o v f scenario. A similar query is performed for the
f t p d - q u o t e - a b u s e scenario plugin. The query results indicate that
the s y s l o g language extension is required by the plugin.

3 The Module Database is then searched for possible functional depen­
dencies. For example in the case of the wu-f t p - b o v f scenario the
following query is executed:

Sensor Families for Intrusion Detection Infrastructures 213

SELECT input_id FROM Module_Input
WHERE module_id="module_l";

The query returns an entry containing the value FTP_PROTOCOL. This
means that the wu-f t p - b o v f scenario uses this type of event as input.
Therefore, the wu~f t p - b o v f scenario plugin has a functional depen­
dency on a module providing events obtained by parsing the FTP pro­
tocol. A similar query indicates that the f t p d ~ q u o t e - a b u s e plugin
has a functional dependency on a provider of SYSLOG events.

4 These new requirements trigger a new search in the Module Database
to find which of the available modules can be used to provide the re­
quired inputs. SYSLOG events are produced by three event providers:
s y s l o g l , s y s l o g 2 , and w i n - a p p - e v e n t . The FTP_protocol
events are produced, as synthetic events, by the f t p - p r o t o c o l - v e ­
r i f y scenario.

5 Both the s y s l o g l and s y s l o g 2 event providers require an exter­
nal source, which is the syslog facility of a UNIX system. In particu­
lar, s y s l o g 2 is tailored to the syslogkd daemon provided with Linux
systems. Both event providers have an activation dependency on the
s y s l o g language extension. The w i n - a p p - e v e n t event provider
is tailored to the Windows NT platform. It depends on the NT event
log facility (as an extemal component) and relies on the NT event log
language extension (winevent) . The f t p - p r o t o c o l - v e r i f y is a
network-based scenario and, as such, requires a network event provider
that produces events of type STREAM, which are events obtained by re­
assembling TCP streams. The scenario has two activation dependencies;
it needs both the t c p i p and the f t p language extensions. The first is
needed because STREAM events are used in the scenario's transition as­
sertions. The second is needed to be able to generate the FTP_proto­
co 1 synthetic events.

6 Events of type STREAM are produced by an event provider called n e t -
p r o c . This event provider is based on the t c p i p language extension,
and requires, as an extemal component, a network driver that is able to
eavesdrop traffic.

7 At this point, the dependencies between the modules have been deter­
mined (see Figure 7.7). The tool now identifies the sensors that need to
be reconfigured. This operation is done by querying the Sensor Database
to determine which hosts of the network under examination have ac­
tive STAT-based sensors. The query identifies two suitable hosts. Host
l u c a s , aLinux machine, has a bare sensor installed. Host S p i e l b e r g ,

214 Chapter 7

A

f t p
lang ext

wu

A

f t p
lang ext

- f t p - b o v f
>cenario

\ I

FTP PROTOCOL
event

0

f

f t p - p r o t o c o l - v e r i f y

t c p i p
lang ext

A .

t c p i p
lang ext

scenario

] •
STREAM

event

1 ° f
ne tproc

event provider

network-dr iver

external component

f t p d - q u o t e - a b u s e
scenario

s y s l o g SYSLOG

lang ext 0 ^ ^ T o ^ ^ ^ * \ ^ ^

s y s l o g l s y s l o g 2 w in -app-event
event provider event provider event provider

s y s l o g \ s y s l o g \ winevent NTlogging
lang ext \ lang ext A lang ext external component

s y s l o g d s y s l o g d
external component external component

Figure 7,7, Dependency graph for scenarios wu-f t p - b o v f and f t p d - q u o t e - a b u s e . In
the figure, arrows marked with the letter "A" are used to represent activation dependencies. Ar­
rows marked with "I" represent the relationship between a module and the input events required.
Arrows marked with an "O" represent the relationship between an event type and the module
that produce that type of event as output. Arrows marked with "E" represent a dependency on
an external component.

another Linux machine, runs a STAT-based sensor equipped with the
n e t p r o c event provider, the t c p i p language extension, and some sce­
nario plugins. Both hosts provide the network driver and UNIX syslog
extemal component. The tool decides (possibly with intervention from
the IDA) to install the f t p d - q u o t e - a b u s e scenario on l u c a s and
the wu-f t p - b o v f scenario on S p i e l b e r g .

8 The s y s l o g language extension is sent to l u c a s , and it is installed in
the file system. This is done using the following CommSTAT messages:

<x-Stat-extension-lib-install id="l">
<extension__lib name= "syslog" version="l. 0 .1 ">

[... encoded library ...]
</extension-lib>

</x-stat-extension-lib-install>

<x-Stat-extension-lib-activate id="2">
<extension__lib name="syslog" version="l.0.1">
</extension-lib>

</x-stat-extension-lib-activate>

Sensor Families for Intrusion Detection Infrastructures 215

The s y s l o g 2 event provider is sent, installed, and loaded in the sensor
by means of similar commands. At this point syslog events are being fed
to the Core of the sensor on host l u c a s . The f t p d - q u o t e - a b u s e
scenario plugin is sent to the host, installed on the file system, and even­
tually loaded into the Core.

9 The f t p language extension is sent to host S p i e l b e r g . The t c p i p
language extension is already available, as is the n e t p r o c event provi­
der. Therefore, the f t p - p r o t o c o l - v e r i f y scenario plugin can be
shipped to host S p i e l b e r g , installed, and loaded into the Core. The
scenario starts parsing STREAM events and producing FTP.PROTOCOL
synthetic events. As the final step, the wu-f t p d - b o v f scenario is
shipped to host S p i e l b e r g , installed, and loaded into the Core, where
it immediately starts using the synthetic events generated by the f t p - ' -
p r o t o c o l - v e r i f y scenario.

After the necessary reconfigurations are carried out, the IDA may decide to
install specific response functions for the newly activated scenarios. A process
similar to the one described above is followed. Response modules, in the form
of shared libraries, may be installed on a remote host and linked into a sensor.
Additional control commands may then be used to associate states in a scenario
with the execution of specific functions of the response module.

5, RELATED WORK
Object-oriented frameworks are ''sets of cooperating classes that make up

a reusable design for a specific class of software" [6]. Generally, frameworks
are targeted for specific domains to maximize code reuse for a class of appli­
cations [15]. The STAT Framework is targeted for the development of event-
based intrusion detection systems. In this context, the use of a framework dif­
fers from traditional approaches [11, 29], because all of the components that
are developed as part of the framework are highly independent modules that
can be composed (almost) arbitrarily through dynamic loading into the frame­
work runtime. In addition, the framework extension process is not limited to
the creation of a domain-specific intrusion detection system. The same pro­
cess produces products for different domains, depending on the events, types,
and predicates defined in the Language Extensions. The product of the STAT
Framework is a family of intrusion detection systems.

The concept of program families was introduced by Pamas in [22] and
has received considerable attention from the Software Engineering commu­
nity ever since. Unfortunately, the criteria, methodologies, and lessons leamed
in developing software families in a number of fields have not been applied to
intrusion detection. Even though in recent years the focus of intrusion detec­
tion has moved from single-domain approaches (e.g., network-based only) to

216 Chapter?

multi-domain approaches (e.g., correlation of alerts from both network-level
and OS-level event analysis), this change of focus has not been matched by
a corresponding shift in development methodology. As a consequence, while
IDS are becoming more common, their development is still characterized by an
ad hoc approach. Notable examples are SRFs Emerald [26, 20], ISS RealSe-
cure [13], and Prelude [31]. All of these toolsets include a number of different
sensor components and high-level analysis engines. For example. Emerald has
a host-based intrusion detection system, two network-based analyzers, and a
correlation/aggregation component. Even though the toolset covers a number
of different domains, there is no explicit mechanism in the Emerald approach
that is exclusively dedicated to support the extension of the system to previ­
ously uncovered domains. The same limitation appears in both RealSecure,
which is a mainstream commercial tool, and Prelude, which is an open-source
project.

6. CONCLUSIONS
The STAT Framework is an approach for the development of intrusion de­

tection systems based on the State Transition Analysis Technique. This chapter
described the framework, the corresponding extension process, and the result
of applying the framework to develop a family of systems.

The work reported in this chapter makes contributions in several areas. By
using object-oriented frameworks and by leveraging the properties of program
families it was possible to manage the complexity of implementing intrusion
functionality on different platforms, environments, and domains. The frame­
work supports efficient development of new intrusion detection sensors be­
cause the main mechanisms and the semantics of the event processing are im­
plemented in a domain-independent way. Therefore, the IDS developer has
to implement only the domain/environment-specific characteristics of the new
sensor. Practitioners in the field of intrusion detection can certainly gain from
the lessons leamed. Hopefully, they will use the STAT framework or adapt a
component-based software family approach for their own development.

Two areas where the reported work contributes to previous work in the com­
ponent and framework communities is in leveraging the architecture to have a
common configuration and control infrastructure and in having the attack spec­
ification language tightly coupled with the application development. STAT-
based intrusion detection systems that operate on different event streams (e.g.,
OS audit records and network packets) and at different abstraction levels (e.g.,
detection and correlation) share a similar architecture and similar control prim­
itives. As a consequence, a single configuration and control infrastructure can
be used to manage a large number of heterogeneous components.

Sensor Families for Intrusion Detection Infrastructures 217

Language Extension modules extend the domain-independent STATL core
language to allow users to specify attack scenarios in particular application do­
mains. The same Language Extension modules are compiled and used by the
runtime core for recognizing events and types. Because it is the same Lan­
guage Extension module for both, the user automatically gets an attack spec­
ification language along with his/her intrusion detection system. In addition,
because the attack specification languages are an extension of the STATL core
language, a user does not need to leam a new language style when setting up
attack scenarios for a new intrusion detection application.

The STAT tools and the MetaSTAT infrastructure have been used in a num­
ber of evaluation efforts, such as the MIT/Lincoln Labs evaluations and the
Air Force Rome Labs evaluations, in technology integration experiments, such
as DARR/\'s Grand Challenge Problem (GCP) and the iDemo technology inte­
gration effort. In all of these very different settings, the STAT tools performed
very well by detecting attacks in real-time with very limited overhead. In most
cases, the STAT tools were run and compared with other tools from both the
research and the commercial worlds. The positive feedback received from the
organizers of these evaluation efforts provided a particularly significant com­
parison of the STAT toolset performance with respect to other state-of-the-art
intrusion detection technologies.

The STAT Framework, the MetaSTAT infrastructure, and the STAT-based
tools are open-source and publicly available at the STAT web site http://www,'
cs. ucsb, edu/r^rsg/STAT.

ACKNOWLEDGMENTS
This research was supported by the Army Research Office, under agree­

ment DAAD19-01-1-0484, by the Defense Advanced Research Projects Agen­
cy (DARPA) and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-97-1-0207, and by the National Security
Agency's University Research Program, under agreement number MDA904-
98-C-A891. The U.S. Govemment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation
thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Army Research Office, the
Defense Advanced Research Projects Agency (DARPA), the National Security
Agency (NSA), or the U.S. Govemment.

218 Chapter?

Notes

1. An alternative would be to execute the transition codeblock before evaluating the state

assertion. However, this would require backtracking to undo environment changes when the

state assertion is not satisfied. Otherwise, the environment could be changed for "partially"

fired transitions, which would be semantically unsatisfactory.

2. In the remainder of this chapter an instance of an intrusion detection system may be

referred to as a sensor.

REFERENCES

[1] Apache 2.0 Documentation, 2001. h t t p : / /www. a p a c h e . o r g / .

[2] D. Curry and H. Debar. Intrusion Detection Message Exchange For­
mat: Extensible Markup Language (XML) Document Type Definition.
d r a f t - i e t f - i d w g - i d m e f - x m l - 0 6 . t x t , December 2001.

[3] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo. Addendum to "Testing and
Evaluating Computer Intrusion Detection Systems". CACM, 42(9): 15, September 1999.

[4] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo. Testing and Evaluating
Computer Intrusion Detection Systems. CACM, 42(7):53-61, July 1999.

[5] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATE: An Attack Language for State-
based Intrusion Detection. Journal of Computer Security, 2002.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
1995.

[7] A.K. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown Intrusions
Against Programs. In Proceedings of the Annual Computer Security Application Confer­
ence (ACSAC'98), pages 259-267, Scottsdale, AZ, December 1998.

[8] K. Ilgun. USTAT: A Real-time Intrusion Detection System for UNIX. Master's thesis,
Computer Science Department, University of California, Santa Barbara, July 1992.

[9] K. Ilgun. USTAT: A Real-time Intrusion Detection System for UNIX. In Proceedings of
the IEEE Symposium on Research on Security and Privacy, Oakland, CA, May 1993.

[10] K. Ilgun, R.A. Kemmerer, and RA. Porras. State Transition Analysis: A Rule-Based In­
trusion Detection System. IEEE Transactions on Software Engineering, 21(3): 181-199,
March 1995.

[11] Taligent Inc. Building Object-Oriented Frameworks. White Paper, 1994.

[12] Intersect Alliance. Snare: System Intrusion Analysis and Reporting Environment, h t t p :
/ /www. i n t e r s e c t a l l i a n c e . com/pro j e c t s / S n a r e , August 2002.

[13] ISS. Realsecure 7.0. http://www.iss.net/, August 2002.

[14] H. S. Javitz and A. Valdes. The NIDES Statistical Component Description and Justifica­
tion. Technical report, SRI International, Menlo Park, CA, March 1994.

[15] R. Johnson and B. Foote. Designing Reusable classes. Journal of Object-Oriented Pro­
gramming, l(2):22-35, June/July 1988.

[16] K. Kendall. A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems. Master's thesis, MIT, June 1999.

Sensor Families for Intrusion Detection Infrastructures 219

[17] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-Critical Programs
in Distributed Systems: A Specification-based Approach. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 175-187, May 1997.

[18] D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

[19] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S. Web­
ster, D. Wyschogrod, R. Cunningham, and M. Zissman. Evaluating Intrustion Detection
Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation. In Proceedings of the
DARPA Information Survivability Conference and Exposition, Volume 2, Hilton Head, SC,
January 2000.

[20] RG. Neumann and PA. Porras. Experience with EMERALD to Date. In First USENIX
Workshop on Intrusion Detection and Network Monitoring, pages 73-80, Santa Clara, Cal­
ifornia, April 1999.

[21] NFR Security. Overview ofNFR Network Intrusion Detection System, February 2001.

[22] D.L. Parnas. The Design and Development of Program Families. IEEE Transactions on
Software Engineering, March 1976.

[23] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In Proceedings
of the 7th USENIX Security Symposium, San Antonio, TX, January 1998.

[24] C.E. Perkins and E.M. Royer. Ad hoc on-demand distance vector routing. In C. Perkins,
editor. Ad hoc Networking. Addison-Wesley, 2000.

[25] P.A. Porras. STAT - A State Transition Analysis Tool for Intrusion Detection. Master's
thesis. Computer Science Department, University of California, Santa Barbara, June 1992.

[26] P.A. Porras and RG. Neumann. EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances. In Proceedings of the 1997 National Information Systems
Security Conference, October 1997.

[27] M.J. Ranum, K. Landfield, M. Stolarchuck, M. Sienkiewicz, A. Lambeth, and E. Wall.
Implementing a Generalized Tool for Network Monitoring. In Eleventh Systems Adminis­
tration Conference (LISA '97). USENIX, October 1997.

[28] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the
USENIX LISA '99 Conference, November 1999.

[29] G. F Rogers. Framework-Based Software Development in C+ + . Prentice-Hall, 1997.

[30] Sun Microsystems, Inc. Installing, Administering, and Using the Basic Security Module.
2550 Garcia Ave., Mountain View, CA 94043, December 1991.

[31] Y. Vandoorselaere. Prelude, an Hybrid Open Source Intrusion Detection System, h t t p :
/ / w w w . p r e l u d e - i d s . o r g / , August 2002.

[32] G. Vigna and R. A. Kemmerer. NetSTAT: A Network-based Intrusion Detection Approach.
In Proceedings of the 14*^ Annual Computer Security Application Conference, Scottsdale,
Arizona, December 1998.

[33] G. Vigna, R.A. Kemmerer, and P. Blix. Designing a Web of Highly-Configurable Intru­
sion Detection Sensors. In W. Lee, L. Me, and A. Wespi, editors. Proceedings of the 4^^
International Symposiun on Recent Advances in Intrusion Detection (RAID 2001), volume
2212 of LNCS, pages 69-84, Davis, CA, October 2001. Springer-Verlag.

[34] C. Warrender, S. Forrest, and B.A. Pearlmutter. Detecting intrusions using system calls:
Alternative data models. In IEEE Symposium on Security and Privacy, pages 133-145,
1999.

Chapter 8

ENCAPSULATION OF USER'S INTENT: A NEW
PROACTIVE INTRUSION ASSESSMENT
PARADIGM

Shambhu Upadhyaya, Ramkumar Chinchani, Kiran Mantha
Department of Computer Science and Engineering, University at Buffalo

Kevin Kwiat
Air Force Research Laboratory

Abstract: Few practical implementations of anomaly detection systems are currently known.
Major hindrances in this regard are poor accuracy of detection and excessive false
positives. While some of the reasons may be attributed to theory and technology,
a major factor that is overlooked is the user. We propose a novel approach that
brings the user into the loop by querying him for his session intent in a proactive
manner. This encapsulated intent serves the purpose of a certificate based on
which more accurate intrusion detection decisions can be made.

Keywords: Anomaly detection, Intrusion detection, Misuse detection. Role based access
control. User intent

1. INTRODUCTION AND MOTIVATION
The field of computer security is concerned with enforcing a code of proper

conduct in the digital domain. The various facets of computer security are
prevention, detection and mitigation. Preventive measures, such as firewalls,
form the first line of defense. However, they may not be adequate to contain
every possible attack. It is, therefore, essential to detect those attacks that
have breached this line of defense and initiate additional countermeasures. The
process of detecting attacks is called intrusion detection, and a program that
performs this task is called an intrusion detection system (IDS).

Intrusion detection systems can be categorized as either misuse detection or
anomaly detection systems. Misuse detection techniques look for very specific

222 Chapter 8

patterns of attacks, but their effectiveness is limited to the database of pattems or
signatures of known attacks. On the other hand, anomaly detection approaches
rely on defining a reference line for normalcy and flagging any significant
deviations as intrusive activity. A downside of this approach is that determining
proper thresholds for normalcy and intrusions is very difficult.

Many important lessons have been learned in conjunction with the advances
that have been made in intrusion detection. Intrusion detection is primarily a
process of decision-making based on systemic audit data that is gathered from
probes, which are placed at strategic points in a computer system or network.
An operating system on a computer can offer multiple interfaces through which
users can interact with the computer, as illustrated in Figure 8.1. A user may
execute commands locally on a shell, which consequently invokes the system
call subsystem. Users may also access the computer remotely by utilizing the
networking subsystem. Unfortunately, these very channels of interaction with
a computer may be misused to launch attacks; hence, security systems have
to be deployed at these points. Extemal network-level attacks are perhaps the

User

commands

1 System calls •

Operating system

1 Networking subsystem
1 !

t
Network packets

Network medium

User space

Kernel space

Figure 8.1, Multiple Interfaces Provided by an Operating System

most common type of attacks and they have been well-studied. Consequently,
a gamut of techniques and tools are currently available such as firewalls, net­
work intrusion detection systems and security audit tools. On the system call
interface, the threat manifests mainly in the form of mobile code, malicious
users, insiders and masqueraders. In order to combat the problem of malicious
mobile code and users, solutions such as proof carrying code and sandboxing

Encapsulation of User's Intent 223

have been proposed. In contrast, few solutions have been offered for the threat
posed by insiders and masqueraders. Traditional rule-based misuse detection
systems are not very successful, because it is not possible to define signatures
accurately for every user. Due to their ability to construct specific statistical
models, anomaly detection approaches are considered more promising. How­
ever, practical implementations of anomaly detection systems are not common
due to issues involving data collection and processing, leaming time and high
false positive/negative rate.

In this chapter, we propose a novel methodology to tackle these issues and lay
the groundwork for the implementation of a practical anomaly detection system.
The first step of our intrusion detection technique is generation of a run-time
plan for the user. The user is then monitored for any significant deviation from
this plan. This plan is composed of verifiable assertions that are automatically
generated on the basis of a few system usage inputs provided by the user at
the beginning of a session. These inputs are obtained in a controlled manner
through some form of user interface. Once an assertable plan is generated, the
user will be monitored throughout the session to see how closely he conforms
to the plan. Any significant deviation from the plan is construed as an intrusion.

This approach is based on sound principles of signature analysis that have
been successfully used in concurrent monitoring of processor operation for fault
tolerance. Besides, the new approach offers several advantages. First of all,
this does away with audit trail analysis. Audit trails are generally huge and
the analysis and filtering out of useful information is expensive ([14]). Also,
the assertable plan based on encapsulation of owner's intent attaches a greater
significance to the semantics of user's operations and also can take into account
user dynamics and any intended changes in the user behavior. Therefore, no
special leaming is needed as is the case with other statistics based systems.
The analysis is done at a much higher level of abstraction compared to kemel
level monitoring ([11]). This can lead to the detection of intricate and subtle
attacks. Since on-line monitoring can potentially lower the latency of detection,
our scheme can be combined with any recovery schemes for effective damage
containment and restoration of service.

2. BACKGROUND AND RELATED WORK

Intrusion detection techniques have been devised at various levels, i.e., using
audit data sampled deep inside the system, system call level and in some cases
at the user level. Some aspects of these techniques are similar to our approach.

Rule Based

When certain attack patterns and their security implications are known, it
is possible to derive their signatures, and arrive at rules to detect and disallow

224 Chapter 8

such activity. Due to the ease of implementation and reasonably high accuracy,
this is one of the commonly used techniques for intrusion detection and preven­
tion. These rules form a security policy and they may be derived and enforced
([9]; [2]; [10]; [21]; [29]) at various levels. The rules may govem various as­
pects such as packet formats, network activity, system usage, program and user
behavior, etc.

Program Behavior Based

Of particular interest is ([10]) where intended program behavior is specified
in terms of assertions. These assertions are, in general, rules which govem
what a program can or cannot do. This approach is feasible for a small number
of programs but does not scale well in real world settings where there are a
large number of programs available for use. The concept of assertions that we
speak of is very similar to this idea except that our specifications are at various
levels. The technique discussed in ([7]) constructs program behavior profiles
and compares the mn-time activity against this profile. Various models based
on automatons and state transitions ([29]) exist to model program behaviors.

User Behavior Based
The work that is closest to our approach is ([25]) that speaks about modeling

user intent based on system audit data. This technique was not very effective
primarily because of the amount of information collected and the problem of
ambiguity resolution at that level. The work discussed in ([13]) attempts to
model user behavior statistically by observing the operations and commands
that he uses, and detect any deviations from this profile. The problem is tackled
from an AI perspective. However, considering the large number and variety of
operations and commands, detection becomes infeasible and inaccurate. An­
other notable work ([3]) uses keystroke monitoring to identify users and then
differentiates between legitimate users and intruders. However, ([12]) discounts
this technique as being impractical due to the myriad ways of expressing the
same attack at the keystroke level. Aliasing has also been cited as a reason for
the defeat of this technique.

Role Based Access Control

Role based access control (RBAC) mechanism ([6]) defines a sandbox based
on the user-id and associated privileges. Roles are assigned to each user and he
can make only those transactions for which he has the required privileges. This
mechanism is similar to our approach in way of defining the bracket of allowed
activity. However, RBAC is successful when the transactions that can be made
are few and clearly defined. Hence, it finds good applications in databases.

Encapsulation of User's Intent 225

Real-time Detection

Quite a few techniques claim to achieve real-time detection. This is true
when the data set is small or the instance of the problem is small ([10]; [9]).
In other cases, even if the data is large, they may be able to detect intrusions
rapidly but have to do it offline resulting in slower response times. Some
other previous works such as a more powerful version of NADIR ([8]) called
UNICORN accepts audit logs from Cray Unix called UNICOS, Kerberos and
common file systems. It then analyzes them and tries to detect intruders in
real-time. However, since these audit logs can be large, significant computing
power has to be devoted to process them, defeating the very goal of real-time
intrusion detection.

Distributed and Concurrent Schemes

DIDS ([23]) is a distributed intrusion detection system which looks at and
correlates the connections on multiple machines to the initial login. GrIDS
([26]) is a graph based intrusion detection system that collects data about ac­
tivities on computers and network traffic between them. This graph is then
used to detect large-scale automated or coordinated attacks in real-time. The
computer science lab at SRI Intemational has completed a project called EMER­
ALD (Event Monitoring Enabling Response to Anomalous Live Disturbances)
([19]). This project has developed a distributed monitoring scheme which uses
a combination of a signature engine and a profiler engine within the monitor
for intrusion detection. It is possible to draw some parallels from the domain
of fault tolerance such as the concept of system level check for concurrent error
detection ([!]). It is now a well accepted theory that faults can be detected
by using verifiable assertions placed at strategic points in the real-time sys­
tem. These assertions are similar to the rules and other invariants specified
for system behavior for intrusion detection. The research group at Purdue has
developed an adaptive network monitoring scheme using autonomous agents.
Their approach ([24]) is distributed in the sense that one agent is used per node
instead of a monolithic entity. The agent is somewhat similar to the monitor
of EMERALD ([19]). This architecture also uses a hierarchical approach like
EMERALD.

IMasqueraders and Insider Threats

The problem of insiders and masqueraders is a serious one with few solutions.
The work of ([16]) is a recent attempt at trying to solve the problem using
anomaly detection via truncated command lines. Though they report some
success, they admit that such success is limited only to their data set and the
results may not even be replicable. This work also compares and contrasts other

226 Chapter 8

known statistical techniques to solve the problem. We argue that it is neither
feasible nor practical to solve the problem using only statistical methods because
of the number of possibilities.

3. GUIDELINES
On the basis of the rich experience provided by these recent research efforts,

we have identified some guidelines to achieve our goal of a practical online
anomaly detection system. We also present arguments in support of these
guidelines.

GUIDELINE 1 Use the principle of least privilege to achieve better security.
The principle of least privilege ([6]) implies that security is achieved only

at the loss of certain freedom. A user's operations should be restricted to the
extent that it is just sufficient for him to perform his jobs without hindrance.

GUIDELINE 2 Use mandatory access control wherever appropriate.
Mandatory access controls ^ are rules that govern the access to objects and

resources. This principle supplements Guideline 1 when there is a conflict of
interest between the user's freedom and achieving better security.

Both of these guidelines serve an additional purpose. In general, data col­
lection and processing is central to an anomaly detection technique. It is often
the case that audit data gathered by sensors or probes contains noise, which
interferes with the construction of accurate statistics. By setting appropriate
restrictions and rules for system usage, this noise can be reduced. This require­
ment is stated as Guideline 3.

GUIDELINE 3 The data used for intrusion detection should be kept simple and
small

This has several implications. If the data is kept small and simple, it becomes
possible to effectively sift through it for information regarding attacks. The
processing and storage overheads are reduced significantly. More importantly,
this reduces false positives and facilitates lower detection latency. Since our
focus is user-level intrusion detection, data collection is done at higher levels
in the system such as commands and system calls, rather than low levels such
as a filesystem and networking subsystems.

GUIDELINE 4 Intrusion detection capabilities are enhanced if environment
specific factors are taken into account.

No single intrusion detection can sufficiently cater to all the security needs.
The parameters used to collect information are very dynamic and highly en­
vironment specific. A lot of anomaly based intrusion detection systems do
not take into consideration the environmental factors. The expectation that

Encapsulation of User's Intent 227

anomaly based systems will perform well irrespective of the environment has
been proven to be unrealistic ([15]). In order to achieve similar efficacy in
detection, such systems should be flexible enough so that their parameters can
be configured to reflect the environment they are deployed in.

4. METHODOLOGY OVERVIEW

Intrusion Model and Assumptions

Any activity at the user level is initiated by programs executed on some user's
behalf. We classify malicious user activity into the following categories.

• System abuse and access violations

A user after logging into a system may execute commands that lower
the overall quality of service or attempt to access resources that he is not
authorized to.

• Identity theft attacks

An attacker can assume the identity of a legitimate user through a compro­
mised password or physically joining an open session of an authenticated
user.

In our definition of a distributed system, we include a network of computers
that service users on the basis of an account and a password. Further, we assume
that the users on different machines have the same user-id although the pass­
words could be distinct. This model precludes the monitoring of web surfing
and anonymous ftp activities. No specific topology is assumed for the network.
All communications between nodes are by message passing and the network
is assumed to be stable. This model makes our intrusion detection approach
unique in that all intrusions are abstracted as happening through well-defined
user sessions which are invoked through a user-id and password submission.
The problem of intrusion detection simply transforms into monitoring these
well-defined user sessions. We also assume that a user session on a node is of
finite length.

Basic Principle

Our technique of intrusion detection using verifiable assertions is firmly
based on the principle of control flow checking in fault tolerance ([18]; [22];
[28]). In control flow checking, an analysis prior to compilation of the pro­
gram is done to generate a control flow graph of the application. Signatures or
assertions are embedded into the instruction stream at compile time to gener­
ate a reference graph. At run-ime, signatures generated from the execution of
instructions are monitored and at designated intervals, the run-time signatures

228 Chapter 8

are compared with predetermined signatures of the reference graph. Any dis­
crepancy between the run-time signatures and the expected signatures indicates
an error. Both instruction level bit errors and control flow errors are detected
by this scheme. Though the control flow checking concept can be extended
to intrusion detection, instruction-level models are not applicable here because
instruction-level control flow variations may not indicate attacks occurring at
higher levels. Accordingly, we use a different approach for the derivation of a
reference graph as described below.

In our intmsion detection scheme, the user starts a session on a computer in
a standard way, that is, by logging in. The system then encapsulates his intent
as a session-scope. This is an approximate summary of his intended system
usage. Once the scope-file is submitted, the user is allowed to continue with his
session. Meanwhile the system translates the scope-file into a set of verifiable
statements. When no ordering of events is considered on the activities of the
user, the set is simply a table of verifiable statements. It has no control flow
information as such.

The verifiable statements give a mechanism for monitoring the user behavior.
These statements are generated automatically by reading the scope-file and
interpreting the user inputs properly. An important component of our verifiable
statements is the subject field. The subject field is generated from the user-id
and other unique identifications such as the IP address of the workstation, tty
number of the terminal being used etc. All such information will be coded into
the subject field. For instance, a user may wish to open multiple login sessions.
As long as such intent is expressed in the scope-file, a more general subject
coding can be done for this user in order to allow him to work from different
terminals or set up multiple login sessions. There is only one monitor process
per user even though multiple sessions are opened.

When the user is in session, his operational commands are checked to see if
they are the ones he originally intended to execute. Any significant deviation
from the plan is an indication of potential intrusive activity.

The flow diagram of Figure 8.2 represents the basic principle of our new
approach and by itself has limited usage. While extensions are easily conceiv­
able for improved performance ([27]), we retain our basic framework for ease
of presentation of the scheme. Some of the techniques used to minimize false
alarms and to build robustness to this basic monitoring scheme will be discussed
later.
User Intent Encapsulation

Actively querying a user for computational intent may initially appear as a
departure from traditional techniques and an avoidable annoyance, but there are
some definite benefits. When an online IDS is installed on a computer system,

Encapsulation of User's Intent 229

Intrusion Signal

Tolerance limits
Counters

Thresholds etc.

Figure 8.2. Flow Diagram of Intrusion Detection

it makes decisions regarding the current user activity, which may or may not be
contested by a user. Figure 8.3 illustrates the various scenarios.

IDS decision:
Is the current user activity intrusive?

User consent:
Does the user agree?

Yes

No

Yes

True Positive

False Positive

No

True Negative

False Negative

\

Figure 8.3. Different Scenarios Corresponding to an IDS' Decisions and a Monitored User's
Response to Those Decisions

The four regions, shaded and unshaded, represent the "hits" and "misses"
of an IDS' detection mechanism. Perfect intrusion detection is achieved if all
the decisions of the IDS lie in the shaded regions without exception. However,
that is seldom the case. Misuse detection techniques are generally accurate
in detecting known attacks, but they are not complete. On the other hand,
although anomaly detection approaches claim to be complete, they are not
very accurate on the account of statistical methods being used. Even when the
IDS is very accurate, a decision can be wrong simply because the user being
monitored contests it. This problem cannot be solved merely by technology
or theory alone. Instead, we propose to bring the user into the loop. When
a user, whether a legitimate user or an intruder, is queried for intent at the
beginning of a session, this expressed intent becomes a certificate of normal
user activity. Some obvious concerns may arise at this point. This technique
can only be practical if the process of intent encapsulation is not very intrusive

230 Chapter 8

by nature. Also, it becomes important to do it in a way that captures maximum
information with minimum effort. Intent encapsulation has been suggested as
an effective alternative to formal verification of chip design .̂ As in the intent-
driven verification in the form of expressed and implied, intent encapsulation in
our case can be achieved by a direct query which is explicit or in indirect ways
which is implicit', each has its advantages and disadvantages.

Figure 8.4. Illustration of Effects of Implicit and Explicit Intent Encapsulation

Let us assume that the entire superset of operations is O as shown in Fig.8.4.
This is the entire set of operations supported on a computer system that any
user can attempt to execute.

Implicit Intent Encapsulation. By using Guideline 2 (§ 3) and observing
that certain intents can be inferred directly from the context, we define a default
bracket of privileges corresponding to a user's user-id and his role (based on
the RBAC methodology). For example, a teller in a bank may have a different
job description than that of a manager, therefore requiring a different set of
privileges. This bracket Od (Fig. 8.4) can be considered as the hard coded intent
of the user. This technique has been widely used in commercial databases and
has been successful. RBAC works well when the transactions and the ways in
which they are accomplished are few and clearly defined.

Explicit Intent Encapsulation. RBAC based technique suffers from the
limitation that these bracket of privileges are static and pre-defined. This results
in a very general profile for the users and leads to poor performance.

By explicitly querying the user for intent, it is possible to define a smaller and
personalized bracket of privileges or jobs for each user. Let the set of operations
that a user defines to be his session-scope be Ou • If this set is bounded only by O,
then this technique is not very different from the known statistical techniques for
detecting insiders and masqueraders. However, by bounding Ou by Od instead
of O, the user can express intent up to the set defined by his user-id. Such a
controlled intent extraction occludes questions such as "What if the user lies?"
because the user is allowed to choose only from what he is given. This subset

Encapsulation of User's Intent 231

of jobs that are chosen forms the baseline for monitoring through the various
sessions. Since this reference line is very focused and small, it becomes feasible
to perform online and real-time monitoring which results in a low latency of
detection and also lower false positives.

Variations of this technique included querying the user at the beginning of
every session. This has the advantage that it can accommodate drastic changes
from one session to the other. Its shortcoming is that it is very intrusive by
nature. A slightly passive technique involves querying the user only at the
beginning of his first session and then invalidating this intent only when some
event occurs that warrants another query. For example, a student's activity
involving the use of tools for his courses remain unchanged till the end of the
current semester. This is less intrusive by nature and is perhaps adequate for
most environmental settings.

Summary. The major advantage of intent encapsulation is that it can be
done very specific to the environment making anomaly detection very effective.
Also, by making the profiles very personalized, it becomes easier to establish
the user's identity by way of differences in the choice of jobs and the choice of
operations henceforth.

5. A BASIC ALGORITHM AND ENHANCEMENTS

Definitions

DEFINITION 8.1 An intrusion or anomaly is defined as any deviation from
a known normal operational behavior

The prior determination of legitimate operations or a sequence of operations is
done based on certain criteria. Details of the criteria are not elaborated here, but
for most operations, the determination of legitimacy should be simple ([27]).
This definition of intrusion includes such activities as masquerading, legitimate
user penetration, and legitimate user leakage ([5]), internal abuse, and illegal
resource access such as buffer overflow attacks. Our IDS is not designed to
handle extemal network level attacks, such as IP spoofing and remote exploits.
Hence, these are not a part of the intrusion model.

DEFINITION 8.2 A watchdog is a process that continuously monitors user
commands typed in from a keyboard, submitted in the form of a script or a
macro or input by mouse clicks,

A watchdog process is spawned immediately following a user-id and pass­
word submission, and the creation of a user session. Only one watchdog process
per user-id is created. The watchdogs are implemented to take into account the
various ways user level commands can be submitted (globbing, aliasing, etc.).
This watchdog process is active as long as the user sessions are active.

232 Chapter 8

DEFINITION 8.3 Session-scope is a file containing a list of intended activities
submitted by a user at the beginning of a session. The session is assumed to
be of bounded duration. Long periods of inactivity are considered as the end
of a session. The session may then be locked or logged out. Regardless, it is
a good security measure to avoid open sessions remaining unattended for long
periods of time.

This file, which encapsulates the owner's intent, is a high level description of
user operations in a specific format. Since only one monitor session is set up
per user account, only one session-scope is accepted per user account even if
multiple sessions are opened on a given user account. The session-scope, once
submitted, is treated as a secure document and is not accessible to anyone.
Having one session-scope per user-id over a given period of time facilitates
easy monitoring and also leads to low overhead and better coverage.

DEFINITION 8.4 A verifiable assertion is a quadruple which associates a
user with the intended operation over a given period of time.

The format of the assertions is as follows.

{subject^ action^ object., period) (8.1)

where "subject" is a user (along with additional IDs such as terminal identifi­
cation, IP address etc.), "action" is an operation performed by the subject, such
as login, logout, read, execute, "object" is a recipient of actions such as files,
programs, messages, records, terminals, printers, etc., and "period" signifies
the time interval for the usage of an action. These verifiable assertions are
generated in advance for each user event specified in the session-scope file and
forms a small and bounded set.

DEFINITION 8.5 A sprint-plan (Signature Powered Revised INstruction Ta­
ble) is a collection of verifiable assertions.

This is a table automatically generated as a response to a user's session-scope
file. The sprint-plan can also be viewed as a signatured stream of atomic opera­
tions (commands) that is generated for the purpose of on-line monitoring. The
preparation of an accurate sprint-plan at the beginning of a session is a one­
time effort as indicated in Figure 8.2. The effort in generating the sprint-plan is
mostly dependent upon the session-scope. If the session-scope file is too cryptic
or imprecise, it is possible to interpret legitimate use as an intrusion, giving rise
to false positives. An important user requirement is the availability of enough
flexibility to work on a session on a user's own workstation. This adds some
burden on the sprint-plan generator. The assertions are currently derived with
the information based on observation of user activity and specific requirements
of jobs similar to the rule generation in ([2]). It can be further supplemented

Encapsulation of User's Intent 23 3

by certain techniques such as accounting checks or reasonableness checks
([20]; [27]) as well as systematic methods based on finite automata and Markov
graphs ([4]).

A Sketch of the Algorithm

The user is queried for a session-scope at the beginning of the session. He is
also given the choice of choosing whether multiple simultaneous user sessions
should be allowed. The user is then allowed to continue with the session with no
further interruption from the IDS. The user input line in the form of a singular
command, command alias, macro or a script is monitored as a set of atomic
operations by the per user watchdog, irrespective of whether it is an interactive
or a batch submission. These atomic operations will have the subjectID resolved
based on run-time characteristics. One can choose to monitor every single user
command or set a particular monitoring rate depending upon parameters like
system load and specified security levels. If the atomic operations are found in
the previously generated sprint-plan, the session continues without interruption.
If there is a mismatch, further examination is conducted to see if there is a
subject ID violation. If so, an intrusion is obvious and appropriate signals will
be sent to a master watchdog. Otherwise, the mismatch is interpreted simply
as a deviation from the original plan and the count on permissible unplanned
commands is incremented. If this count reaches a tolerance limit, then an
intrusion is flagged and appropriate action is initiated.

Intrusion Scenarios and Enhancements

We now consider various intrusion scenarios and analyze the methodology.
The sessions belong to either a legitimate user or an intruder.

• Case 1: A legitimate user logs in.

This is the most innocuous case. The user logs in, expresses his intent
and proceeds to work.

• Case 2: An intruder logs in.

Since the system cannot readily distinguish between legitimate user and
an intruder, an intruder would also be routinely presented with a session-
scope query. An intruder is more likely to choose the largest possible set
for it gives additional flexibility to carry out malicious operations. How­
ever, this set is constrained by Od- Moreover, each operation submitted
by the intruder is examined by the per user watchdog. While this may
not totally eliminate intrusions, it does effectively restrict the intruder.

• Case 3: Two legitimate logins in some sequence in time.

234 Chapter 8

When a user starts a session from his desktop and later starts another
session while the first one is alive perhaps from a different machine. For
example, a user may be working in his office and then remotely logs in
from his lab. This is the normal case of simultaneous logins and we do
not expect to have too many deviations.

• Case 4: The first login is from the legitimate user and the second login
is from an intruder.

If the first login is from the legitimate user then he is presented with the
session-scope query. If an intruder logs in before the user's session is
terminated, he is not queried for a session-scope and he must emulate the
user precisely to avoid detection. His operations are restricted just as in
Case 2.

• Case 5: The first login is from an intruder and the second login is from
the legitimate user.

The intruder is likely to specify the broadest session-scope possible. He
is still restricted by Od- In this case, the legitimate user who logs in will
not be queried for a session-scope. If it is his first session then it should
raise strong suspicion. If not, the variations between the intruder's and
user's operations are going to culminate in an intrusion sooner or later.

• Case 6: Two intruders log in.

This is a variation of Case 5 except that the second intruder does not
expect a query and continues to work in his session. Unless their actions
are concerted, deviations are bound to occur which result in an intrusion
signal.

Enhancements

Several refinements to the basic algorithm are possible to enhance the ro­
bustness and efficacy of intrusion detection.

Profiling User Operations. Currently, very limited profiling is done by the
basic algorithm. However, the detection technique can be made more effective
if there is a better profiling scheme. Profiling on a per user basis within the
bracket of activity defined by the session-scope generates an identity for the
user while retaining the default restrictions imposed by the bracket. Profiling
can be done by taking into consideration not only the frequency distribution of
operations but also the temporal characteristics of system usage.

Dynamically Updating Session-scope. Although a user may specify a rela­
tively broad session-scope, over time it may be possible to detect those opera­
tions that very rarely appear and then shrink the session-scope to eliminate these

Encapsulation of User's Intent 235

operations. A non-intrusive version of this enhancement would be to assume a
default intent of Od instead of querying and then performing the elimination of
operations. However, this is a more passive approach and may require a long
leaming process.

6. IMPLEMENTATION DETAILS

Architecture
Our intmsion detection model is amenable to hierarchical monitoring where

the lowest level of hierarchy is the user-session level monitoring. Hierarchical
arrangement of watchdog monitors is highly effective in distributed systems as
evident from other intrusion detection schemes such as COAST ([24]), EMER­
ALD ([19]) and HUMMER ([17]).

A watchdog process is set up for each user on a given node. However, the
process remains dormant until a user starts a session on a node. These watch­
dogs are essentially instances of the same process, monitoring the various user
sessions. They remain restricted to the local nodes, but once operational, inter­
act with a master watchdog which is responsible for coordinating distributed
and concurrent system monitoring. This extends the whole security system
from a host level system to a network level intrusion detection system.

In addition to the user watchdogs and master watchdogs, each local network
has a separate watchdog called a File Watchdog. The function of the file watch­
dog is to monitor accesses to secure files on the file server. The file watchdog
will interact with the master watchdog on the individual nodes to coordinate the
dissemination of intrusion detection and to initiate recovery. The architecture
of the individual user watchdog is shown in Figure 8.5.

The watchdog process receives input from the User Command Buffer and/or
from the OS. The Atomic Operation generator converts user command lines
into an on-line assertion statement. The Inclusion Checker module verifies if
the assertion statement generated on-line is in the set of previously generated
verifiable assertions. The optional blocks in the figure represent enhanced
features.

In order to test our basic ideas, we built a preliminary prototype. The session-
scope can be fed into the system in a variety of ways. We use a graphical user
interface (GUI) to simplify the process of the user input. This makes it possible
to perform the process of intent encapsulation in a controlled manner.

If the login is valid, the watchdog queries the user about the applications the
user is going to work in that particular session. Based on the applications a
preselected list of inputs containing the system resources available for the user
is provided in a GUI, from which the user can select the scope of the session.
The watchdog also queries the user about his multiple login intent. If the user
wishes to open multiple sessions, a list of all the hosts a user can connect to in

236 Chapter 8

User Command
Buffer

Operating
System

(OS)

Atomic Operation
Generator

Inclusion
Checker

To User

Counter and
Dialog Initiator

1

Buffer
Register

Exception
Generator

Intrusion Signal

Previously
Generated

Table of
Verifiable
Assertions

Pattern
Matching

Unit

To Master Watchdog

Figure 8.5. Block Schematic of the Watchdog Process

the network is generated. The scope-file thus obtained is given to a converter,
which is built into the watchdog. The converter converts the scope-file into a
sprint-plan consisting of verifiable assertions. A formatter formats this spring-
plan into a format that can be used for comparison.

Once the sprint-plan is generated which is a one-time monitoring effort, the
user is allowed to proceed with his normal operations. Every user operation on
the system is monitored and converted to an atomic operation by the watchdog's
preprocessor. This is done using ptrace(2). By forcing the process to stop at
exec(2) and subsequent system calls, it is possible to determine which command
is being executed and the resources it uses. The output of the preprocessor is
similar to the sprint-plan, and is used by the watchdog for comparison with
the reference sprint-plan. Site-specific details, if any, are also given to the

Encapsulation of User's Intent 131

Monitoring
Unit

Preprocessor SPRINT plan

Comparator

Comparison Unit

Logic Unit

Site-specific
details

Violation Flag to
Master watchdog

Figure 8.6. Monitor/Comparator Unit

comparator. Any violation is reported to the master watchdog. The architecture
of the monitor/comparator unit is shown in Figure 8.6.

The comparator consists of a comparison unit and a logic unit. The compar­
ison unit does all the comparisons and if there is a mismatch then it is passed
to the logical unit, which determines the violation flag level.
Verifiable Assertions

Verifiable assertions are basically an access control mechanism to enforce
the bracket of activity of the user defined by his intent. They are mainly in the
form of do^s and dont's. These assertions typically govem file system objects
such as files and directories. They are currently derived manually. Fig. 8.7
shows an example of such assertions in a simplified form.

ProgramDevelopmentJob:
commands: emacs, vim, xemacs
file system objects: home dir - allow all, /usr/lib/, /lib, - read-only

MailJob:
commands: pine, elm, emacs
file system objects: home dir - allow all, /var/mail/usemame - allow all

AcademicCourse:
commands: matlab, mathematica
file system objects: home dir - allow all, /usr/lib, /lib - read-only, app specific libs - read-only

Figure 8.7. A Sample of Verifiable Assertions

238 Chapters

7. SIMULATIONS AND RESULTS
We chose a student/faculty user academic environment for the purposes of

testing. This environment has fewer security controls in place and allows greater
freedom for the users and hence makes a good test bed to study the efficacy of
our technique. We could also consider a regulated system such as web-enabled
banking to estimate the feasibility and impact on a more general and commercial
setting.

Simulating a University Environment

The basic architecture is client-server based. Such a setup allows us to derive
some test cases from the published descriptions of well known attacks and in
developing site-specific test cases based on the security policy. It also helps us
to consider both sequential and concurrent intrusions. In a sequential intrusion,
a single person issues a single sequence of commands from a single terminal
or a workstation window. In concurrent intrusion, one or more intruders issue
sequences of commands from several terminals, computers or windows. The
command sequences work cooperatively to carry out an attack. For example an
intruder can open multiple windows on a workstation and connect to a target
computer from each window and try to distribute his intrusive activities among
them. The platform allows us to simulate basic sessions such as telnet, ftp etc.
Synchronization can be achieved which lets us specify a fixed execution order
of events.

When the student/faculty user logs in with a user-id/password submission,
password verification is done first. If the user is authenticated to login he
will be provided with a series of GUI windows to specify the scope of the
session. The user selects the application he is going to work on. If, say, the user
selects Research as the application, the user is provided with a preselected input
list containing various categories such as simulators, design tools, operating
systems, programming languages, scripts, documentation and miscellaneous
items such as ftp, rlogin etc.

The user just needs to check the tasks he intends to perform. Once this is
done the watchdog queries the user if he intends to perform any other activities
that are not present in the predetermined list. The user is also queried if he
intends to open multiple sessions.

The various components of the sprint-plan are combined together by a for­
matter to obtain the final sprint-plan. Figure 8.8 shows a run-time monitoring
setup for a 1-user, 2-hosts system on a single server and is explained below.

The sprint-plan generated for the user is stored at a secure location on the
server. As soon as the user logs in to a host, the watchdog checks to see if

Encapsulation of User's Intent 239

there is a sprint-plan already existing for the user, if there is none, it generates a
new one. If a sprint-plan already exists, the user is allowed to proceed with his
normal activity. The watchdog continuously monitors the user and compares it
with the sprint-plan.

Sprint Plan

(Host2)

To User 1

Analyzer

Exception Generator

Intrusion signal to Master Watchdog

Legend:
User Login to Host 1

-* User Login to Host 2

Figure 8.8. Run-time Monitoring Setup

Test Cases and Attack Scenarios

The test data is based on user activity collected over a period of two months.
We required the test data to be confined within the same semester. We used this
data to derive the verifiable assertions and then test the strength of the scheme
by subjecting it to a few test cases and attacks.

There is usually no simple procedure to identify appropriate test cases for
an intrusion detection system. A variety of intrusion scenarios are consid­
ered based on some common practices of system usage. These scenarios are

240 Chapters

grouped into four categories, viz., one-user without multiple logins, one-user
with multiple logins, multiple users without multiple logins and multiple users
with multiple logins. Two set of experiments are performed in each of these
categories, first with the worst case, where a user selects all the entities pro­
vided in the session-scope GUI by the watchdog and the second where a user
selects only a few entities. The tests are performed by treating the logins as
four different cases, with up to two users at a given time. The first case is where
both logins are legitimate. In the second case, the first login is from a legitimate
user and the second login is from an intruder. In the third case, the first login
is from the intruder and the second login is from the user and finally the fourth
case where both logins are from intruders.

We performed a total of 32 attacks and they were of two types. One cat­
egory represented very obvious and apparent attacks such as transferring the
/etc/passwd file from one host to another, password-cracking by comparing the
entries in the /etc/passwd file to entries in another file, using a dictionary file for
the same, and exploiting the vulnerabilities such as rdist, perl 5.0.1, etc. The
system is able to detect all the intrusive activities and terminate the connection
for the logins of intrusive users. The second category involved more subtle
attacks similar to mimicry attacks ([30]). Even in such cases, since we monitor
both the operations and the file system accesses, we are able to restrict the dam­
age caused by the intruder. The intruder is only able to cause damage within the
user's login and home directory. In the worst case scenarios of one-user with
multiple logins and multiple users with multiple logins, a relatively larger num­
ber of intrusive activities was not detected. The system has also generated a few
false positives, flagging an intrusion when normal user activity is taking place.
This happens when the user selects only a few entities from the session-scope.
The results are summarized in Table 8.1 where detection latency is reported in
terms of average number of user operations. The metrics shown in the table are
consistent with the predictions made on the intrusion cases in § 5.

System Overheads and Performance Impact
Since Java is used for implementation, moderate impact on system perfor­

mance is expected. When new connections are made or more users login, the
system load increases. However, this increase is only marginal because there is
no need to maintain any large data structures for each user or connection. The
main server on which our intrusion detection system is running is a Sun Ultra
Enterprise 450 Model 4400 and the clients are Sun Ultra 5's running Solaris
2.7.

A normal user in a university environment is assumed to have about six to
eight processes running on the system at a given time. There is one watchdog
dedicated for each user which makes it one more process per user on the system.

Encapsulation of User's Intent 241

Sessions

1 User
and
User

1 User
and

Intruder

Intruder
and
User

Intruder
and

Intruder

Metrics

Detection
Latency

False Positives
False Negatives

Detection
Latency

False Positives
False Negatives

Detection
Latency

False Positives
False Negatives

Detection
Latency

False Positives
False Negatives

1 User,
No Multiple

Logins
-
-
-
-

98%
0

0%
2%

99%
0.4
0%

1.4%
58%
15.9
0%
44%

1 User,
Multiple
Logins
78.6%

35
21.4%

0%
89.0%

11
0%
11%

100%
0.7
0%
0%

81.3%
14.8
0%

18.7%

2 Users,
No Multiple

Logins
74.90%

36.1
25.1%

0%
100.0%

0
0%
0%

98.2%
0.6
0%

1.8%
77.4%

17
0%

22.6%

2 Users,
Multiple
Logins
91.90%

29
8.1%
0%

94.7%
9.6
0%

5.3%
100%
0.5
0%
0%

91.5%
27
0%

8.5%

Table 8.1. Summary of Preliminary Simulation Results

This watchdog process does not use many run-time resources and hence may not
become an overhead to the system. However, when several users are logged
in and are being monitored, the system may see some performance loss. In
order to study this overhead, we eliminated all unrelated activities in the test
environment, started the intrusion detection system and allowed the users to
log in. We analyzed the average load per minute (no. of jobs in the run queue
on Unix) and the storage overhead in kB against the number of users on the
system. At this particular stage of implementation without much optimization,
the operation is very stable for about 15 users. The load on the system tends to
increase as the number of monitored users increases beyond 15. The storage
overhead (325 kB for a single user) increases at a constant rate with the number
of users. When the session-scope is large, the watchdog maps it to a huge sprint-
plan. The storage used by the IDS in our study corresponds to the worst case
scenario where a user selects all the entities from the session-scope provided
by the watchdog in a GUI.

8. DISCUSSION
The proposed intrusion detection technique is very effective in detecting

intrusions in user sessions. This is because the intruder's operations are likely
to result in large deviations from the intended session-scope of the user. In the

242 Chapters

event that an intruder is able to compromise an account, he is still restricted by
the defined bracket of activity.

The watchdog process which performs user session-level monitoring is the
core module of the distributed concurrent intrusion detection scheme described
in this chapter. Our scheme is not intended to be a replacement to other intrusion
detection tools such as pattem matching and rule-based systems built to work
on audit trail data. The concurrent monitoring watchdog described here can
be used in conjunction with other distributed intrusion detection schemes to
provide a higher detection resolution. For instance, the watchdog can be added
as a third party security module in EMERALD'S monitor ([19]).

Intrusion detection based on the encapsulation of owner's intent as described
in this chapter will be more effective in detecting command level intrusions and
intemal system misuse. A user's course-of-action (COA) can be influenced by
the balance between the user affirming the truth while the system checks for a
hidden intent to deceive. This close interaction between the user's thoughts and
the system's corresponding actions opens up new areas in information assurance
related to COA .̂

The proposed scheme has certain limitations. There will be some perfor­
mance loss due to the running of the watchdog monitors for each user. The
watchdog processing time will increase with the size and vagueness of the
session-scope and so it is important that users express a focused session-scope.
We have implicitly made a simple cost/benefit statement to the user by requir­
ing them to cognate some about what they are going to do and then state it in
the form of session-scope. Lack of cognition on the user's part followed by a
vague statement of intent has a cost. To deal with this cost, the weight of system
complexity will have to bear down on the user (to track the vague intent). The
cost accrued by the user will be lower quality of service and this aspect can be
built into future versions of our IDS. Further, Our IDS can by no means provide
a comprehensive solution to intrusion detection. For example, malicious code
attached to programs or network level attacks may not be detected since no
execution level monitoring is done in this approach. Profiling on user sessions
becomes infeasible if the user activity has a large entropy. In such cases, the
only defense is static monitoring using verifiable assertions and confining the
user activity within the bracket defined by the intent.

9. CONCLUSION
In this chapter, we have presented a new approach to intrusion detection

using verifiable assertions. We have developed this scheme by leveraging some
of the successful concepts from the fault tolerance domain. The main feature
of our technique is that detection occurs concurrently with user operations and
in real-time. The low latency detection of our technique can potentially speed

Encapsulation of User's Intent 243

up the recovery of affected systems. This is a significant benefit compared to
the schemes based on audit trail analysis.

We have given a basic architecture and sketched an algorithm for intrusion
detection. Several enhancements to the basic scheme are also presented. The
technique is flexible in that changes or updates to the intended plan can be
made easily. Also, every time a fresh session is started, a new set of verifiable
assertions is generated. The finite length of a given user session helps to keep
the sprint-plan to a small and bounded set.

The concurrent intrusion detection prototype described in this chapter is pre­
liminary. Our simulation shows that on-line intrusion detection using assertion
checking is feasible, that is, low performance overhead and good detection
coverage. More detailed experiments with complex intrusion scenarios is de­
sired. This requires further enhancements to the sprint-plan generation and
consideration of structural and temporal sequence checking.

10- FUTURE WORK

The intent of this chapter is to present a practical implementation of an online
intrusion monitoring scheme and its technical details. The following extensions
are easily conceivable.

• Sequences of Operations and Improved Profiling

It will be useful to consider sequences of operations to flag intrusions in
addition to considering the set inclusion checks. See the optional blocks
in Figure 8.5. This will enable the detection of more complex intrusions
that are orchestrated by concocting sequences of benign operations. An
analytical framework for reasoning about intrusions in such scenarios is
already in place ([27]).

• Network Level Attacks

When multiple sessions are allowed, it may be possible to mount a dis­
tributed attack. Issues related to computer networks and abuse of network
servers could be addressed as future work.

• Automated Assertion Generation

The generation of assertions can be automated using formal techniques
such as accounting checks or reasonableness checks ([20]). Some pre­
liminary reasoning work has been reported in ([27]).

ACKNOWLEDGIMENTS

The research is supported, in part, by the US AFOSR Grant F49629-C-
0063, AFRL Contract F30602-00-10507 and a seedling grant from DARPA. A
preliminary version of this work was presented in SPECTS 1999.

244 Chapter 8

Notes
1. Trusted Computer Security Evaluation Criteria, DOD 5200.28-STD, Department of Defense, 1985
2. This technique has been used by Real Intent, a company that develops formal verification based

products. As of 2002, the white paper is available at:
http://www.realintent.com/products/idv_white_paper.html

3. DARPA has undertaken a Course-of-Action Challenge project to aid in the military decision making
process. Details can be found at the URL:
<http://www.iet.eom/Projects/RKF/COA%20CP-spec-vO.3.htm>

REFERENCES
[1] Alkhalifa, Z., Nair, V. S. S., Krishnamurthy, N., and Abraham, J. A. (1999). Design

and evaluation of system-level checks for on-line control flow error detection. IEEE
Transactions of Parallel and Distributed Systems, 10(6).

[2] Chari, Suresh and Cheng, Pau-Chen (2002). Bluebox: A policy-driven host-based intrusion
detection system. Network and Distributed System Security Symposium (NDSSV2).

[3] Clyde, A.R. (Sept. 1987). Insider threat identification systems. Proc, 10th National
Computer Security Conf.

[4] Debar, H., Dacier, M., Wespi, A., and Lampart, S. (1997). An experimentation workbench
for intrusion detections systems. Research Report, IBM, Zurich Research Laboratory.

[5] Denning, D.E. (1987). An intrusion-detection model. IEEE Transactions on Software
Engineering, SE-13(2):222-232.

[6] Ferraiolo, D. and Kuhn, R. (1992). Role based access control. 15th National Computer
Security Conference.

[7] Ghosh, A. K., Schwartzbart, Aaron, and Schatz, Michael (1999). Learning program be­
havior profiles for intrusion detection. 1st USENIX Workshop on Intrusion Detection and
Network Modeling.

[8] Hochberg, J., Jackson, K., Stallings, C , McClary, J., DuBois, D., and Ford, J. (1993).
NADIR: An automated system for detecting network intrusions and misuse. Computers
& Security, 12(3):253-248.

[9] Ilgun, K., Kemmerer, R.A., and Porras, P.A. (1995). State transition analysis: A rule-based
intrusion detection approach. IEEE Trans, on Software Eng., 21(3): 181-199.

[10] Ko, C, Ruschitzka, M., and Levitt, K. (May 1997). Execution monitoring of security-
critical programs in distributed systems: A specification-based approach. 7997 IEEE
Symp. on Security & Privacy, pages 134—144.

[11] Krings, A.W., Harrison, S., Hanebutte, N., Taylor, C , and McQueen, M. (2001). At­
tack recognition based on kernel attack signatures, to appear in Proc. 2001 Internations
Symposium on Information Systems and Engineering, (ISE'2001).

[12] Kumar, S. and Spafford, E.H. (October 1994). A pattern matching model for misuse
intrusion detection. Proceedings of the 17th National Computer Security Conf, pages
11-21.

[13] Lane, Terran and Brodley, Carla E. (1997). Sequence matching and learning in anomaly
detection for computer security. AAAI'97 Workshop on AI Approaches to Fraud Detection
and Risk Management, pages 43-49.

[14] Lunt, T.E (1993). A survey of intrusion detection techniques. Computers and Security,
12:405^18.

Encapsulation of User's Intent 245

[15] Maxion, Roy A. and Tan, Kymie M. C. (2000). Benchmarking anomaly-based detection
systems. InVl Conf. Dependable Systems and Networks, pages 623-630.

[16] Maxion, Roy A. and Townsend, Tahlia N. (2002). Masquerade detection using truncated
command lines. Int*l Conf. Dependable Systems and Networks, pages 219-228.

[17] McConnell, J., Frincke, D., Tobin, D., Marconi, J, and Polla, D. (1998). A framework for
cooperative intrusion detection. 21st National Information Systems Security Conference,
pages 361-373.

[18] Namjoo, M. (1982). Techniques for concurrent testing of VLSI processor operation.
Proc. International Test Conference, pages 461-468.

[19] Porras, PA. and Neumann, PG. (Oct. 1997). EMERALD: Event monitoring enabling
responses to anomalous live disturbances. National Information Systems Security Conf,
pages 353-365.

[20] Pradhan, D.K. (1996). Fault tolerant computer system design. Prentice-Hall.

[21] Roesch, M. (1999). Snort: Lightweight intrusion detection for networks. USENIX LISA
Conference.

[22] Schuette, M.A. and Shen, J.P (1987). Processor control flow monitoring using signatured
instruction streams. IEEE Transactions on Computers, C-36(3):264-276.

[23] Snapp, S.R., Smaha, S.E., Grance, T, and Teal, D.M. (June 1992). The DIDS Distributed
intrusion detection system prototype. USENIX, 1992 Technical Conference, pages 227-
233.

[24] Spafford, Eugene H. and Zamboni, Diego (2000). Intrusion detection using autonomous
agents. Computer Networks, 34(4):547-570.

[25] Spyrou, T. and Darzentas, J. (1996). Intention modeling: Approximating computer user
intentions for detection and prediction of intrusions. Information Systems Security, pages
319-335.

[26] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt,
K., Wee, C, Yip, R., and Zerkle, D. (1996). GrIDS - A graph-based intrusion detection
system for large networks. 19th National Information Systems Security Conference.

[27] Upadhyaya, S., Chinchani, R., and Kwiat, K. (2001). An analytical framework for rea­
soning about intrusions. 20th IEEE Symposium on Reliable Distributed Systems, pages
99-108.

[28] Upadhyaya, S.J. and Ramamurthy, B. (1994). Concurrent process monitoring with no
reference signatures. IEEE Transactions on Computers, 43(4):475-480.

[29] Wagner, David and Dean, Drew (2001). Intrusion detection via static analysis. IEEE
Security and Privacy Conference.

[30] Wagner, David and Soto, Paolo (2002). Mimicry attacks on host-based intrusion detection
systems. ACM CSS.

Chapter 9

TOPOLOGICAL ANALYSIS OF NETWORK
ATTACK VULNERABILITY

Sushil Jajodia, Steven Noel, Brian O'Berry
Center for Secure Information Systems, George Mason University

Abstract: To understand overall vulnerability to network attack, one must consider
attacker exploits not just in isolation, but also in combination. That is, one
must analyze how low-level vulnerabilities can be combined to achieve high-
level attack goals. In this chapter, we describe a tool that implements an
integrated, topological approach to network vulnerability analysis. Our
Topological Vulnerability Analysis (TVA) tool automates the labor-intensive
type of analysis usually performed by penetration-testing experts. It is ideal
for inexpensive what-if analyses of the impact of various network
configurations on overall network security. The TVA tool includes modeling
of network security conditions and attack techniques (exploits), automatic
population of models via the Nessus vulnerability scanner, and analysis of
exploit sequences (attack paths) leading to specific attack goals. Moreover,
the tool generates a graph of dependencies among exploits that represents all
possible attack paths without having to enumerate them. This representation
enables highly scalable methods of vulnerability analysis, such as computing
network configurations that guarantee the security of given network resources.
Finally, this chapter describes some of the open technical challenges for the
TVA approach.

Keywords: Network vulnerability analysis, network attack modeling, network hardening.

1. INTRODUCTION

There are a number of tools available that can scan a network for known
vulnerabilities. But such tools consider vulnerabihties in isolation,
independent of one another. Unfortunately, the interdependency of
vulnerabilities and the connectivity of networks make such analysis limited.

248 Chapter 9

While a single vulnerability may not appear to pose a significant threat, a
combination of such vulnerabilities may allow attackers to reach critical
network resourceso

Currently available tools generally give few clues as to how attackers
might actually exploit combinations of vulnerabilities among multiple hosts
to advance an attack on a network. After separating true vulnerabilities from
false alarms, the security analyst is still left with just a set of known
vulnerabilities. It can be difficult even for experienced analysts to recognize
how an attacker might combine individual vulnerabilities to seriously
compromise a network. For larger networks, the number of possible
vulnerability combinations to consider can be overwhelming.

In this chapter, we describe a tool that implements a powerful topological
approach to global network vulnerability analysis. Our Topological
Vulnerability Analysis (TVA) tool considers combinations of modeled
attacker exploits on a network and then discovers attack paths (sequences of
exploits) leading to specific network targets. The discovered attack paths
allow an assessment of the true vulnerability of critical network resources.
TVA automates the type of labor-intensive analysis usually performed by
penetration-testing experts. Moreover, it encourages inexpensive "what-if'
analyses, in which candidate network configurations are tested for overall
impact on network security.

In implementing TVA, we collect extensive information about known
vulnerabilities and attack techniques. From this vulnerability/exploit
database, we build a comprehensive rule base of exploits, with
vulnerabilities and other network security conditions as exploit preconditions
and postconditions.

In the network discovery phase of TVA, network vulnerability
information is automatically gathered and correlated with the exploit rule
base. In the analysis phase, we submit the resulting network attack model to
a custom analysis engine. This engine models network attack behavior
based on exploit rules and builds a graph of precondition/postcondition
dependencies among exploits. The result is a set of attack paths leading
from the initial network state to a pre-determined attack goal.

The next section describes the network attack problem, and Section 3
reviews related work. Section 4 describes how TVA specifically addresses
the network attack problem. Section 5 applies TVA to the optimal hardening
of a network, and Section 6 discusses some of the TVA technical challenges.
Section 7 summarizes and concludes this chapter.

Topological Analysis of Network Attack Vulnerability 249

2. NETWORK ATTACK PROBLEM

We consider the complex problem of analyzing how attackers can
combine low-level vulnerabilities to meet overall attack goals. Solving this
problem involves modeling networks in terms of their security conditions,
modeling atomic attacker exploits as transition rules among security
conditions, and computing combinations of atomic exploits that lead to given
network resources.

In this problem, we model the various security conditions a. of a
network as binary variables. In particular, the values model the conditions
necessary for the attacker's success. For example, if some a- represents a
vulnerable version of a particular software component, a- = 1 means the
component exists and a. = 0 means it does not. Under an assumption of
monotonicity^ a condition may transition from false to true but not back to
false. That is, once a condition contributes to the success of an attack, it will
always do so.

Next, we model the success of some attacker exploit
s =5. (a . ,a, ,a .) as a Boolean function of some set of conditions.
For simplicity and without loss of generality, we model sj as a conjunction,
i.e., ^ .(a. .a.a,.)=a- A a. A---Aa. . If an exploit involves
disjunction (e.g. more than one version of a vulnerable program), we simply
divide the disjunctive portions into separate conjunctive exploits. The
success of an exploit s • then induces some set of new conditions to become
true, i.e., ^^(a. , a .^ , . . . , a . J= 1 implies a^^ =hci =l,. . . ,a^^ = 1 . In
other words, s. is a mapping from sf^ =\a. ,a- ,..,,a] \ (s .'s
preconditions) to s • —S^n-^^n 9---?^n I ('^, ^^postconditions) such that if
all the preconditions in Sj are true then all the preconditions in Sj
become true.

Given a network attack model, the next step is to determine how the
application of exploits (in terms of security conditions) impacts network
vulnerability. This step involves discovering combinations of exploits that
lead to the compromise of a given critical resource. That is, some security
condition a^^^^ is designated as the goal of the attack. An attack path is then
a sequence of exploits s j ,Sj ,...ySj that leads to a^^^^ becoming true. Of
particular interest are minimal attack paths, such that all exploits in the path
are necessary for achieving the attack goal.

Attack paths can help network administrators determine the best way to
harden their networks. To ensure complete security, all attack paths must be
accounted for. Some approaches in the literature do not report all paths,
while other approaches explicitly enumerate all of them. For scalabihty,
what is needed is a representation that allows the (implicit) analysis of all
possible attack paths without explicitly enumerating them. For example, in

250 Chapter 9

terms of network hardening, it is sufficient to know that a particular exploit
is required for all possible paths, without explicitly generating all of them.

In network hardening, it is also necessary to distinguish between two
types of network security conditions. One type appears only as exploit
preconditions. The only way that such conditions can be true is if they are
true in the initial network conditions, since they are postconditions of no
exploit. These initial conditions are precisely the ones we must consider for
network-hardening measures. The other type of condition appears as both
exploit preconditions and postconditions. We can safely disregard such
conditions for network hardening, since attacker exploits can potentially
make them true despite our hardening measures.

Given a set of initial conditions .̂̂ .̂̂ = {cj, C2,..., c^ }, we therefore wish
to compute assignments of condition values (hardening measures) in A-^
that guarantee the safety of a set of goal conditions A^^^^ = {̂ 1 ? ^2 ? • • • ? ̂ ^ j '
i.e., g. = 0 , V / . Moreover, we wish to compute hardening measures that
minimize assignments of c. = 0 , since such assignments generally have
some cost associated with them, e.g., the application of a security patch or
the disabling of a service.

3. PREVIOUS APPROACHES

Several aspects of the TVA problem have been studied previously.
While these studies have tended to focus on specific TVA-related
subproblems, our goal is to develop TVA to its full potential.

For example, Swiler et al [5] presents a tool for generating network
attack graphs. In our TVA tool, we apply an altemative attack graph
representation that is considerably more efficient, making the graphs feasible
for larger networks. Templeton and Levitt [6] and Daley et al [7] describe
approaches for specifying attacks that are similar in spirit to our exploit
modeling. These approaches focus primarily on modeling, but we include a
subsequent analysis phase.

The application of model checking for network attack models was first
proposed by Ritchey and Ammann [8]. More recently, Sheyner et al [9]
modified the Symbolic Model Verifier (SMV) model checker to find all
possible attack paths rather than a single attack path.

We experimented with SMV as an initial TVA analysis engine, because
we could deploy it off the shelf But scalabihty problems with SMV led us
to develop a custom analysis engine. Our analysis engine applies an
efficient graph-based representation of exploit dependencies, as described in
Section 4.2. The application of such a representation to network
vulnerability analysis was first described by Ammann et al [10].

Topological Analysis of Network Attack Vulnerability 251

A central aspect of TVA modeling is connectivity among machines. A
layered connectivity structure is needed to represent the various network
architectures and protocols. Our connectivity model mirrors the
Transmission Control Protocol/Intemet Protocol (TCP/IP) reference model
and is described in more detail in [11].

4. DESCRIPTION OF TVA TOOL

In this section we describe our TVA tool for analyzing vulnerability to
network attacks. The description includes the modeling of network attacks
and the analysis of network attack models for discovering attack paths to
given critical resources.

Figure 9-1 shows the overall architecture of our TVA tool. There are
three components: (1) a knowledge base of modeled exploits, (2) a
description of a network of interest, and (3) a specification of an attack
scenario (attacker target, initial attack control, and network configuration
changes). The TVA analysis engine merges these three components and
then discovers attack paths (exploit combinations) based on the merged
model.

We model exploits in terms of their preconditions and postconditions.
That is, each exploit is a rule in which the occurrence of a particular set of
preconditions induces a particular set of postconditions. The resulting set of
exploit rules comprises an attack knowledge base. The exploits in the
knowledge base are generic, i.e., independent of any particular network.

A network discovery component gathers configuration and connectivity
information to produce a TVA network description. Here we use "network
discovery" in a more general sense, i.e., it may include traditional network
discovery tools, vulnerability scanners, and code to convert such tool outputs
to a TVA network description. The network description and exploit
knowledge base share a common name space, which enables the mapping of
generic exploits to actual network elements.

252 Chapter 9

Initial Network
Attacker Attacker Configuration

Target Control Changes

Exploit
Knowledge

Capture

^Exploit
Knowledge
\rBase

i
Analysis
Engine

Attack
Paths

Vulnerability
and Exploit
Database 1

' l**Mt • ip^.tV" - • " • > • "

i 9 *W.*fO«i J »

Network
-•^ Description

^^Vulnerability
And Exploit
Information

Network
Discovery

On Web
^ y

Network

Figure 9-1. TVA Architecture

4.1 Modeling Network Attacks

Keeping pace with evolving threats and vulnerabilities requires an on­
going effort in collecting information on network attacks that can be
leveraged for TVA. The set of exploit rules in the TVA knowledge base
must be comprehensive and up to date, since discovered attack paths will
contain only those exploits that are actually included in the knowledge base.

Once raw information related to network attacks is gathered, we model it
in terms of exploit preconditions/postconditions. For comprehensive and
accurate results, this modeling requires a good understanding of attacker
strategies, techniques, and tool capabilities. Exploit conditions can be any
generic attributes that potentially impact network security.

Our TVA model structure is a hierarchical framework that serves as a
taxonomy of model elements. The TVA model structure evolved as exploits
were developed for various types of vulnerabilities. The evolving structure

Topological Analysis of Network Attack Vulnerability 253

supports the effects of firewalls and other connectivity-related devices. Also
important is the modeling of machine groups, such that a successful attack
against one group member applies equally to other machines in the group^.

In our experience, the TVA model structure in Figure 9-2 is flexible
enough to address a full range of vulnerability types and network
configuration variations. For example, we have implemented exploit rules
for traffic sniffing, password capturing and cracking, file transfers, command
shell access, X Window access, secure shell (ssh) public key authentication,
buffer overflows that grant elevated user privileges, port forwarding,
machine identity spoofing, and denial-of-service attacks.

In the next paragraph, we begin describing a way to automatically
populate network models for TVA. However, it is much more difficult to
automatically populate sets of modeled exploits. In particular, it is difficult
to automatically capture the semantics needed for exploit preconditions and
postconditions, because the vulnerability-reporting community has defined
no standard formal language for specifying such semantics. Instead,
databases of reported vulnerabilities usually rely on natural language text to
describe vulnerabilities and ways of exploiting them. We have begun
investigating how exploit semantics can be specified via web-based
ontologies.

For TVA to be practical for real networks, it is important to automate the
network discovery process. We have integrated our TVA tool with the open-
source Nessus [1] vulnerability scanner. Nessus maps known vulnerabilities
to network machines, reporting scan results using the extensible Markup
Language (XML) [2]. The XML representation allows us to leverage the
extensible Stylesheet Language (XSL) [3] to easily convert Nessus output to
TVA input (which is also in XML).

Figure 9-2. TVA Model Structure

254 Chapter 9

To transform a Nessus report into a TVA network description, each
reported Nessus vulnerability is cross-referenced against a hst of known
exploits. If a match is found, the Nessus vulnerability is appHed as the name
of a machine-connection precondition in the resulting network description.
Nessus-based exploits may also have preconditions and/or postconditions for
access type (e.g., execute or file transfer access) and privilege level (e.g.,
user or super user).

TVA maintains network connectivity details in separate tables that
describe each machine's connections to the rest of the network. This means
that firewalls don't have to be modeled directly because the individual host
tables implicitly address their effects. However, multiple Nessus scans are
required to correctly populate the connectivity tables when firewalls are
present. In general, a separate Nessus scan is required for each network
segment to which a firewall connects.

The network generation process merges the external and internal Nessus
scans into a single coherent network description. The two-stage (external
and internal) dataflow diagram for this process is shown in Figure 9-3. This
process can be generalized in a straightforward fashion to handle arbitrary
numbers of separate network segments.

Stepl Step 2 Step 3

Nessus
External W attack.xml I—^ | xsltpro7

config.xsl v"^ sTV"? attack, xsl

nidxref.xsl

Nessus
Internal | | network.xml mH—^

network.xsl

xsltproc

attgen.xsl

•
Zi _ia

tva.xsl
4

netgen.xsl

r-^-^

f ^ ^
nulLxml

T"^
-^ \ xsltproc 1 r tva.xml

Figure 9-3. Generation of Network Description via Nessus

In the first step of this process, Nessus generates a vulnerability report for
each network segment. In the second step, the Nessus report XML is
processed against a Nessus cross-reference (nidxref.xsl), written in XSL.
The second step optionally inserts configuration-specific information
(contained in config.xsl) as specified by the TVA user. The nidxref.xsl
stylesheet is produced by the Nessus exploit generation process described
below. This stylesheet enables the network description to be optimized so

Topological Analysis of Network Attack Vulnerability 255

that it contains only those Nessus connections for which exploits have been
developed.

The last step merges the intermediate files from the second step into a
single network description (tva.xml) that also incorporates an attack goal
specification from the TVA user. The null.xml document is a dummy file
that satisfies the XSL processor requirement [4] for an input XML file.

The process for generating TVA exploits from Nessus is shown in Figure
9-4. It begins with Nessus plugins, which contain the detailed information
that Nessus needs for detecting vulnerabilities. We have developed a
program (np2xp) to convert the Nessus plugins list into XML.

The resulting plugins.xml is then processed against the conditions.xsl
stylesheet. This stylesheet is produced manually through researching the
plugin information, e.g., consulting the relevant data in our
vulnerability/exploit database. As we discussed earlier in this section, it is
difficult to totally automate this manual step. The processing against
conditions.xsl inserts the preconditions and postconditions developed
through this exploit-modeling process. Finally, the resulting exploits.xml is
transformed into Java modules and compiled into the TVA analysis engine.
This process also generates the Nessus identification cross-reference file
(nidxref.xsl) described eariier, which is in turn used to generate TVA
network descriptions from Nessus scans.

Nessus
plugin

list
1 nx2xp -^-^

C ^ IZ^

plugins.xml

By hand

conditions.xsl

xsltproc

xp2java.xsl * xsltf

1

3roc 1 1

r

Java exploits nidxref.xsl

exploits.xml

1 xsltproc 1 1 ̂
c^ ~^

buildxref.xsl

Figure 9-4. Generation of Exploits via Nessus

256 Chapter 9

4.2 Network Attack Analysis

Given a particular TVA model (network description and set of exploits),
we analyze the model to discover attack paths to critical network resources.
From these attack paths we can then derive an expression for network safety
in terms of the initial configuration. This safety expression in tum supports
decisions about hardening the network against attacks.

We begin with a set of exploits S ^{s^.Sj,^^] in terms of security
conditionsy](= {(3̂ (22 5...}. These exploits and conditions conform to the
modeling framework described in Section 4.1. The network attack model
(network conditions and exploits) can be built by hand, automatically
generated, or a combination of both.

The attack paths we compute are based on a directed graph of the
dependencies (via preconditions and postconditions) among exploits and
conditions. One way is to represent conditions as graph vertices and exploits
as (labeled) graph edges. The dual of this representation is also possible,
with exploits as graph vertices and conditions as labeled graph edges.

We employ a third representation that is a bit more flexible. This
representation has both conditions and exploits as vertices. Edge labels then
become unnecessary, with directed edges simply representing generic
dependency. In this representation, a dependency edge e = \a^s) going
from condition a to exploit s means that s depends on a , i.e., a is a
precondition of s . Similarly, a dependency edge e = \s^ a) going from
exploit s to condition a means that a depends on s, i.e., a is a
postcondition of s.

We build the dependency graph through a multi-step process. We first
build the set of all exploits S^^^^ a S that can be successfully executed by
the attacker. Working from S^^^^, we then build a dependency graph D^^^^
starting from the initial condition exploit s-^^:^^. That is, we start from s-^^^^,
search S^^^^ for exploits whose preconditions match the postconditions of

ĵĵ ĵ , add exploit dependencies for any s^^^^^ found, and then remove s^^^^^
from S^^^^. We continue by iteratively adding dependencies to D^^^^ by
searching 5,,^, and removing s^^^^^ from 5,,^,. The resulting graph D-^,
represents forward dependencies from -̂̂ .̂̂ , i.e., exploits in Z)-̂ -̂̂ are those
that are forward-reachable from s-^^^^.

Next we do a backward traversal of the forward-reachable dependency
graph Z)-ĵ .̂ , starting from the attack goal exploit ^ j . The resulting
dependency graph D includes exploits that are not only reachable from the
initial conditions, but are also relevant to (i.e., reachable from) the attack
goal. In fact, D comprises the necessary and sufficient set of exploits with
respect to the initial and goal conditions, i.e., all exploits can be executed,
and all exploits contribute to the attack goal. Thus D represents the set of

Topological Analysis of Network Attack Vulnerability 257

minimal attack paths, in which no exploit can be removed without impacting
the overall attack.

Given a dependency graph D, we then construct an expression that
concisely represents all possible attack paths. This construction involves the
recursive algebraic substitution of exploits (via precondition/postcondition
dependencies) in the backward direction, starting from the goal-condition
exploit ^g^ ĵ. That is, we start from '̂̂ ^̂ j and algebraically substitute it with
the conjunction of its preconditions, i.e. 5g,,, -> \a^^^^^, flfg,,,^,..., â ^̂ ,̂ }.

We then substitute each of the goal-condition preconditions a^^^^ with
the exploit that yields it as a postcondition, since these are logically
equivalent. In the event that more than one exploit yields this postcondition,
we form the disjunction of all such exploits, since logically any one of them
could provide the postcondition independent of the others.

We continue in a recursive fashion, substituting the newly generated
exploit expressions in the same way we treated the goal-condition exploit
expression. In doing this recursive algebraic substitution, we make direct
use of the exploit-condition dependency graph by traversing it breadth first.
Once the dependency graph has been fully traversed, the result is a concise
expression that represents all possible attack paths to the goal.

Initial-condition assignments of false mean that the corresponding
network services are unavailable. It is desirable to choose assignments with
minimal impact on network services. We can immediately choose one
assignment over another if all of its disabled services also appear disabled in
the other set. This choice is desirable because the selected set represents a
comparative increase in available services. Moreover, this choice is neutral
with respect to relative priorities of network services, since no service is
disabled in the chosen set in comparison to the other.

This analysis yields all possible hardening measures (sets of initial-
condition assignments) that have minimal impact on services. The analyst
can now compare the various sets and select the one that offers the best
combination of offered services.

5, EXAMPLE TVA APPLICATION

In this section, we demonstrate by example how TVA combines
vulnerabilities in a network to find attack paths to a particular goal. We then
analyze the TVA results to determine the best way to harden the network
against attack.

In this example, a restrictive firewall protects the machines that support
public web and email services, as shown in Figure 9-5. This example shows
how connectivity-limiting devices affect the TVA model and how vulnerable

258 Chapter 9

services on a network can be exploited even when direct access to services is
blocked.

The firewall implements the following policy to restrict connectivity
from the attack machine:
1. Incoming ssh traffic is permitted to both maude and ned, although only

ned is running the service (this is a common practice under the
assumption that it is safe because ssh is a secure protocol);

2. Incoming web traffic is permitted only to maude, which is running
Microsoft's Internet Information Server (IIS);

3. Incoming email is permitted to ned, which is running the sendmail server;
4. Incoming File Transfer Protocol (FTP) traffic is blocked because ned is

running the wu_ftpd server, which has a history of vulnerabilities;
5. All outgoing traffic is permitted (this is a common practice under the

assumption that outgoing traffic won't harm the internal network).

NT4.0
IIS

Linux
sendmail

ssh
wu_ftpd

maude ned

Figure 9-5. Network Diagram for Example TVA Application

The attack goal for this example is to obtain super user (root) access on
ned. This is not directly possible because (1) no known exploits exist for the
version of sendmail running on ned, and (2) the firewall blocks access to the
vulnerable wu_ftpd service from the attack machine. The question now is
whether the attack goal can be realized indirectly, i.e., through a sequence of
multiple exploits.

The initial locus of attack is on the attack machine, since only that
machine has user access and privilege defined as an initial condition, via the
TVA network description. In general, the initial attack machine will also
tend to have a complete set of programs used by the exploits in the model.
Network connectivity is represented at the machine level by listing all
possible connections from the given machine to all other destination
machines in the network description. The effect of a firewall or other

Topological Analysis of Network Attack Vulnerability 259

connectivity-limiting device is to reduce the size of each machine's
connectivity table, but such devices generally will not appear as specific
machines in the network description unless they run their own services to
which other machines can connect. For this scenario, the firewall did not
support any such services.

The attack goal is represented in the network description as a particular
set of resources on a particular machine (the goal machine could appear
elsewhere in the network description, with any set of initial conditions
defined for it). In this example, we are only testing whether execute access
(the ability to run programs) with super user (root) privilege can be obtained
on ned. However, in general it is possible to test any other conditions, such
as the appearance of any new connectivity or program in its configuration.

Figure 9-6 shows the resulting TVA attack graph for this example. For
clarity, the specific exploit preconditions and postconditions are omitted
from the figure, but they are described in Table 9-1.

IISRDS(ATTACKM.\UDE)

RCPDO\\'NLOAr>(M:\UDE.ATX-\CK)

/
\\'UFTPDX{M.\UDE>JED) PORTFORW.Aja)(ATTACK>t-^UDE,NED)

\\TJFTPDX(ATTACK;̂ ED)

EXECUTE(NED) S U P E R U S E R (I ^ ^ ^ [

Figure 9-6. Attack Graph for Example Application of TVA

Despite the firewall poHcy designed to protect it, the external attacker
obtains execute access with super user privilege on ned. The attack graph
shows that the initial exploitation of the IIS vulnerabihty on maude
ultimately leads to the compromise of^ned, e.g., the following:

260 Chapter 9

1. The IIS Remote Data Services (RDS) exploit enables the attacker to
execute programs on maude;

2. Given the access provided by the IIS RDS exploit, the remote copy^ (rep)
program on maude is executed to download a rootkit"̂ from the attack
machine;

3. A port-forwarding program from the rootkit is then executed to set up
access from the attack machine through maude to the FTP service on
ned\

4. Finally, the wu_ftpd exploit is executed through the forwarded
connection against ned to obtain root access there.

Table 9-1. Exploits for Example Application of TV A
Exploit Description Preconditions Postcondition
IISRDS One of many

exploits associated
with Microsoft's
Internet Information
Server (IIS)

RCPDOWNLOAD Binds rsh access to
the ability to transfer
programs (e.g.,
rootkits) from victim
machine using the
rep program

WUFTPDX Yields super user on
many Unix
platforms that run
the Washington
University FTP
daemon, wu-ftpd

PORTFORWARD Enables attacker to
work around
firewall when
foothold obtained on
an internal machine.
One of few exploits
that implements
"middleman"
machine to direct
exploits against
victim machine.

1.

2,

1.

2.

3.

1.

2.

3.

1.

2.

3.

4.

, Execute access on attack
machine
Attack machine has
connectivity to IIS service
on victim

Execute access on attack
machine
rep program on attack
machine
Attack machine has
connectivity to victim's
rsh service
Execute access on attack
machine
wu-ftpd exploit program
exists on attack machine
Attack machine has
connectivity to FTP
service on victim
Middleman and victim
are different machines
(implicit, not in attack
graph)
Execute access on
middleman
Port-forwarding program
on middleman
Attacker connectivity to
transport-layer (unused)
port on middleman

Ability to
execute
programs on
victim at super
user privilege
level
Copies victim
machine's
programs to
attack machine

Super user
execute access
on victim

Attacker
acquires
middleman's
transport layer
connectivity to
victim

Finding such attack paths is a unique TVA capability. No commercial
tool connected outside the firewall is currently capable of reporting more
than an IIS vulnerability on maude. Connected inside the firewall, a

Topological Analysis of Network Attack Vulnerability 261

commercial tool would also report the vulnerable wu_ftpd service, but
human analysis would still be required to build an attack path from the
outside through maude to ned. This would be an easy enough exercise for an
experienced penetration tester working on such a small network. But it
would be infeasible for networks in which voluminous outputs must be
analyzed manually for large numbers of machines.

From a TVA attack graph, we can immediately compute an expression
for the attack-goal conditions in terms of the initial conditions. This process
involves traversing the attack graph in a backwards direction, algebraically
substituting exploits with those exploits that satisfy their preconditions. This
computation is done recursively, with the recursion ending when an exploit's
precondition is an initial condition.

As we explained in Section 2, the only conditions relevant to network
hardening are the initial conditions. An expression g(cpC2,...5C^) for the
attack goal in terms of initial conditions C-^^^^ = {cj, C2, •.., c^} then provides
a way to determine if a particular network configuration is guaranteed safe
with respect to the attack goal. From the particular form of g , we can
determine the safe assignments of A-^^^^.

Figure 9-7 again shows the TVA attack graph for this example, this time
with the initial conditions included. For convenience, the figure includes
algebraic symbols that correspond to our analysis of network hardening. In
particular, exploits are denoted by Greek letters, and initial conditions are
denoted by c..

TXANS_llS_ftDS(AriACK>UUIME) DCCOTrnMriACIE)

TR.^»«_lA\l_FTft)iM\UDCMDj

T1tANS,I|S_ltI>S<U\UDEMAUDD A nStDSUTtACXMAUDEJf^

^4 ^5

\ K A 5:
IKTDO*?ajO\I><M\iroEATX\aO TIL\NS_l«USED_P0rTtAnACK«AUDO

KajPTTIXXtMAUDOTD) POIlTrOlt^^AR0(AtTACK>l̂ W«:N^>l CMCVTCCAnAClO KM ^M FTK) X(,\TX\riO

\ ^ lATlFTrOXiATIACKNID)

,.CXCCUXG(KC>> ^^urutusouNeD).

s

Figure 9-7. Attack Graph with Exploit Preconditions Included

262 Chapter 9

By examining Figure 9-7, we can traverse the attack graph backwards,
starting from the goal condition g", and recursively perform algebraic
substitution according to precondition/postcondition dependencies.

g = 5 + ^

= a\a + pjc^c^c^ + a\a + p)c^c^c^c^c^ (1)

= CJC2C4C3 \C^ + CjC^Cg)

In terms of the problem domain, some initial conditions are outside the
network administrator's control. In particular, the administrator has no
control over conditions like programs and user access/privilege on the
attacker's machine. Thus we have Cj = c^ = Cg =1, so that Eq. (1)
becomes

g = c,c,c,{c,+c,) (2)

From Eq. (2), four assignments of initial conditions are apparent that
provide network safety. While other safe assignments are also possible,
these four minimize the cost of hardening the example network:
1. Patch or disable the IIS RDS web server on maude (Cj = 0);
2. Disable outgoing rsh from maude {c^ = 0);
3. Remove the rep program from maude {c = 0) ;
4. Patch or disable wu__ftpd from maude to ned, and block all unused ports

on maude (c^ + Cj =0).
When considered separately, each of these four options has a minimal

hardening cost, in the sense that no hardening measure can be ignored
without jeopardizing the attack goal. The network administrator can then
choose the option that has overall minimum cost, based on the relative costs
of the individual hardening measures.

Topological Analysis of Network Attack Vulnerability 263

6. TECHNICAL CHALLANGES

The TVA modeling framework supports the full range of network and
exploit information needed for realistic scenarios. But to make TVA
feasible for large networks, automatic model generation methods are needed.

As described in Section 4.1, we currently create TVA network
descriptions via the Nessus vulnerability scanner. But Nessus lacks the
ability to provide certain types of information. For example, with Nessus we
must assume that firewalls enforce generic policies for the individual
network segments. Although this may be an acceptable approximation of
firewall effects, real policies often include host-specific rules.

While host-specific rules could be handled by individual Nessus scans
from each machine in the network, this procedure is not very efficient. A
more efficient solution would be to build TVA models directly from firewall
filter tables. Also, while transport and application layer information is
available from Nessus, additional topology information is needed to
delineate between the link and network TCP/IP layers.

Although Nessus can guess a remote machine's operating system, it is
not always correct and often cannot determine a specific version. Many
exploits depend on detailed information about the operating system.
Vulnerabilities are often removed by applying a patch to the applicable
operating system or application. Patch-level information is therefore
required for accurate exploit modeling.

Nessus scans for vulnerabilities from a remote location, so it can only
detect network service information. However, many vulnerabilities are local
and are not exploitable or detectable over a network. Processes are required
to gather program-specific information from individual hosts, e.g., from host
configuration files. For example, some trust relationship and group
membership information is difficult to obtain remotely. This information is
valuable for TVA, to determine whether an exploit is really possible or
whether it affects machines other than the immediate target.

As one can imagine, TVA attack graphs might become huge for large,
poorly secured networks. Analytical and visual methods are necessary for
handling such (quadratic) attack-graph complexity, such as aggregating parts
of the graph as summary information or culling parts of the graph not of
immediate interest. We have developed a prototype drill-down visualization
tool that shows great promise in solving the attack graph management
problem.

A current bottleneck for TVA implementation is the process of modeling
exploits manually. The problem is that much of the domain knowledge is
available only as natural-language text. What is needed are exploit
specifications written in a standard, machine-understandable language.

264 Chapter 9

It appears that this requirement can be met by the emerging Semantic
Web [12] under development by the World Wide Web Consortium. The
vision is that web content of the future will be defined and linked in a way
that it can be used for automation, integration, and reuse across various
applications, not just for display purposes as with Hypertext Markup
Language (HTML). With the Semantic Web, standardized rule-based
markup provides the actual semantics (meaning) for web content.

TVA has potential application beyond penetration testing and network
hardening. For example, it can be applied to the tuning of intrusion
detection systems. In practice, network administrators must often balance
the risk of attack against the need to offer services. Even with network
hardening guided by TVA, administrators may still decide to tolerate some
residual network vulnerability from services they absolutely need. The
intrusion detection system could be configured to consider only this residual
vulnerability and thus generate alarms only in the context of genuine threats
to critical network resources.

At a minimum, vulnerabilities that do not significantly contribute to
overall risk can be ignored, reducing the effective false-positive rate. It may
also be possible to infer new intrusion signatures from TVA results, in tum
increasing the number of true positive detections.

But there is a limit to what can be accomplished with network hardening
and intrusion detection. The need to offer services is at odds with network
hardening, and effective intrusion detection will remain challenging,
particularly in the face of novel attacks.

To augment methods of avoidance and detection, TVA can be applied to
attack response, both defensive and offensive. For defensive response, the
network is dynamically hardened in the face of attacks. A less conservative
approach is to launch an offensive counterattack in response to an attack
against one's own network. While approach may be extreme, it could be the
only available option for allowing a network to function after being attacked.

7. SUMMARY AND CONCLUSIONS

This chapter describes a tool for Topological Vulnerabihty Analysis
(TVA), a powerful approach to global network vulnerability analysis. The
tool analyzes dependencies among modeled attacker exploits, in terms of
attack paths (sequences of exploits) to specific network targets. While the
current generation of commercial vulnerabihty scanners generates
voluminous information on vulnerabilities considered in isolation, they give
little clues as to how attackers might combine them to advance an attack.

Topological Analysis of Network Attack Vulnerability 265

The tool automates the type of labor-intensive analysis usually performed
by penetration-testing experts, providing a thorough understanding of the
vulnerabilities of critical network resources. It encourages inexpensive
what-if analyses of the impact of candidate network configurations on
overall network security.

Also, the tool employs a comprehensive database of known
vulnerabihties and attack techniques. This database includes a
comprehensive rule base of exploits, with vulnerabilities and other network
security conditions serving as exploit preconditions and postconditions.

During TVA network discovery, network vulnerability information is
gathered and correlated with exploit rules via the open-source Nessus
vulnerability scanner. Our custom TVA analysis engine then models
network attack behavior based on the exploit rules, building a graph of
precondition/postcondition dependencies. This graph provides attack paths
leading from the initial network state to a specified goal state. From the
attack graph, we can determine safe network configurations with respect to
the goal, including those that maximize available network services.

Our TVA tool provides powerful new capabilities for network
vulnerability analysis. It enables network administrators to choose network
configurations that are provably secure and minimize the cost of network
hardening. TVA also has potential application to other key areas of network
security, such as identifying possible attack responses and tuning intrusion
detection systems.

ACKNOWLEDGEMENTS

We gratefully acknowledge the software development efforts of Michael
Jacobs in support of this chapter. The work of Sushil Jajodia was partially
supported by the Virginia Commonwealth Information Security Center
(www.cisc.jmu.edu).

NOTES

1. In the context of network security, our assumption of monotonicity is quite reasonable. It
simply means that once an attacker gains control of a resource, he need never relinquish it
in order to further advance the attack. In other words, no backtracking is necessary.

2. An example of machine group effects is that guessing a Windows NT domain user
password would probably allow login to all machines in the domain.

3. The rep program is installed by default with Windows NT 4.0.
4. A ''rootkit" is a hacker term that refers to tools an attacker often transfers to a

compromised machine for the purpose of expanding access or escalating privileges.

266 Chapter 9

REFERENCES

[I] R. Deraison, Nessus, Retrieved from http://www.nessus.org. May 2003.
[2] World Wide Web Consortium, Extensible Markup Language (XML), Retrieved from

http://www.w3.org/XML/, May 2003.
[3] World Wide Web Consortium, The Extensible Stylesheet Language (XSL), Retrieved

from http://www.w3.org/Style/XSL/, May 2003.
[4] World Wide Web Consortium, XSL Transformations (XSLT) Version LO., Retrieved

from http://www.w3.org/TR/xslt, May 2003.
[5] L. Swiler, C. Phillips, D. Ellis, and S. Chakerian, Computer-attack graph generation

tool. In Proceedings of the DARPA Information Survivability Conference &
Exposition II, 307-321, 2001.

[6] S. Templeton and K. Levitt, A requires/provides model for computer attacks. In
Proceedings of New Security Paradigms Workshop, 19-21, 2000.

[7] K. Daley, R, Larson, and J. Dawkins, A structural framework for modeling multi­
stage network attacks. Presented at International Conference on Parallel Processing
Workshops, 5-10,2002.

[8] R. Ritchey and P. Ammann, Using model checking to analyze network vulnerabilities,
In Proceedings of the IEEE Symposium on Security and Privacy, 156-165, 2000.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J, Wing, Automated generation and
analysis of attack graphs. In Proceedings of the IEEE Symposium on Security and
Privacy, 254-265, 2002.

[10] P. Ammann, D. Wijesekera, and S. Kaushik, Scalable, graph-based network
vulnerability analysis, In Proceedings of 9th ACM Conference on Computer and
Communications Security (ACM-CCS 2002), 217-224, 2002.

[II] R. Ritchey, B. O'Berry and S. Noel, Representing TCP/IP connectivity for topological
analysis of network security. In Proceedings of 18th Annual Computer Security
Applications Conference, 156-165, 2002.

[12] World Wide Web Consortium, Semantic Web, Retrieved from www.w3.org/2001/sw/,
May 2003.

Chapter 10

ANALYZING SURVIVABLE COMPUTATION IN
CRITICAL INFRASTRUCTURES

Yvo Desmedt
Computer Science Department, Florida State University

Abstract: For centuries, our society relied on mechanical technology. Today, it is being
computerized to such an extent that we are becoming very dependent on computer
technology. This makes cyber attacks a potential threat to our society. Heuristics
is one approach to analyzing which infrastructures are critical and vulnerable.
We will discuss several methods that can be used to analyze this topic more
scientifically. The methods are independent of the type of attacks the enemy
uses, whether, e.g. a traditional bomb or cyber terrorism.

Keywords: Critical Infrastructure, adversarial structure, flow, model, security, AND/OR
graph

1. INTRODUCTION

The first industrial revolution made us very dependent on mechanical devices.
Some mechanical devices played a more important role than others. Ball­
bearings were viewed as the most critical component.

Today, we are moving towards an information technology society. Com­
puters (general purpose as well as dedicated ones) control and manage several
aspects of our society. Examples are the use of computers for bookkeeping,
in sensors and control units. In large plants, several dedicated computers as
well as general purpose computers are commonly used. Computers are also de­
ployed extensively in modem communication equipment, in database systems
(e.g., airline reservation systems), etc. Essentially, our society has become quite
dependent on computers.

When a home computer is maliciously shut down, the applications on the
computer, such as word processing, are no longer available. The impact of
unavailability (e.g., caused by a denial of service) may be much greater for
one application than for another. For example, compare a word processor

268 Chapter 10

program used on a PC at home, versus computers used to manage the stock
market, or used in airline reservation systems. Aside from direct impacts of
shutdowns or incorrect computations (or other security failures), there are also
indirect impacts. Indeed, a shutdown of a computer, e.g., one used to control
mechanical, chemical and other processes, may have a ripple through effect on
the economy as a whole.

Although there has been a lot of research on information security [2,24], there
are still several problems. Some research problems have not been sufficiently
addressed. Indeed, computer viruses continue to pose a major threat today, as
they did 15 years ago. Yet, there is no major effort anymore to develop a secure
operating system [27]. So, it is unlikely we will see inexpensive computer
security deployed on a large scale. This implies that in order to protect our
critical infrastructure, we must identify which parts of the infrastructure are
truly critical. Indeed, failure to do this correctly may result in "over-protecting"
infrastructures that are in fact less critical, wasting resources and creating a false
impression of security.

An important question is how to identify which infrastructures are critical.
One approach is ad-hoc. That approach was used by the President's Commis­
sion on Critical Infrastructure Protection during the Clinton administration [26].
In that case, there was almost a one-to-one mapping between the infrastructures
identified as critical and the employers of the members of the commission. So,
unfortunately, the commission clearly failed to fully analyze which infrastruc­
tures outside their area of expertise should have been added to the list. For
example, the food distribution and production industry is one of the many that
clearly seems critical. It is now included in the list of President's National
Strategy for Homeland Security [20]. However, how can we ensure that the list
is now complete and the most critical infrastructures are identified? A different
approach is, therefore, to find a more scientific method for identifying them.

In Section 2, we will discuss a method for modeling both the ''mechanical"
as well as the information technology aspects of our society. In Section 3, we
will reflect and improve on the typical approaches used to model the enemy.
The strength of the models used here is that these models are independent of
the type of attack the enemy uses. In Section 4, we will survey how flow can be
used to measure what is critical, and what results have been found so far using
this method. A problem with the flow based method is that it does not allow
for dealing with multiple applications that have different relative impacts. A
method inspired by economics is surveyed in Section 5. In Section 6 we will
end by examining open problems, and then conclude.

Analyzing Survivable Computation in Critical Infrastructures 269

2. HOW TO MODEL THE INFRASTRUCTURES
When talking to an industrial or a mechanical engineer, one discovers that the

different sectors involved in making a product, like a car, are modeled using a
PERT directed graph (digraph) [16]. PERT stands for Program Evaluation and
Review Technique. A computer scientist models communication networks [18]
by (directed) graphs. So, it seems that since both use graphs, we could easily
merge our mechanical (chemical, etc.) world with our information technology
one. Unfortunately, these two graphs are used in very different ways.

When a PERT digraph is used, an output, (a sink), often corresponds to a
product/task that plays no role in other products/tasks. For example, in the
production of a car, (where nodes correspond to a sector of the economy), the
sink node corresponds to the production of cars and other nodes correspond
to the tire manufacturing sector, the rubber sector, the steel sector, etc. The
outgoing edges represent the products/tasks that are the output of the node,
which is the corresponding infrastructure/task. A node can only produce an
output provided that the required input(s) from each incoming input edge is
available. For example a car needs 4 tires, and a motor, etc.

In a network directed graph, data can flow from one node ^ to a node B via
any directed path from Ato B (provided there is no congestion). So, when one
compares PERT digraphs with network, one observes that the role of a node
differs. In the PERT graph, the node corresponds to an "AND" in the sense that
to produce the output all inputs are required. On the other hand, in a network
graph, the node corresponds to an ''OR." Indeed, a node can provide an output,
provided an input is available from just one input. Note that this AND or OR
should not be viewed as logical gates!

So, it seems that combining a mechanical society and an information tech­
nology one is more difficult. However, the Artificial Intelligence concept of
AND/OR graph [25] permits the merging of these, as suggested in [5]. We will
now survey this approach, focusing on the car production example.

While the PERT graph models infrastructures, it cannot deal with redun­
dancy. Usually there is more than one factory that produces tires. So, a car
manufacturing plant could choose tires from different tire manufacturing plants.
This point is important when one tire manufacturing plant is shut down. So, a
node labeled OR can be used to indicate this redundancy. A node labeled AND
is used to indicate that all inputs are needed. A manufacturing plant corresponds
in practice to a few AND/OR labeled nodes. This unifying approach obviously
allows modeling PERT directed graphs, network directed graphs, and what one
could call a redundant PERT graph [9]. Therefore, the model does allow for
integrating data networks with a mechanically oriented society.

270 Chapter 10

3. MODELING THE POTENTIAL OF AN ENEMY
Now that we have described a unifying approach to model infrastructures,

another question is how to model the enemy. For many years the enemy was
viewed as an outsider [29]. Today, such a model is clearly outdated. Indeed,
computer viruses, worms [2] and vulnerable operating systems where user-
friendliness is viewed as more important than security, allow an enemy to take
over several computers. So, it has become clear that insiders may be corrupted.

The first model that described this is the threshold model, used by Blakley
and Shamir [3, 28]. This was studied in a narrow context. The problem was
that one wanted to back up a secret in n safes, while being afraid that a number,
let's say^ up to t, is not trustworthy. One does not know in advance which
of these safes may be corrupted. The same threshold idea was used in the
context of secure distributed computing. The original problem [22, 12] deals
with n computers selecting a bit (or a leader), however t may deviate from
the prescribed protocol. The question regarding how reliable communication
remains possible under such an attack was studied in [17], and privacy was
discussed as well in [13] (see also [11]). The problem of secure distributed
computation in general was studied in [14, 1,6]. Note that these studies assume
that the nodes are general purpose computers, which in infrastructures is often
false. Indeed, they could play mechanical, chemical or other non-computer
roles. Furthermore, even if they are computers, they could be dedicated ones
instead of general purpose ones.

Unfortunately, the threshold approach no longer properly mimics the power
of an enemy. Indeed, few operating systems are around today. Moreover, the
number of different types of CPUs used is small. So, why would it be harder
for an enemy to break into t + 1 computers running on the same platform
compared to attacking t computers on very different platforms. This seems
illogical, particularly when taking into account that an enemy who has found a
weakness against one platform can easily exploit it against several computers
on the same platform. An initial approach to dealing with this problem is to
assign an adversarial structure^ Tadv which is a list of sets of nodes the enemy
can corrupt [19].

So, the model used here assumes the enemy can take over some nodes, as
defined by the adversarial structure. This model is in sharp contrast with some
other approaches in which one hopes to build trusted computers [2] and/or be
able to detect any intrusion. The model used corresponds more to the cur­
rent reality, where computer viruses and worms take over some, but not all,
computers. This is one of the major advantages of the model used.

Clearly this model of an enemy is very general. The problem with this model
is that the size of an adversarial structure may be exponential in size of the
number of nodes, making it impractical to work with. Recently, a threshold-

Analyzing Survivable Computation in Critical Infrastructures 271

platform model was introduced [4]. This model is based on the assumption
that the cost of breaking into all machines running the same platform is not
much more than breaking into a single one. However, the cost to break into
computers on different platforms is assumed to be sufficiently higher than the
cost of corrupting computers that rely on the same platform. The threshold
is not based on the number of computers, but on the number of platforms an
enemy can penetrate. This model can be justified using the model described
in Section 5. Evidently, both the threshold and threshold-platform model are
special cases of general adversarial structures.

A problem with all these models is that they do not take into account the im­
pact of the attack. The above delineates which nodes the enemy can potentially
take over. While several modem hackers want to demonstrate the feasibility
of an attack, a strike against a (computer automated) infrastructure may be
planned by an adversary who wants to optimize the impact of the attack. The
adversarial structure does not model which of these choices specified by F is
the most optimal from the enemy's viewpoint. Modeling this aspect is rather
new and different approaches have been taken. In sections 4 and 5, we will
discuss some metrics the enemy could choose when optimizing the attack. In
these approaches, the infrastructure or economy as a whole is modeled using
an AND/OR directed acyclic graph.

4. A MINIMUM FLOW BASED APPROACH

The survival of our society depends on the flow of goods and data through
distribution networks. Typical examples are food, fuel and water distribution.
If such flows fall below a critical value, our economy will suffer and people
may die. For simplicity, we will focus on a single flow application. In Section 5
we discuss how different applications can be weighted. Note that the number
of cars produced by a car manufacturing plant can also be modeled using a flow
model. We will now discuss how this approach proceeds in [9].

Flow model

To each edge e e E in the AND/OR directed acyclic graph G{V^E) let
capacity c(e) correspond. We assume the capacity is discrete [9]. (Even if
it were continuous, when a computerized control system is used, the data is
represented in a discrete matter.) The flow /(e) going through an edge e must
be less or equal to the capacity c(e). When we speak about a capacity c and
flow / , we are referring to, respectively, all the capacities c(e) and all flows
/(e) over all edges e. Note that both c and / can be viewed as functions with,
as domain E, the set of all edges.

We will now explain models used to study the relation in a node between
incoming and outgoing flows. In a typical water distribution system, the total

272 Chapter 10

flow coming into a node must equal the total outgoing flow to maintain mass
preservation. So, this model seems fit to be used to describe the relation between
incoming flows and outgoing ones in an OR labeled node, which usually deals
with flows of the same type (e.g. tires, water, etc.). When reconsidering the
use of AND nodes, as described in Section 2, we see that different types are
typically used. Indeed, as previously stated, a car needs 4 tires, a motor, etc.
So, there is a correlation between the incoming flows and outgoing flows. This
could be modeled as follows. If i; is a node labeled AND, let v"' be the set of
incoming edges and t;+ be the set of outgoing ones. We then require that for
each e e v" Uv'^ there is a constant ĉ ĝ, such that:

Vei , 62 ev~ UV+ : Cy^ei * / (e i) = C ,̂e2 * 7(^2) (10.1)

In [9], a different type of flow relation was used for nodes labeled AND. The
main difference is that it assumed that any outgoing flow of an AND node is
always less or equal to any of its incoming flows. This model is, for example,
utilized when the AND/OR graph corresponds to distributed computation.

An altemative relation between flows coming into an OR labeled node and
its outgoing flows may be needed when we deal with data. As already observed
by Martelli and Montanari [23], data can be copied. In this case, the outgoing
flow of each edge must be less than or equal to the total incoming flow into the
node. This model is often called ''additive."

The enemy's impact

We will now discuss some metrics the enemy could use to optimize the
attack. The AND/OR acyclic directed graph has ''sinks," which means, nodes
without outgoing edges. In practice, these correspond to output nodes, such as
those representing the final factory where goods are manufactured (e.g. a car
manufacturing plant), or to consumers that use the product, like water. So, the
total flow coming in such sinks can be used to measure the performance of the
system. We call this total flow Ff{G). The / indicates the flow used in the
graph satisfying the conditions discussed in Section 4.0 (such as the fact that
fie) < c(e)).

Since Ff{G) depends on / one might wonder what the maximum value is
over all possible allowable values of / . We speak about the maximum capacity
of the graph Cc{G) as being this maximum. The c indicates that this value is
a function of the capacities of the edges and, evidently, of the model used that
describes the relation between incoming and outgoing flows into nodes.

We now model the impact of the enemy. This will again be modeled inde­
pendently of the method of attack the enemy uses. Let us compare this approach
with, for example, intrusion detection [7]. A major difference is that intrusion
detection is a method which is limited to computer security. The approach
used here does not have such a limitation. The goals are also distinct. While

Analyzing Survivable Computation in Critical Infrastructures 273

intrusion detection wants to detect an attack, this study wants to analyze what
damage an enemy can cause on the critical infrastructure, if the enemy succeeds
in an attack.

We will now focus on an enemy that destroys one or more nodes. This
could be done using e.g. bombs, or some other type of sabotage. This may also
be achieved by breaking into the computers that control the plant and cause a
shutdown, or even an explosion in the case of a chemical plant [8, p. 257]. So,
the outgoing flows of such a node drop to zero. When the system has enough
redundancy, the impact of such node destruction does not necessarily imply
that the total flow drops to zero. We will now describe this.

When the enemy destroys all the nodes in a set t/ C V, their flow drops to
zero. One describes the remaining AND/OR graph with the remaining nodes
U = V \U and remaining edges. This then naturally defines Cc^{G), the
remaining capacity of the graph. Evidently, if the enemy has unlimited power,
the enemy can destroy all nodes, and the capacity drops to zero. The case where
the enemy can only destroy up to t nodes is therefore more interesting to study.
As follows from Section 3, in general the enemy could only have the power
to destroy a set of nodes U in Tadv{V) {V indicates that VadviV) is a list of
subsets of V). We will now discuss how the enemy can choose an "optimal"
set, t/, out of the potential sets he can destroy.

The enemy could choose two strategies. In the first case, the enemy tries to
reduce the remaining capacity below a critical value Ccrit- So, the enemy will
choose a set [/ G Tadv{y) such that CCQ(G) < Ccrit- We call this a winning
strategy for the adversary. If no such U exists the best the enemy can do is
to do as much damage as possible. In this context this mean choosing a set
U € TadviV) such that for any other U' e Tadv Cc^ (G) < Cc^^ (G). The last
strategy may be a ''losing strategy," however, it is the best available in view of
the limited resources of the adversary.

The results of more detailed studies on these flow problems are described
in [9]. This work demonstrates that for certain flow models it seems computa­
tionally hard for the enemy to choose an optimal or winning strategy.

An example

Ball-bearings were viewed as the most critical component of a mechanical
infrastructure, as can be verified using a PERT graph model of the mechanical
world. In such a PERT graph removing the single node of the ball-bearing
sector implies that several outputs (such as cars, planes, tanks, etc.) can no
longer be produced. Therefore, Nazi Germany's factories involved in making
ball-bearings were targeted by bombing campaigns during World War II.

A problem with the PERT model is that it does not take redundancy into
account. If enough factories (more than t) can produce ball-bearings and the

274 Chapter 10

enemy has the resources to only bomb t of these factories, then the approach
discussed allows, e.g. to analyze whether the capacity remaining after the de­
struction oft factories is above Ccrit-

We will come back to this example in Section 5.0.

Limitations of this approach

The flow approach is a useful tool to analyze the vulnerability of one infras­
tructure. However, when multiple infrastructures are involved, it does not allow
them to be compared. The following method averts this problem.

5. AN ECONOMICS BASED APPROACH

We will now survey the work in [10].

Modeling what the enemy can attack

A problem with the models described in Section 3 is that they describe
what the enemy can do in a very general context. Indeed, the adversarial
structure permits describing any subsets of nodes as being vulnerable. The
question, however, remains: how to choose this adversarial structure. Before
answering this question, we have a criticism against the traditional adversarial
structure [19].

The adversarial structure models the nodes the enemy can take over. How­
ever, even if the adversary is unable to take over any nodes, the enemy can still
control edges (links). Note that originally, as in the study of cryptography [24],
the enemy was assumed to attack the edges, not the trusted nodes. One might
wonder why the traditional adversarial structure models do not account for this.
In a computer network, it may make sense to assume that the adversary suc­
ceeds in taking control of some nodes. Then the adversary has full control of
the corresponding edges. When cryptographic tools are available, privacy and
authenticity of the communication can easily be guaranteed. So, it may seem
that the remaining edges are protected. Unfortunately, this does not handle de­
nial of service attacks. So from now on, we will view the adversarial structure
^adv{y U £") as a list of subsets of nodes and edges [10].

The question now is how to choose this adversarial structure. One method
is to assume that to any attack, there corresponds a cost, and that the adversary
has a limited budget. So to each S C V U E corresponds a cost cs for the
adversary to take control of all these nodes or edges in S. The enemy has a
budget BE and

radv(VuE) = {S\cs<BE}^

which means the adversary can attack a set of nodes and edges within the
budget BE [10]. Note that VadviV U E) describes what the enemy can attack.

Analyzing Survivable Computation in Critical Infrastructures 275

However, it does not say anything about what is most optimal for the adversary
to attack.

As usual, in economic studies the unit does not need to be monetary. Indeed,
a hacker's budget could be expressed in the numbers of free hours available.

It is important to observe that cs is not necessarily linear. So, if 5 = ^i U52
and ^i n52 = 0, then cs is not necessarily equal to cs^ +cs2- Indeed, if similar
platforms are used in Si and 52, then cs may be only slightly larger than the
maximum of cs-^ and cs2 -

Optimizing the attack
As in Section 4, flows will be used to describe what is the most optimal for

the enemy to attack. However, a weighting factor is now used to indicate its im­
portance. When we consider an application a, to it corresponds the nodes/edges
involved, which we call Ta, being a subgraph of an AND/OR acyclic directed
graph. Note that different applications may use overlapping nodes/edges, so if
a^ o! then Ta H TQI is not necessarily empty. Indeed, the same freeways and
computer networks are involved in multiple applications.

To Ta may correspond a flow FT^, satisfying rules as discussed earlier on.
Moreover, there is a maximum flow, or capacity CT^ •

To an application a corresponds its impact factor la. This impact factor is
not necessarily measured from a monetary viewpoint. E.g. terrorists may be
interested in the psychological impact. So, if we consider several applications,
or even the economy as a whole, to it corresponds a weighted total flow F =
griFTa,, FT^2 »• • •) and a weighted total capacity C = gciCra^, Cxa^ »•••)•
Note that QF and gc are not necessarily linear, so F is not necessarily J2a ̂ aFxa •

When 5 € T̂ U £̂ , we now define Cg as the remaining weighted capacity
after the removal of the nodes and edges in 5. So, as in Section 4, an enemy,
in order to optimize the attack, will choose a set 5 of nodes and edges that is
in Tadv{y U E) such that C§ < CCHU where Ccrit is now the weighted critical
capacity. We call this a winning strategy for the adversary.

One may think that this economic approach is less powerful than an appli­
cation oriented one. Indeed, suppose there is more than one application with a
critical capacity. How can one guarantee that each application with a critical
capacity is reflected? Since the weighted total capacity function gc is non­
linear, it is possible that when the enemy succeeds in having the capacity of one
application fall below the critical value that Cg < Ccrit- It should also be clear
now that this generality of this particular model is also its weakness. In order
for it to be useful, approximations will have to be made so that one can make
predictions.

276 Chapter 10

The example revisited
As already stated, the problem with the flow based approach of Section 4 is

that it does not combine different applications. To illustrate this let us focus on
the example discussed in Section 4.0.

In the example of Section 4.0, one focuses on an enemy that targets the ball­
bearing industry. However, even if the enemy may fail to reduce the remaining
capacity of the ball-bearing industry to below its critical value, the enemy may
be able to reduce the flow of the production of cars and planes (which need
ball-bearings) to a level that affects the economy as a whole. This could be
achieved by using a combined attack targeting ball-bearing as well as other
nodes (being factories producing other components).

Protecting

When a system is being designed, the designer has a budget BD, Further­
more, a minimum required weighted total capacity CD is expected from the
system. The designer is asked to build an AND/OR graph G such that:

• the cost(G') < BD, and

• the weighted total capacity > CD, and

• the enemy cannot win. This means that there is not a winning strategy
for the enemy (see Section 5.0 for the definition of a winning strategy
and Section 4.0 for a discussion of strategies in general).

If this is impossible, the enemy will win, or the budget will need to be increased.
Evidently, this approach is very general. To be used in practice, it would

require a relation between the cost of security (setting up secure nodes and
edges) and the cost of an attack. Today, no methods exist to tackle this prob­
lem. However, the economic approach may be useful for demonstrating that
some models, such as the threshold model for the enemy (see Section 3), are
unrealistic. It can be used as the foundation for proposing alternative models.

6. FURTHER RESEARCH AND CONCLUSIONS
These models and their use are the result of many years of research. If our

society wants to identify which infrastructures are truly the most critical, more
refined and altemative models will have to be presented. We will now suggest
some paths that could be followed, taking into account:

the dynamic aspect of our society. The above models are very static. As is
common in control theory, time aspects could be included. This per­
mits dealing with buffers. The buffers guarantee that if the enemy shuts
down nodes and edges in 5, and that even if Cg < CCHU the society

Analyzing Survivable Computation in Critical Infrastructures 277

could survive for a while. Obviously, if the control of these buffers is
computerized, the adversary can try to target it, making the buffers less
useful.

Recovery is also a dynamic aspect that must be studied. Indeed, destroyed
infrastructures can often be rebuilt.

Note that Ccrit is dynamic, too. If the adversary were to succeed in an
attack that reduced the population significantly, the new Ccrit would be
lower, making it harder, potentially, for the enemy to inflict a second
serious blow.

Destruction of nodes and edges may also result in an unacceptable slow
down in production. If the nodes and edges that were destroyed had a
relatively low delay, replacing them may increase the time to go from the
input to the output. This problem is well known in the study of critical
paths of PERT graphs [16]. Similar studies for AND/OR graphs can be
found in [9], but they do not discuss the impact of the enemy. Another
question is how hard it is for the enemy to optimize which nodes to destroy
in an AND/OR graph to slow down the process the most.

that damaged nodes are not necessarily destroyed. In this context, several
issues are not currently modeled. These are, for example:

• In the flow model, if the enemy takes over a node, the capacity of the
outgoing edges is reduced to zero. In other words, the node "shuts
down." However, not all attacks correspond with a reduction to a
zero flow. The enemy may only be able to reduce the flow.

• It may also be undesirable if an adversary could increase a flow. In­
deed, that would imply a waste of resources. If the system contains
buffers, such an undesired increase may decrease the capability of
recovering from an attack. For example, the enemy, having control
of the computer facility that manages the flow coming from a buffer,
such as a dam, may cause a spill by opening the floodgates.

• Modeling the enemy as just being able to stop, reduce or increase
the flow is obviously not sufficient. As is well known by the work on
secure distributed computing (see Section 3 for a short survey), the
output of a node could be faulty. The same problem may occur with
non-data items. In the case of, for example, computer controlled
robots, the impact of an adversary breaking into a node may lead
to the production of products that do not satisfy the specifications.
So, the result is the flow of faulty products. This, if not detected,
may have a ripple through effect. The problem of detecting whether
an output is faulty may actually be (computationally) hard. In se­
cure distributed computing, this problem is solved by having the

278 Chapter 10

node prove in "zero-knowledge" [15] that the output satisfies the
specifications. Its generalization to a mechanical society would be
to convince the user that the specifications are satisfied without re­
vealing such information as the production method used. However,
generalizing this idea to outside the area of information security
seems non-trivial.

There are many more different approaches that can be followed. Some
researchers have suggested using a probabilistic viewpoint [30]. The problem
with this approach is that security is inherently non-ergodic. Another problem is
that while the probability that an attack of catastrophic proportions could happen
may be very small, the damage caused by it would be very large. Unfortunately,
the product of a function / i , whose limit is tending towards 0 and a function
/2, whose limit is growing to infinity is, in general, undefined!

In conclusion, we have surveyed theoretical approaches used in secure dis­
tributed computation. The advantage of these approaches is that these abstract
away the method used by the enemy to attack. We have argued that the ap­
proaches must be adapted for dealing with critical infrastructures. Nodes are
not necessarily general purpose computers, and the traditional network model
does not take the AND condition into account. Reduction in flow is one way of
measuring the effect of an attack. If the impact on several applications needs
to be studied, an economic model seems the most natural. We believe that this
approach is just the start towards more precise models that can be used to study
the potential impact of cyberterrorism or cyberwar, combined with more clas­
sical means of destruction. Whether such large scale attacks will ever be used
depends on socio-political arguments that go beyond scientific discussions and
have therefore not been taken into account.

ACKNOWLEDGIVIENTS
Partial funding provided by grant DARPA F30602-97-1-0205 and by NSF

CCR-0209092. However, the views and conclusions contained in this paper are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the De­
fense Advance Research Projects Agency (DARPA), the Air Force, of the US
Government.

Notes
1. In secret sharing it is custom to call the maximum number of untrusted insiders t — I, while in

network security one says that up t insiders can be corrupted. Since the discussion in this chapter is more
closely related to network reliability and security, we use t in both contexts.

2. This idea originated from the work on secret sharing [21]. In this earlier work, an access structure is
defined as the dual (complement) of an adversarial structure. Further details of access structures and secret
sharing are beyond the scope of this paper and can be found in [21].

Analyzing Survivable Computation in Critical Infrastructures 279

REFERENCES
[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth
annual ACM Symp. Theory of Computing, STOC, 1-10, 1988.

[2] M. Bishop. Computer Security. Addison-Wesley, Reading, MA, 1993.

[3] G. R. Blakley. Safeguarding cryptographic keys. In Proc. Nat. Computer Conf. AFIPS
ConfProc, 313-317, 1979. vol.48.

[4] M. Burmester and Y. Desmedt. Hierarchical public-key certification: The next target for
hackers? Submitted October 2001 to Communications of the ACM, accepted February
21, 2003.

[5] M. Burmester, Y Desmedt, and Y Wang. Using approximation hardness to achieve
dependable computation. In M. Luby, J. Rolim, and M. Sema, editors, Randomization and
Approximation Techniques in Computer Science, Proceedings (Lecture Notes in Computer
Science 1518), 172-186. Springer-Verlag, 1998.

[6] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM Symp. Theory of Computing, STOC, 11-19,
1988.

[7] D. E. R. Denning. An intrusion-detection model. IEEE Transactions on Software Engi­
neering, SE-13(2), 222-232, 1987.

[8] Y Desmedt, J. Vandewalle, and R. Govaerts. Cryptography protects information against
several frauds. In Proc. Intern. Carnahan Conference on Security Technology, 255-259,
1983. IEEE.

[9] Y Desmedt and Y Wang. Analyzing vulnerabilities of critical infrastructures using flows
and critical vertices in and/or graphs. International Journal of Foundations of Computer
Science, 15(1), 107-125, 2004.

[10] Y Desmedt, M. Burmester, and Y Wang. Using economics to model threats and security
in distributed computing. Workshop on Economics and Information Security, Berkeley,
May 16-17, 2002,
http://www.sims.berkeley.edu/resources/affiliates/workshops/econsecurity/econws/33.ps.

[11] Y Desmedt and Y Wang. Perfectly secure message transmission revisited. In L. Knud-
sen, editor, Advances in Cryptology — Eurocrypt 2002, Proceedings (Lecture Notes in
Computer Science 2332), 502-517. Springer-Verlag, 2002.

[12] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3, 14-30, 1982.

[13] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission.
Journal of the ACM, 40(1), 17-47, 1993.

[14] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and
a methodology of cryptographic protocol design. In 27th Annual Symp. on Foundations
of Computer Science (FOCS), 174—187. IEEE Computer Society Press, 1986.

[15] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J Comput., 18(1), 186-208, 1989.

[16] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons Ltd., New
York, 1984.

[17] V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD thesis, Harvard
University, Cambridge, Massachusetts, 1984.

280 Chapter 10

[18] F. Halsall. Data Communications^ Computer Networks and Open Systems, Addison-
Wesley, Reading, MA, 1996.

[19] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. Journal ofCryptology, 13(1), 31-60, 2000.

[20] Information analysis and infrastructure protection: Q's & A's.
ht tp: / /www.ciao.gov/publicaffairs /qsandas.htm.

[21] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access struc­
tures. In Proc, IEEE Global Telecommunications Conf, Globecom*87, 99-102. IEEE
Communications Soc. Press, 1987.

[22] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transac­
tions on programming languages and systems, 4(2), 382-401, 1982.

[23] A. Martelli and U. Montanari. Additive and/or graphs. In Proceedings of the Third Inter­
national Joint Conference on Artificial Intelligence, 1-11. Morgan Kaufmann Publishers,
Inc., 1973.

[24] A. Menezes, P. van Oorschot, and S. Vanstone. Applied Cryptography. CRC, Boca Raton,
1996.

[25] N. J. Nilsson. Principles of Artificial Intelligence. Tioga, 1980.

[26] Critical foundations, the report of the President's Commission on Critical Infrastructure
Protection. 1997.
http://www.ciao.gov/resource/pccip/PCCIP_Report.pdf

[27] C. P. Pfleeger. Security in Computing. Prentice-Hall, Englewood Cliffs, New Jersey,
second edition, 1997.

[28] A. Shamir. How to share a secret. Commun. ACM, 22, 612-613, 1979.

[29] U.S. Department of Defense. Department of Defense Trusted Computer System Evaluation
Criteria, 1983.

[30] H. R. Varian. PBIs on economics of computer security history background.
www. Sims. berkeley. edu/ '^hal /Talks/secur i ty . pdf, 1998.

Chapter 11

ALERT MANAGEMENT SYSTEMS: A QUICK
INTRODUCTION

Robert L. Grossman
Laboratory for Advanced Computing, University of Illinois at Chicago, and Open Data Partners

Abstract: We describe a type of data mining system designed to screen events, build profiles
associated with the events, and send alerts based upon the profiles and events.
These types of systems are becoming known as alert management systems (AMS).
We give some examples of alert management systems and give a quick introduc­
tion to their architecture and functionality.

Keywords: data mining, alert management systems, events, profiles, alerts

1. INTRODUCTION
In this chapter, we give an overview of systems designed to screen events,

build profiles associated with the events, and send alerts based upon the profiles
and events. These types of systems are becoming known as alert management
systems (AMS). In this paper, we give some examples of alert management
systems and give a quick introduction to their architecture and functionality.

Section 2 contains a brief description of related work. Section 3 contains
the key definitions. Sections 4 and 5 describe the functionality and architecture
of alert management systems. Section 6 describes several examples. Section
7 describes some alert management systems built by the author and Section 8
contains the conclusion. Skimming the examples in Section 6 first may make
the paper easier to understand.

2. BACKGROUND AND RELATED WORK

One of the best understood examples of alert management systems are sys­
tems designed to detect fraud. Descriptions of fraud systems can be found in
[1]̂ [4], [6], [7]. As far as we are aware of the idea of abstracting the concepts
of events, profiles, and alerts and considering a class of systems that uses these

282 Chapter 11

concepts for scoring, matching, routing, and linking appears to be novel. On
the other hand, as the large number of examples described in Section 4 shows,
various examples of alert management systems have been around for quite a
long time. Additional references can be found in the references of the work
cited above.

3. EVENTS, PROFILES, AND UPDATES
Alert management systems are based upon three primitive concepts: events,

profiles, and updates, which we now describe.

1 Profiles, abstracting feature vectors, are modeled as an (unordered) set
of vectors {xi e R ^ : i G J .} The indices z G J are called profile ids.

2 Events, abstracting transactional data, are modeled as an ordered set of
{ej : j E J}, with the following properties:

(a) there is a map 0{ej) assigning a profile id i 6 2" to each event ej,

(b) events can be concatenated ej • e^ and this concatenation is asso­
ciative (ei(ejefc)) = {{eiej)ek)\

The indices j E J are called transaction ids.

3 An update is given by an action of events on profiles tk • xi with the
following properties:

(a) for an event e^ and a profile xi,

^k ' Xi fc xt. ,

(b) Xi = ek ' Xi, in case 9{ek) ^ i

(c) For all events ej and e^

yej • Cfcj • Xi = 6j • (̂ 6fc • Xi),

In words: transactional data are modeled by events; profiles summarize state
information derived and aggregated from their associated events; and events
update profiles. The update action captures the aggregation and computation
of derived attributes which is usually involved when one or more transactions
are used to update their corresponding profile.

Given an initial collection of profiles, the effect of transactional event data
is to move each profile along an orbit.

In the paper [9], a very similar set up, dual to the set up here, is used to model
events, profiles and updates.

Alert Management Systems 283

4. FUNCTIONALITY
Although different alert management systems can have quite different func­

tionality, many of them share the following core functionality: scoring, match­
ing, routing, and linking. In this section, we give brief descriptions of each of
these.

Scoring

Scoring is a function mapping profiles to a continuous

/ : R ^ —> R

or finite set of values or labels

/ : R ^ —> Labels.

Alert management systems are often used for real time scoring in the following
way:

1 Let Cj be an event associated with a profile ID i, i.e., 0{ej) = i.

2 Let Xi be the profile associated with profile ID i and

be the result of updating the profile with the event.

3 With this data, / (x ^ is the result of scoring the updated profile using a
scoring function /(•).

In other words, the event data is used to update the corresponding profile, which
is then scored. The goal is to detect bad behavior as soon as possible.

Finally, the term signature is sometimes applied to an updating rule in which
the old profile or score is averaged with the new profile or score. More precisely,
using the notation above, a signature based update uses an update of the form

y'i = of{x[) + (1 - e)yu

where yi is the previous, y[is the new score, x[= Cj • Xi is the updated profile,
and /(xj), the corresponding score. Here ^ > 0 is a constant. Signature based
methods are described in [2] and [3]. Signature based methods are commonly
used in alert management systems since signatures "smooth" blend new event
information with historical information stored in the profile, something which
in practice is quite helpful.

284 Chapter 11

Matching

Sometimes associating a profile ID z in J with an event is straightforward
and sometimes it can be quite challenging. For example, given a credit card
transaction or call detail record if the profile ID is the account number or the
calling number, then the profile ID is immediately and unambiguously available
from the event data. On the other hand, if the profile ID must be matched against
another list, such as list of customers, this can be more difficult. For example,
is John Smith, 121 Oak Road, San Francisco, CA the same as J. Smithe, Oak
Avenue, San Francisco, CA 94701? As the amount of data grows, this problem
becomes computationally challenging. Even more difficult is the problem of
associating a profile ID to an individual who is deliberately trying to make
this task difficult, such as an individual engaged in fraud or other inappropriate
activities. In this case, multiple variants of names, addresses and phone numbers
may be used.

Alert management systems using matching to normalize names, addresses
and similar information and to check names, addresses and related information
against various lists. Alert management systems often contain both bad and
good lists, i.e. lists containing individuals which must be check more carefully
(bad lists) and individuals which are known to the system and have already been
vetted (good lists).

Workflow

Often after events and profiles have been scored and checked against good
and bad lists, additional work is required. Further investigation may be war­
ranted, checks against additional lists may be formed, various alerts may be
sent, etc. For this reason, alert management systems often contain a workflow
component containing rules describing the various types of further processing
that is required. For example, workflow rules may be used to assign further in­
vestigative work to analysts based in part on the analysts current work load and
area of expertise. In many cases, the impact of an alert management system is
fundamentally dependent upon the quality of the workflow component. Even if
the scoring component is extremely accurate with a very low false positive rate,
nothing is gained unless the alerts produced by the score get to an individual
analyst who can take the appropriate action at the appropriate time after having
examined the appropriate auxiliary data.

Linking

Events and profiles can often times be linked by common shared attributes or
by attributes which have some suspicious relationship with each other. A few
examples will make this clearer. For example fraud rings sometimes stage a

Alert Management Systems 285

number of different accidents in order to collect insurance payments. The acci­
dents, although seemingly unrelated, may share a common cell phone number
(with different addresses), may all occur within a small physical region, may
all use the same body shop, or the same doctor, etc. Of course, two accidents,
neither of which are fraudulent, may also share common links or attributes. The
goal of linking analysis software is to identify linkages which are suspicious in
some way so that further investigation may be done. Sometimes link analysis
software is also known as forensic software. Some examples of link analysis
can be found in [11].

5. ARCHITECTURE
In this section, we describe a common architecture for an alert management

system. See Figure ILL In practice, actual alert management systems are
usually much more complex. The functionality for an alert management system
can be divided into three general areas. First, functionality which extracts,
transforms, cleans, and loads the data. Second, functionality, for the off-line
(i.e. non-real time) analysis of data. This includes data analysis, data mining,
link analysis and related types of forensic activities. Third, functionality for
the on-line or real time analysis, routing, and workflow.

The off-line analysis usually contains a data warehouse or data mart and
various data analysis, data mining, and forensic analysis tools. From this off­
line analysis, data mining models and profiles are often produced for the on­
line system. In addition, the off-line analysis may involve extensive checking
against various intemal and third party databases, checking which may be too
time consuming to take place on-line.

The on-line analysis usually contains one or more databases containing vari­
ous watch lists which incoming events and profiles are compared to. In addition,
scoring may be done using the data mining model produced from the off-line
analysis. Finally, workflow and routing is usually done producing various alerts
and reports.

Part of the complexity of alert management systems is that the extraction,
transformation, cleaning and loading must be consistent for the both the off-line
and on-line components. There is usually reporting which is part of both the
off-line and on-line components of the system.

286 Chapter 11

2. off-line modeling & analysis

learning sets Data Mining
System

Data Mining
Warehouse

1. data
collection

data
updates

3. on-line deployment

profiles

models

Profile
Database

jThird Party]
Databases

I profiles |data

Alert Management Sys.

events alerts Analysts
Stations

Operational systems, sensors, databases & other collection

Figure 11.1. A typical architecture for an alert management system.

Alert Management Systems 287

6. EXAMPLES

In this section, we give some examples of alert management systems. In
most of the cases discussed below, there is a natural way to label a data set of
events. For example, events may be labeled "good" or "bad"; "intrusion" or
"no intrusion"; "normal" or "abnormal"; "threat" or "no threat"; "fraud" or "no
fraud"; or "red" or "blue". For simplicity, we often refer to the labels simply
as "bad" or "good," with the understanding that the particular meaning of these
terms is dependent upon the particular example.

A labeled set of events can be used to label profiles in different ways. A
common rule is to assume that profiles are initially labeled good until an event
labeled bad is associated with them, after which they are labeled bad. Notice
that this makes sense for credit card transactions and similar types of event data:
a given credit card account can have a mixture of good and bad transactions.
The goal is to detect when there are bad transactions and thereafter stop all
transactions. Given a labeled set of events, we can use a variety of classification
algorithms to construct a scoring function, which is simply a numerical function
on state space R ^ indicating the likelihood that a profile is bad.

Credit Card Transacations. One of the best examples of transactional data
is provided by credit card transactions. The data in a credit card transaction is
broadly based upon the ISO 8583 standard and includes the account number, the
date and time of the transaction, the amount of the purchase, etc. By aggregating
transactional data by account number, a profile can be built for each account
number. A fraud model uses transactional data to update profiles and then
scores each profile for the likelihood of fraud.

Perhaps the best known alert management system for detecting credit card
fraud is the Falcon System developed by HNC [10].

Call Detail Records. A Call Detail Record (CDR) contains data about tele­
phone calls, including the date and time of the call, the duration of the call, the
calling number, the called number, the telephone number of the billed party,
which may be different then the calling number (for example, with 800 num­
bers), and related data. By aggregating CDR data by the calling number, a
profile can be created. A variety of models can be built using these profiles. As
before, a fraud model can be built which updates profiles using CDR data and
then scores the updated profiles for the likelihood of fraud. As another example,
models can be built predicting the likelihood of customer attrition or chum, or
predicting the lifetime value of a customer. For the latter two examples, models
may be built based upon a single calling number, or by aggregating all calling
numbers associated with a given individual, household, or business.

Alert management systems for detecting telephone fraud have been devel­
oped by several of the large telephone companies, for example by AT&T [3].

288 Chapter 11

Passenger Name Records, A third example is provided by passenger name
records or PNRs. The transactional data in a PNR includes the originating city,
connecting cities, if any, the destination city, flight numbers, name and address
of the passenger, frequent flyer number, and related information. Giving a
collection of PNRs, profiles can be built for each passenger Using these profiles,
a risk assessment can be done for each airline passenger.

An example of an alert management system for PNRs is the Computer As­
sisted Passenger Screening System (CAPS) used by the TSA to screen airline
passengers at airports.

Network Intrusion Systems. Another example is provided by network intru­
sion systems employing statistical methods. Network intrusion systems monitor
events derived from system logs and other sources. These are used to update
various intemal feature vectors, which are used as the inputs to statistical mod­
els, whose outputs trigger alerts.

Today, the most common network intrusion detection systems, such as Snort
[12], look for specific pattems in the data (which are also called signatures, but
different than the signatures described above) and do not employ event-profile
based techniques.

Suspicious Activity Reports. The Financial Crimes Enforcement Network or
FINCEN, which is part of United States Department of the Treasury, collects
reports from financial institutions about various types of suspicious financial
transactions. These reports are called Suspicious Activity Reports or SARs.
There are a number of criteria used for deciding whether or not to file a SAR.
In addition, financial institutions are precluded from doing any business with
certain individuals or business which have been placed on various watch lists.
Larger financial institutions use alert management systems for comparing new
accounts to the watch list, as well as for scoring transactions in order to decide
whether or not it is necessary to file a SAR.

Automated Manifest System. The Automated Manifest System (AMS) is
a system operated by the US Customs which provides inventory control and
release notification for cargo entering the US. Carriers, port authorities, service
bureaus, freight forwarders, and container freight stations can use the AMS to
provide digital processing of manifest and waybill data. The AMS in turn can
use manifest and waybill event data to build profiles about the users of their
systems. Alert management systems associated with the AMS can score both
event data (manifest and waybill data), as well profiles summarizing activities
about carriers and other users of the system. Particularly important for systems
like this is improving scoring by overlaying third party data over intemal event
and profile data.

Interagency Border Inspection System The US Customs Service and Immi­
gration and Naturalization Service (INS) use the Interagency Border Inspection

Alert Management Systems 289

System (IBIS) to screen individuals at ports of entry to the US. IBIS data is
collected from a variety of sources and profiles generated by IBIS are shared
by a over 20 US federal agencies. IBIS is used at ports of entry to clear ex­
peditiously the majority of the traveling public, while allowing attention to be
focused on a relatively small number of individuals. IBIS contains data on
suspect individuals, businesses, vehicles, aircraft, and vessels.

7. STATUS

During the period 1996-2002, Magnify developed an alert management sys­
tem based upon its PATTERN data mining system [7]. PATTERN was a data
mining system which was designed for mining very large data sets which did
not fit into memory and was based upon the following ideas:

• PATTERN employed ensemble based modeling. Typically, ensembles
were used to partition data into chunks which could fit into memory.

• PATTERN also employed boosting to improve the accuracy of the en­
sembles produced.

• PATTERN employed a column oriented data warehouse so that numeri­
cally intensive operations could be performed efficiently on large amounts
of disk resident data.

• PATTERN was designed to run on both single workstations and clusters
of workstations. MPI was used for message passing when employed on
clusters.

• PATTERN used an XML representation for statistical and data mining
models to provide a simple interface between the off-line data mining
component and the on-line scoring or deployment of component of the
system.

• PATTERN contained specialized libraries for data transformations and
data aggregations so that large numbers of events could be aggregated
into profiles efficiently.

This functionality was added over a period of time. During the period, 1995-
1996, the alert management system consisting of a off-line data mining system
which was used for scoring. An on-line scoring component was added during
1997-1998 following the architecture described in Figure 11.1. A component
for transforming and aggregating data was added during the period 1999-2000.
A workflow and routing component was added during the period 2000-2002
[8]. Simple matching and linking was done in an ad hoc fashion, dependent
upon the particular requirements of of the application.

290 Chapter 11

The alert management systems built over PATTERN were used for a variety
of applications including: detecting credit card fraud, detecting insurance fraud,
analyzing TCP packet data for network intrusions, and uncovering suspicous
events and profiles in passenger name record data.

8- CONCLUSION

In this note, we have provided a quick introduction to alert management
systems. We have introduced the primitive concepts of events, profiles, and
updates. We have also given six examples of these types of systems; many
more could be given. There are four key functions usually present in an alert
management system: scoring, matching, linking, and workflow, which we have
briefly described. Finally, we have given a brief description of a common
architecture used by alert management systems. With the increased focus on
homeland defense, alert management systems will no doubt grow in importance.

REFERENCES
[1] Dean W. Abbott, I. Phillip Matkovsky, and John F. Elder IV. An evaluation of highend

data mining tools for fraud detection. In IEEE International Conference on Systems, Man
and Cybernetics, 1998.

[2] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: A Language for Extracting
Signatures from Data Streams. In Proceedings of the Association for Computing Ma­
chinery Sixth International Conference on Knowledge Discovery and Data Mining, pages
9-17, 2000.

[3] C.Cortes and D. Pregibon, Signature-based methods for data streams, Data Mining and
Knowledge Discovery, 2001.

[4] T. Fawcett and F. Provost, Adaptive Fraud Detection, Data Mining and Knowledge Dis­
covery, Volume 1, Number 3, 1997, pages 291-316.

[5] T. Fawcett, and F. Provost, Activity monitoring: Noticing interesting changes in behavior,
Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, 1999, pages 53-62.

[6] R. L. Grossman, H. Bodek, D. Northcutt, and H. V. Poor, Data Mining and Tree-based
Optimization, Proceedings of the Second International Conference on Knowledge Dis­
covery and Data Mining, E. Simoudis, J. Han and U. Fayyad, editors, AAAI Press, Menlo
Park, California, 1996, pp 323-326.

[7] PATTERN Data Mining System, Version 1.2, Magnify, Inc., 1997.

[8] PATTERN Data Mining System, Version 3.1, Magnify, Inc. 2000.

[9] R. L. Grossman and R. G. Larson, An Algebraic Approach to Data Mining: Some Ex­
amples, Proceedings of the 2002 IEEE International Conference on Data Mining, IEEE
Computer Society, Los Alamitos, California, 2002, pages 613-616.

[10] HNC Software, a division of Fair Isaac Corporation, retrieved from
http://www.fairisaac.com/fairisaac on August 20, 2003.

[11] Daryl Pregibon, Graph Mining: Discovery in Large Networks, CCR/DIMACS Workshop
on Mining Massive Data Sets and Streams: Mathematical Methods and Algorithms for
Homeland Defense, June 2002.

Alert Management Systems 291

[12] Snort(tm), The Open Source Network Intrusion Detection System, retrieved from
http.7/www. snort, org on August 20, 2003.

PART IV

CYBER FORENSICS

Chapter 12

CYBER FORENSICS: MANAGING, MODELING,
AND MINING DATA FOR INVESTIGATION

Erin E. Kenneally, Tony Fountain
San Diego Supercomputer Center, University of California San Diego

Abstract: This chapter describes a collaborative project between the San Diego
Supercomputer Center (SDSC) and the Automated Regional Justice
Information System (ARJIS) entitled P^ELE (Public-Private-Partnership
Enabling Law Enforcement). The project is focused on developing a model
research infrastructure for the management, analysis and visualization of
public and private multidimensional data. This includes addressing the
technical and analytical models, methods, tools and techniques to effectively
integrate and correlate law enforcement information with public, cyber-based
information. This framework will enable researchers to study the impact of
this expanded dimensional information on the efficient remediation and
proactive capabilities of law enforcement, and ultimately, will enhance the
operational capabilities of justice professionals in our digital society.

Keywords: Cyber forensics, law enforcement, management, analysis, visualization.

1. INTRODUCTION

Law enforcement is an information-intensive process in which
govemment agencies are called upon to collect and interpret large public
data sets in an effort to serve and protect the citizenry, while at the same
time maintain trust and reliability in fulfilling its mission. However, law
enforcement is by its very nature reactionary to information contained within
and derived from reports of criminal activity. As a result, the effectiveness
of law enforcement is directly related to the quality of information reported
and proficiency of the subsequent analyses. The process of law enforcement
has thus far encountered technical, managerial and socio-legal barriers to

296 Chapter 12

integrating, correlating and interpreting intra-agency crime data with public,
Intemet-based data. The challenge lies in developing a systematic and
scientifically-based framework to enhance the best available information
upon which courses of action are based.

To address this need, collaboration between The San Diego
Supercomputer Center (SDSC) and the Automated Regional Justice
Information System (ARJIS), entitled P^ELE (Public-Private-Partnership
Enabling Law Enforcement), is focused on developing a model research
infrastructure for the management, analysis and visualization of public and
private multidimensional data. This includes addressing the technical and
analytical models, methods, tools and techniques to effectively integrate and
correlate law enforcement information with public, cyber-based information.
This framework will enable researchers to study the impact of this expanded
dimensional information on the efficient remediation and proactive
capabilities of law enforcement, and ultimately, will enhance the operational
capabihties of justice professionals in our digital society.

P^ELE represents a mechanism through which data collection and
analyses models developed by university-based intermediary researchers can
facilitate the transfer of technology and knowledge to govemment entities
seeking to manage, analyze and link public and private multidimensional
data. This academic research on public and private data integration and
correlation integrates knowledge in information retrieval, knowledge
management, information visualization, artificial intelligence, decision
theory, social informatics, data mining and forensic analysis.

By designing a path for public, open source data to be input into existing
models used in investigation planning and decision making, the credibility
and influence of justice research will be enhanced. P'̂ ELE is an academic
bridge to transport private sector technology into usable and civilly
responsible law enforcement. Likewise, it will provide a forum for cross-
pollination of teaching, training and leaming between academia, industry
and the govemment. Aside from enabling a transparent, reproducible, and
objective system for integrating models from the public and private sectors,
academic researchers will gain access to important problems and data in
real-world large-scale contexts. This is critical to understanding and
predicting the impact of these technologies on law enforcement agencies and
services, govemance, and the democratic process.

The significance of this integration will extend beyond its origins in
southern Califomia to include other public-private partnerships,
demonstrating an applied instantiation of how to leverage the strengths of
individual public, private and academic communities toward a better
collective whole.

Cyber Forensics 297

1.1 A Cyber Forensics Project: P^ELE: Public-Private-
Partnership Enabling Law Enforcement

Just as residue from the ridge patterns on our fingers existed before
science and technology was able to "uncover" them by latent fingerprinting
methods, digital traces of criminal activities exist on the Internet, and
consequently lay dormant because we lack the right tools and techniques to
manage, model and mine answers to probing questions.

Cyber forensic investigations occur in varying degrees throughout the
fields of computer security, law enforcement and private investigations and
involve the recognition, recovery and reconstruction of investigatory leads
and evidence. In the context of investigations, the sources of evidence and
investigatory leads are often "siloed" into data from law enforcement
reports, or data from investigations of individual computers involved in a
crime. No longer is the stand-alone computer exclusively a target or tool
used in criminal activity. The Internet itself has become a breeding ground
for primary and secondary sources of evidence in the search for truth, as well
as providing the seeds for predicting future malfeasance. Like other forensic
sciences, fundamental methods of cyber forensics begin by collecting a large
number of intensely diverse variables or attributes, and culminate in pattern
matching among these variables to individualize evidence.

Computer security, network forensics, and increasingly law enforcement
investigations involve working with heterogeneous datasets that contain
remnants of human activity, oftentimes occurring across multiple
environments. Pattern matching in this context consists of the recognition
and correlation of digital evidence contained within and among various data
sources such as web pages, computer logs, Internet newsgroups, online chat
rooms, and corporeal case reports — each with different levels of granularity
and context. Nevertheless, linkage of this data is becoming more important
for the efficient administration of jusfice in a 21st Century society that is
increasingly leading its collective lives in the digital realm.

2. GAP ANALYSIS: WHAT IS THE PROBLEM AND
RESEARCH NEEDED?

One of the most prevalent challenges facing law enforcement (LE) in our
information society is to integrate public, Internet-based data with existing
private data sets to enhance its duty to enforce laws as well as its mission to
protect and serve the public citizenry. Fulfilling this expectation in isolation
from other law enforcement entities and public data sources is no longer
tenable, especially in light of information technology advances and pressure

298 Chapter 12

to enhance predictive capabilities. Although there have been a handful of
approaches that allow law enforcement to integrate data within their
agencies as well as from other jurisdictions, constructing new approaches
that expand this data integration to encompass public, Intemet-based data to
produce better actionable information is a mounting priority.

To address this need, the San Diego Supercomputer Center (SDSC) is
developing a research infrastructure for the management, analysis and
visualization of public and private multidimensional data. This will include
addressing the technical and analytical models, methods, tools and
techniques to effectively integrate and correlate law enforcement
information with public, cyber-based information to study the impact of this
expanded dimensional information on the efficient remediation and
proactive capabilities of law enforcement.

Law enforcement is an information-intensive process, beginning with
initial data collection at the crime scene or via victim reporting, extending
through evidence and intelligence gathering, and culminating in analysis of
data to support the prosecution and aid in preventing criminal activities.
However, LE is by its very nature reactionary to information contained
within and derived from reports of criminal activity. As a result, the
effectiveness of law enforcement is directly related to the quality of
information reported and proficiency of the subsequent analyses. This
quality is enhanced by collecting, processing, organizing and analyzing
reports between agencies.

Nevertheless, there is a chasm between information contained in crime-
related reports and the forensically relevant (who, what, when, where, how,
why) data that exists independent of crime reports. The breadth of
forensically relevant data available on the Intemet can impact the quality of
actionable information contained within existing private records maintained
byLE.

The process of law enforcement has thus far encountered barriers to
recognizing, accessing and utilizing this complementary dimension of
information because of technical, managerial and socio-legal properties of
information. The challenge lies in integrating, correlating and interpreting
intra-agency crime data with public, cyber-based data to enhance the best
available information upon which courses of action are based.

2.1 Technical, Managerial and Socio-Legal Problems

The Intemet has emerged as a mainstream vehicle for global
communications among persons, informal groups and public organizations,
corporations and govemments. Over three billion pages of information have
been posted to the Intemet using various protocols, including http, IRC/DCC

Cyber Forensics 299

(Internet relay chat/direct client communications), ftp (file transfer protocol),
Usenet (newsgroups), auctions and peer-to-peer services. Unfortunately, the
same characteristics that have made the Intemet so attractive for business
and govemment — low cost, high-speed, anonymity, multi-media
capabilities, etc. — have also made it highly useful for fraudsters, terrorists
and organized criminal groups.

LE's exploitation of the Intemet as an intelligence and investigative
resource has been complicated by the lack of a readily trained cadre of
govemment collectors and analysts, established operational processes and an
accessible collection and analysis platform capable of supporting high-
volume content collection, reduction, aggregation, analysis, reporting and
assessment. The lack of such a platform has relegated cyber forensics to ad
hoc, "hit-or-miss" efforts. Controlled, systematic collection has typically not
been performed.

Technology should be employed to increase the scope and quality of the
information upon which LE depends to ensure the public safety. As the
persons engaging in unlawful activities grow increasingly dependent on the
Intemet as a tool (i.e. communication or transaction mechanism) and/or
target (i.e. the use of the Intemet to commit new crimes or old crimes in new
ways) to facilitate their offenses they leave a trail of evidence and
investigatory leads as a natural byproduct. From this vast and disparate well
of publicly accessible data much can be uncovered and inferred.

Currently, the search, collection, and analysis of information evidence
from the public Intemet have been relegated to a few, highly specialized, and
usually grant-funded law enforcement projects. It has been addressed,
conceptually, as a new kind of high technology criminal problem. It is
indeed that, but also much more. Cyberspace has become the neighborhood
wherein law enforcement officers must regularly interact with their
constituency. The previously specialized projects and investigation
techniques confined to the non-budgeted criminal justice arena will certainly
be deployed universally. Regular law enforcement reporting and records
systems, evidence collection and analysis systems, and pro-active crime
suppression activities must likewise be relocated to the virtual existence of
cyberspace and scaled well beyond traditional jurisdictional barriers. The
altemative is failure of law in society.

Integrating public data with justice data will prove helpful in gathering
and exchanging information that can provide the hard data needed to assess
various threats. The frequency (number of occurrences) and severity data
may not find their way into LE reports because there may be no formal
reporting requirements, but nonetheless, information needed to provide a
meaningflil assessment may certainly lurk informally on the Net.
Furthermore, cases involving events related to the investigation at hand may

300 Chapter 12

be inaccessible or unverifiable for reasons ranging from out of court
settlements to unpubHshed opinions.

Indeed, traditional investigation of that index on the individual, rather
than querying on the criminal act itself may be problematic. This is where
data mining and modeling can significantly enhance the ability to infer
behavior and intent from pattems of acts (usage signatures). For instance, a
query on a particular suspect who may carry out identity theft using the
Intemet under multiple aliases will largely fly under the radar of traditional
investigations that do not make use of Intemet-based information.

While models of certain types of criminals have been available for
sometime, models of how these criminals may utilize the Intemet to commit
transgressions, as well as composites of persons committing cyber-based
crimes are very immature. This project will start to collect and populate the
requisite repository of data that does not yet exist. A corollary challenge that
will be addressed is compiling the data and constructing the models needed
for such a repository.

While the current Intemet offers the benefit of a new dimension of
information and unprecedented ability to interact with remote groups, it is
not without potential dangers that must be a consideration in any
management, analysis and visualization model. For example, the reliability
and credibility of the links may need some degree of quantification and
qualification. The credibility of the proposed relational model depends on
the linkage between Intemet-based data and current corporal-based report
events. To further illustrate, the collection and entry of crime report data is
facilitated by trained officers who observe traditional interactions where
issues of competence, coercion, malice, or willingness are effectively
evaluated. However, these traditional metrics may not be present when
considering information obtained from impersonal computer-computer
interaction on the Intemet. In short, measuring the context of cyber data is a
growing challenge.

2.2 The Need To Integrate Public and Private Data Sets

Recognizing the need to integrate private LE data sets, the Automated
Regional Justice Information System (ARJIS) was formed and has
successfully automated access to records and databases among its 50 local,
state and federal member agencies. The ARJIS Joint Powers Agency
marries reports from southem Califomia-based LE agencies to effectively
broker regional enterprise information. ARJIS' integrated database of LE
records allows real-time data queries and notifications, thus eliminating
multiple query operations. Furthermore, its knowledge management

Cyber Forensics 301

technology helps eliminate redundant data entry between various LE
information systems.

A prominent objective for ARJIS is enhanced intelligence analysis
through integration of justice and other public data, thus necessitating the
identification of technologies to jointly analyze structured criminal justice
data and various structured or unstructured data sets. Correspondingly, there
is a need to identify analysis models, data sources and standards, and access
requirements to enable the technical and managerial links between public
and private (current LE records) data.

It has become clear that public, cyber-based information is an
unstructured and dynamic data set where residue and patterns of LE-related
information are constantly being created. In this respect, Internet-based data
mirrors the forensic capabilities of corporally derived data: who (the
person(s) involved or having knowledge of a crime); what (the criminal act
itself); where (geographic location of the crime event); why (economic,
political motivations, etc.) and how (method of perpetrating a crime).
Furthermore, public datasets can create complex and diverse models, and
large quantities of such data may be essential to a unified and efficient
remediation of a crime.

Although ARJIS has made significant progress, the data upon which LE
is acting is limited to structured, static, historic collections that make use
only of corporally derived data (i.e. recorded interviews, witness reports,
criminal records). If law enforcement is to enhance the quality of actionable
information necessary to reach its goals of more efficient remediation and
proactive enforcement, it must expand dimensionally and engage in studying
and developing automated and systematic models and techniques to tap into
publicly available data.

Each of the LE user groups- patrol officer, criminal investigator, counter
intelligence/counter terrorism investigator and crime analyst- has developed
models to manage and collect private LE data. Effective models define and
streamline reproducible methodologies and techniques to key on oft times
isolated and disconnected event data contained in the crime reports. The
reality of crime, especially as it occurs using the Internet as a target or tool,
is that artifacts of the crime are not disconnected. Yet, the quality of the data
sample size and technique is a barrier to coordinated response, scalable
management of knowledge, timely reaction and predictability.
Consequently, P'̂ ELE aims to develop a research infrastructure that enables
the complex feedback among artifacts and user groups at varying scales.

SDSC's collaboration with law enforcement and exposure to ARJIS thus
far has revealed several important points: first, academic research on public
and private data integration would benefit from access to and use of the
tremendous capabilities that exist for querying and collecting public,

302 Chapter 12

Internet-based information; and second, effective deployment of scientific
research into the broader community depends, in part, on finding
mechanisms through which data collection models developed by university-
based intermediary researchers can facilitate the transfer of technology and
knowledge into the models used for managing, analyzing and hnking public
and private multidimensional data.

3. BRIDGING THE GAP: CYBER FORENSICS
APPROACH

One overarching goal of this P^ELE project is to develop and deploy a
connectivity framework that will enhance existing information collaboration
between and among LE agencies, justice-related researchers and the public
in southern California. Integrating publicly available data with existing
justice-related data sets may enhance the qualitative and quantitative value
of information needed to protect and serve our society. To accomplish this
goal, this project stands on the shoulders of recent advances in Internet
searching capabilities, and criminal justice networking- pioneered by ARJIS,
to develop a research infrastructure for the management, analysis and
visualization of public and private multidimensional data.

3.1 A Framework For Cyber Forensics

Although ARJIS offers centralized storage and long-term maintenance of
LE data, adopting a distributed approach to integrating public data from
specialized Internet searches allows it to be accessed more dynamically. In
this way, investigations models can be coupled, while allowing their design
and maintenance to remain relatively autonomous. In order to accomplish
integration in this way, the following general architecture will be assessed
(Figure 12-1).

Cyber Forensics 303

Data Resources & Wrapper
^

SDSC MEDIATOR

SERVER

Application Servers/Mining

f X I
, ^ J - y j 1

-^ Nv/Data Mining/
^^ '̂= !̂ ^ \ Analysis

Clients Web User Interface Web User Interface

Figure 12-1. General architecture for the integration and analysis of public-private data sets

3.2 Approach Steps

3,2.1 Step 1: Identify analysis requirements, data sources and
model standards

This step in the activity schema consists of organizing project team
members from SDSC, industry collaborator(s) and ARJIS who will define
various problems in conjunction with ARJIS/LE case-based investigative
needs, and about which open source data artifacts are sought. This will
include an initial analysis of each entity's respective technical and
substantive datasets and requirements. This will include an identification of
some initial query terms and data collection strategies, and result in a set of
data-input requirements and output products.

Deployment and feedback will be obtained by utilizing ARJIS member,
CATCH (Southern California High Tech Task Force) in executing the
proposed work and serving as a testbed.

304 Chapter 12

3.2.2 Step 2. Convert analyses requirements to collaborator
workflow (search and collection); deflne search strategy and
collection plan

This step involves federating the requirements analysis from the ARJIS
dataset with the Internet query infrastructure to define a search strategy and
collection plan for Internet-based data. This involves customizing the data
display configuration and query result report format to fit the specification of
the ARJIS client.

3.2.3 Step 3. Identify access needs for ARJIS for each client type

The compilation of ARJIS data and public data will carry with it the
more strict legal controls assigned to the ARJIS law enforcement records.
This project step will identify the access needs of the two kinds of typical
users within the law enforcement community — investigators and analysts.

3.2.4 Step 4. Develop an information exchange platform —
integrate public, Internet data with private, justice data

This activity involves marrying the query response artifacts from public,
Internet-procured data with ARJIS client reports. We then develop query
templates specific to the investigative need and resulting problem statement
developed at the onset. The value here is in defining a "common currency"
between structured, justice report data and unstructured, cyber data based on
model metadata language.

We will investigate and adapt relevant XML standards for security data
and analysis. We expect to define model metadata to discover, locate and
evaluate models suitable for specific LE investigations and intelligence
needs, and describe the data-input requirements and output products. In so
doing, we develop searchable models and data requirements using XML
(extensible Markup Language) schemas for encoding model and application
metadata, which will allow us to register and document the various models
that are developed. This step is designed to develop a crosscutting search
mechanism model that relates structured, LE report data with unstructured,
Internet data and to identify their function, design, and suitability to answer
the problem. The teams will identify input requirements of models such as
type of event variables (person, geography, and/or motivation key words),
data quality requirements, and classification metrics.

Where possible, we will leverage the current cyber infrastructure
developments at SDSC, including exploring the applicability of Web
Services to LE information integration and analysis.

Cyber Forensics 305

3.2.5 Step 5. Develop operational and technical criteria for analysis
tools- blending technology with people

This phase consists of the development of tools to recognize, reconstruct
and automate domain knowledge decision support patterns. This involves
recording expert domain knowledge about investigations as scripts that allow
us to set up expectations and perform inferences.

In addition, we will investigate supervised and unsupervised machine
learning approaches to pattern discovery and modeling, including
probabilistic models, decision trees, and support vector machines. This
includes research into compute-intensive statistical and machine-learning
approaches to pattern discovery and modeling, and software development to
ensure that these results are incorporated into the overall system.

Tools will be tested and reviewed in an effort to assess reliability and
establish baseline metrics for the management of public-private data.
Furthermore, team members will define models for optimal visualization
schemas of the integrated data set. We will experiment with various visual
designs to best capture the domain knowledge of the LE investigator/analyst
in a client interface.

3.2.6 Step 6. Implement analysis tools in small scale, real-world law
enforcement environments

Here the objective is to beta-test the analytical tools in specialized law
enforcement and intelligence environments capable of evaluating their
effectiveness by comparison with traditional investigative support tools.

3.2.7 Step?. Evaluate Findings

The final step consists of evaluation and iteration of the earlier research
stages with the intent of refining the templates, models and metrics. As
described, we will develop the information exchange platform and the model
metadata standards to include a wide range of data and model types, as well
as meet the access and security needs of diverse LE agencies. This
evaluation will encompass the analytical process of identifying the cyber-
based data artifacts, assessing the value of those artifacts as it relates to the
overall case report, and developing a methodology to extend the
investigation and collection of justice report data to include cyber-based
data.

306 Chapter 12

3.3 Follow-on Questions and Issues

Some of the other questions to be posed and potentially answered
address security and legal concerns. These include, but are not limited to the
following:
• What are the benefits (positive consequences) of information integration

(in the form of data sharing) to the public? What are the warning signals
about the negative consequences of information integration?

• How does this information integration affect the public sector concerns
related to data sharing: Is it restricting/enabling privacy infringement?
What decision-making processes might profiling information be used?

• How can existing public data be used to further LE's mission?
• Will the access to and use of pubHcly available data encourage private

sector to share higher quality data with LE?
• What are the relationships between static, law enforcement records

(ARJIS records), dynamic, public behavioral data (specialized Internet
searches), and transactional, network history and traffic data (security
logs)?

• What is the cost-benefit of integrating public information with LE data
sets?
In terms of cost-avoidance related to information location cost (time

spent identifying potential sources of information, accessing those
information sources, purchasing external data)? Information interpretation
costs (cost to follow up and validate; cost of misinterpreting information;
cost of relying on inaccurate data)? Information integration and
reorganization costs?

4. IMPACTS OF CYBER FORENSICS FOR LAW
ENFORCEMENT

4.1 Significance of Integrating Information from Public
and Private Multidimensional Data

The potential network for collaboration in justice operations and research
in southern California is extensive. The ARJIS Joint Powers Agency
represents San Diego and Imperial county regions, and is partially interfaced
with Los Angeles County. The 50+ ARJIS member agencies that form this
distinctive justice information brokerage comprise over 7,000 local, state and
federal LE professionals with a service population of approximately 3.1

Cyber Forensics 307

million people living in a geographical area of nearly 9,000 square miles,
and with a very active international border and port of entry.

The resources available within the LE community that are of value to
investigative officers, analysts, criminal justice administrators and forensic
researchers include both primary datasets and models. The San Diego
Supercomputer Center has developed a unique partnership among high
technology law enforcement by way of knowledge and technology transfer,
as well as providing a forum for cross-pollination of teaching, training and
leaming between applied security research and operational law enforcement.
This institutionalized trust between law enforcement and academia is rare
and valuable.

Developing a formal framework for sharing data and models with the
research, management and investigative operations will benefit ARJIS and
other SDSC cyber-forensic projects that seek to incorporate dynamic, real-
world, social and economic parameters into data sharing models. As these
models (tools, techniques, methodologies) mature, the infrastructure will
make the models accessible and deployable to other researchers,
policymakers, investigative professionals and justice planners. The
significance of this integration will extend beyond the southern California
region to include other public-private partnerships, demonstrating an applied
instantiation of how to leverage the strengths of individual public, private
and academic communities toward a better collective whole.

By designing a path for open source data to be input into existing models
used in investigation planning and decision making, the credibility and
influence of justice research is enhanced among audiences that are often
mislead by erroneous and sensationalized information from the popular
media.

4.2 Enabling Public and Private Technology Transfer

The P^ELE model serves as an academic bridge translating private sector
technology into usable and civilly responsible law enforcement. Likewise, it
provides a forum for cross-pollination of teaching, training and leaming
between academia, industry and the govemment. Aside from enabling a
transparent, reproducible, and objective system for integrating models from
the public and private sectors, academic researchers will gain access to
important problems and data in real-world large-scale contexts. This is
critical to understanding and predicting the impact of these technologies on
law enforcement agencies and services, govemance, and the democratic
process.

308 Chapter 12

4.3 Value to Traditional, Broader LE Community

Although the immediate application of this project is to integrate private,
LE data with open Internet-wide data within southern California, it is
expected that the products (tools, techniques, methodologies) developed in
this project will have much broader applicability. For instance, we anticipate
that the basic design for implementing data as Web Services will have
similar portability to other information aggregation, correlation and crime
mapping research efforts.

This research empowers LE in its role as a collector, interpreter and
custodian of large public data sets to manage large-scale data and
information acquisition. Furthermore, by using open standards it enables a
more transparent and scientific assessment of technological impact on LE
investigations and decision-making so that data, networks and architectures
can interoperate without running afoul of security, privacy and information
assurance requirements.

P^ELE will help fulfill the global information needs of LE more
efficiently to enhance response and proactive protection. Although LE has
trained public servants skilled in using the Internet and cyber-based data to
enhance investigations, the problem is these officers represent a small
fraction of law enforcement. The reality is that the vast bulk of police
officers do not have the skills, resources, or time to effectively locate data
from the Internet and integrate it into their investigation. The proposed
project holds the promise of lowering the barrier to entry for those
technically challenged investigators, while expanding the scope of public
servants capable of utilizing digital traces of crime.

4.4 Significance To Computer Security Community

The research conducted and goals attained through P^ELE will offer
complementary benefits to the current computer security and computer
forensic research within and between academia, the private sector and
government. Geared toward quantifying various security risks, the
technology developed will inform better metrics regarding threat assessment,
operational vulnerabilities and defense-response actions such as:
• An understanding of system vulnerabilities, including hardware, software

and human, and particularly as seen through the eyes of known hacker
communities,

• An awareness of the relative availability of software tools that present a
direct threat to codes, content, or network access.

Cyber Forensics 309

• Indications and warnings of specific internal or external hacker
challenges, or hacker community projects that suggest attacks may be
imminent or underway.
Furthermore, P^ELE framework will enable computer security research

aimed at correlating information security logging data and real world events.
For instance, the investigation of issues related to windows of vulnerability
optimal disclosure and release of system patches must be addressed by our
information society in a more empirical way. By coupling behavioral data —
public searches of patch releases, vulnerability announcements, and exploit
releases — with transactional data from security logs showing attempted and
successful exploits, we can enhance the efficient identification and
remediation of actual threats to our cyber infrastructure.

4.5 Comparison to Other Efforts

There are several projects underway that attempt to integrate and search
different LE databases to allow LE to share information from their
operational databases (CopLink, CrimeSoft, ISYS, RISS). Insofar as these
are valuable efforts, they all lack several features that are defining
capabilities within the P^ELE infrastructure. None of the aforementioned
projects are designed to include the domain of open source, public, Internet
data in pool of justice information used to make associations for
investigations and intelligence. P^ELE is further distinguishable because it
stands on the shoulders of an estabHshed framework for integrating justice
data spanning the breadth of 50+ local, state and federal agencies. Other
efforts connect only a handful of agencies that share private, structured LE
data only.

Furthermore, these efforts do not make significant progress toward
solving the lack of metrics problem in data sampling: data in reports is
uncoordinated, unautomated, and not scalable. This resuhs in investigations
(link analysis) that are limited, remediation (responding to incidents and
predicting/preventing future incidents) that is suboptimal (uncoordinated),
and resulting statistical analysis that is inaccurate (gap). P^ELE's data
mining and web services approach to integrate unstructured, Internet data
promises a novel approach to this quantification effort.

Finally, the P^ELE approach enables LE and researchers to correlate
cyber and real world events by uncovering correlations between static, law
enforcement records (ARJIS records) with dynamic, public behavioral data
(Internet data), along with transactional, network history and traffic data
(security logs).

310 Chapter 12

5. CONCLUSION: P^ELE AS A CYBER FORENSICS
PROJECT FOR MANAGING MODELING AND
MINING DATA FOR INVESTIGATION

Cyber crime will not "cease and desist" in deference to LE's ability to
utilize the artifacts it leaves behind. The rapid pace of technological
development has not only fostered new criminal acts (i.e. the spread of
computer virii, unauthorized access to a computer system, possession of
access control devices, etc.), but in fact has spawned novel means to conduct
old crimes (i.e. online fraud, internet gambling, copyright infringement,
etc.).

Therefore, the question is not whether evidence exists, but rather,
whether LE can uncover, contextualize and integrate cyber evidence with
predication data from traditional case reports. P^ELE is focused on
developing a model research infrastructure for the management, analysis and
visualization of public and private multidimensional data so as to generate
more actionable knowledge from various data sets. Ultimately, this research
will be applied to enhance LE operations to more efficiently serve and
protect society in our information age.

NOTES

1. For the purposes of this Chapter, "public" and "private" are used to distinguish the two
broad categories of data sets upon which this project focuses. "Pubhc" refers to the
cyber-based data available openly on the Internet, whereas "private" refers to law
enforcement-related data sets administered by justice officials.

2. For the purposes of this Chapter, "cyber forensics" is used by the authors to refer to the
novel subcategory of "Internet forensics," defined as repeatable techniques and
methodologies to collect, preserve and analyze digital data on the Internet for
investigation purposes. Note that, "computer forensics" is the principles applied to the
collection, preservation and analysis of computer-derived evidence to ensure its
admissibility as evidence in a legal proceeding.

3. E-commerce, email and VOIP (voice-over-Intemet-protocol) communications are a few
prominent examples of the ubiquity of computer-based transactions in modem society.

4. Computer Science and Telecommunications Board. Cyber-Security and the Insider
Threat to Classified Information. 2000 December.

5. Lasser, Jon, Irresponsible Disclosure. Security Focus; 2002 June 26.
6. Lamont, Judith, KM Aids and Abets Law Enforcement. KM World, 2002 March.
7. Coplink <http://www.coplinkconnect.com/>; CrimeSoft <http://www.crimesoft.com>;

RISS — Regional Information Sharing System <http://it.ojp.gov/
process_links.jsp?link_id=LI-00245>; ISYS <http://www.isys.com>,

8. Cisco Systems. Network Based Transformation for Justice Systems. 2002.

Cyber Forensics 311

REFERENCES

[1] Computer Science and Telecommunications Board, Cyber-Security and the Insider
Threat to Classified Information, 2000.

[2] J. Lasser, Irresponsible Disclosure, Security Focus, 2002.
[3] J. Lamont, KM Aids and Abets Law Enforcement, KM World, March 2002.
[4] Cisco Systems, Network Based Transformation for Justice Systems, 2002.

Chapter 13

CYBER FORENSICS: ISSUES AND
APPROACHES

Jau-Hwang Wang
Central Police University, Taiwan, ROC

Abstract: This chapter introduces the concept of cyber forensics, digital evidence, and
computer forensic process. Cyber forensics is defined as the application of
computer science to laws ~ to process and analyze digital evidence, to
reconstruct a crime, and to provide links among the offender, the victim and
the crime scene. Basically Digital evidence includes all digital data, which can
be used to establish that a crime has been committed or can provide a link
between a crime and its victim or a crime and its perpetrator. The forensic
process of digital evidences includes evidence recognition, collection,
preservation, and analysis for crime reconstruction,

Keywords: Cyber Forensics, Digital Evidence, Crime Investigation.

1. INTRODUCTION

Since the introduction of the first electronic computer in 1946, computer
and its storage devices have created a trend to process and store information
in digital format. It is relatively easier and less expensive to create and store
digital information compared to traditional information processing
techniques, such as writing and punch cards. As a result, more and more
information is created, processed, and stored on computer storage devices,
such as magnetic disks. The trend is further accelerated by the introduction
of computer network in 1969 and personal computer in 1981. Nowadays,
computer and computer network are ubiquitous within our society and used
in every facet of modem society. For example, computer and computer
network are commonly used to edit and send messages, transfer funds,
purchase stocks, compute financial data, make reservations, and access

314 Chapter 13

worldwide information online. Consequently, the amount of information,
such as financial, mihtary, proprietary business data, and personal
communications stored and transmitted by computer and computer network
has increased tremendously. Consider the facts that there are more than 3
billion indexed Web pages are on the world wide web (WWW), more than
550 billion documents are available on-line, and billions of messages are
sent and received daily through computer network [1]. Furthermore, a
microcomputer nowadays may often have disk with 60-GB or more storage
capacity and store thousands of files. In general the widely application of
computer related technologies benefited our society. However it is inevitable
that computer and computer network may also be used in illegal activities.

Computer network was originally designed for connecting computers in
academic environment and thus the security was not among the top design
issues. Therefore, computer networks are vulnerable to unscrupulous attacks.
The problem is worsened by the prevalence of the WWW technology.
Nowadays, computer and computer network have been widely used for
enterprise information processing and E-Commerce. E-commerce, such as
business-to-business (B2B), business-to-customer (B2C) and customer-to-
customer (C2C), has become common business practice and Intemet
connection has become a commodity for general public. Furthermore, the
efficient computation and the effective control capability of computer have
made it an excellent mechanism for controlling a wide range of facilities and
devices, such as power plants, robots, and information appliances (lA).
Many facilities and assets are controlled either directly or indirectly using
computers. As a result, the computer and computer network may become
targets of criminal activities, such as thief, vandalism, espionage, or even
cyber war^ For example, computer is often used as a weapon to attack other
computers, such as spreading computer virus and blocking network services.
Some highlights of the sixth annual "Computer Crime and Security Survey"
for 2002^ published by the Computer Security Institute are: ninety percent of
respondents detected security breaches within the year 2002, eighty percent
acknowledged financial losses, 223 respondents reported $455,848,000 in
financial losses, and so on.

The problem will be getting worse as a result of the continuous expansion
of computer applications. It is often stated that computer crime investigation
will become one of the top challenges for the law enforcement agencies in

Cyber war or information warfare is defined as the offensive and defensive use of
information and information systems to deny, exploit, corrupt, or destroy, an adversary's
information, information-based processes, information systems, and computer-based
networks while protecting one's own. Such actions are designed to achieve advantages over
military or business adversaries. (Ivan K. Goldberg, "Glossary of Information Warfare
terms'\ http://www.psycom.net/iwar.2.html)
http://www.gocsi.com/press/20020407.html

Cyber Forensics: Issues and Approaches 315

the 21st century. One of the most fundamental aspects of computer crime
investigation is computer forensics or cyber forensics, which deals with the
recognition, collection, preservation, comparison and identification, and
documentation of digital data from computers and computer networks. This
chapter introduces the concept of computer forensics and its processes. The
organization of this chapter is: section 2 gives the concept of computer
forensics and digital evidence, section 3 describes the computer forensics
processes, section 4 and section 5 address the evidence searching issues in
computer systems and computer networks, section 6 discusses the research
and development issues, and section 7 gives the conclusions.

2. COMPUTER FORENSICS AND DIGITAL
EVIDENCE

2.1 Computer Forensics

Forensics is defined as the application of science to laws enforced by
pohce agencies in a criminal justice system [2]. In general, any scientific
principle or technique that can be used to identify, recover, reconstruct or
analyze evidence during a crime investigation can be considered as part of
forensic science. Similarly, computer forensics can be defined as the
application of computer science to laws — to process and analyze digital
evidence, reconstruct crime, and provide links among the offender, the
victim and the crime scene. Although forensic practice can be traced back to
18th century [3] and comparatively computer forensics has a brief history,
the basic methodologies in determining the evidential value of crime scene
and related evidence mostly remain consistent. While traditional forensic
professionals use fingerprints, DNA typing, and ballistic analysis to make
their cases, computer forensic professionals have to develop sophisticated
tools for collecting, preserving, examining, extracting, and evaluating digital
evidence in an effort to establish intent, culpability, motive, means, methods,
and loss resulting from cyber crime. According to Locard's Exchange
Principle [4], any one or any thing, entering a crime scene takes something
of the scene with him, and leaves something of him behind when he departs.
An offender might leave fingerprints at the scene in a traditional crime.
Similarly a computer criminal might inadvertently leave ''electronic trails" in
computer or computer network storage devices during an offence.
''Electronic trail" is similar to fingerprint in traditional crime scene — only
that it is relatively soft, highly volatile, less tangible, and much harder to find
and recover.

316 Chapter 13

2.2 Digital Evidence

Evidence is defined as "testimony, writing, material objects, or other
things presented to the scene that are offered to prove the existence or non
existence of a fact" [5]. Digital evidence is defined as "all digital data that
can establish that a crime has been committed or can provide a link between
a crime and its victim or a crime and its perpetrator" [6]. Essentially, digital
evidences are binary data that present information of various kinds, such as
text, audio, images and video. For examples, e-mail messages, registry
entries in Windows systems, system event logs, forged e-mail headers, virus
codes and infected files, etc, all may provide important clues for crime
investigation. The evidences recovered can be used to determine the
relational, functional, and temporal aspects of crime acts. With the
increasing use of computers and the prevalence of computer networks, it is
inevitable that people's daily life, so as illegal activities, may be involved
with computers and computer networks. Furthermore, in this paperless
information era, the pieces of data stored on a computer disk may often be
the only information available for a crime investigation. Thus, digital
evidence has become more and more important to today's investigative
maneuver.

3. COMPUTER FORENSIC PROCESS

Forensic scientist functions include analyzing physical evidence,
providing expert testimony, and fumishing training in the proper recognition,
collection, and preservation of physical evidences [2]. According to this
definition, the techniques used in forensic science can be categorized into
two aspects: processing of forensic evidences, which includes evidence
recognition, collection, preservation and analysis; and providing expert
testimony. Although the traditional forensic principles are still applicable in
computer forensics, the processing of digital evidence needs more
precautions. Firstly, digital evidence is binary data stored and represented by
magnetic domains and can only be interpreted by proper devices, such as
disk drives. It is less tangible, highly volatile and relatively easier to be
tampered compared to physical evidence. Secondary, to search for digital
evidence in a computer system without any tool is similar to find a needle in
a haystack since a typical hard disk may contain huge amount of data^
Finally, due to pervasive Internet connectivity, the scope of computer crime
incidents is often across enterprise or national boundaries and computer

A typical hard disk today can store more than 60GB of data and contains thousands of files.
Furthermore, the capacity of hard disk may increase to terabytes in the near future.

Cyber Forensics: Issues and Approaches 317

forensic professionals often have to trace offenders across the cyber world.
Thus, computer forensic professionals need to develop new methodologies
in order to acquire the evidence without damaging the original, to
authenticate that the evidence as the one originally sized, and to analyze the
evidence without incurring any alteration or damage [7]. From the forensic
science perspective, there are four major key aspects to processing and
examining digital evidences [6,8]: evidence recognition, evidence
preservation, collection and documentation, evidence classification,
comparison and individualization, and crime reconstruction.

3.1 Evidence Recognition

The crime scene of a computer related crime consists of two spaces: the
physical world and the cyber world. Thus, the process of recognizing digital
evidence also includes two folds: firstly to recognize the hardware, such as
computers, disks, network connections, and printouts for case related
information, and secondary to search for relevant digital data, such as e-mail
messages, system log files, web pages, and so on. Since a typical hard disk
may contain 60GB or more data, in practice it is unlikely to exhaustively
examine every file stored on the computer system. In addition, the computers
involved may be located in different locations, such as across networks or
countries, it may not be possible to collect and search all related information.
Thus, the scope of examination is limited to well-identified probative
information, i.e., is the information related to a certain case. Often a list of
key words are usually created and used to search case related information
from huge groups of files on a computer system.

3.2 Evidence Preservation, Collection and
Documentation

Videotaping, and photographing are often used to freeze the crime scene,
such as the relative positions of hardware components, the display on the
monitor of a workstation, and the status of connections between devices.
These are all very useful for crime scene reconstruction and evidence
authentication. Since the hard copy of information is usually more
admissible in court than the digital file, in practice files are printed out,
dated, and signed as much as possible. The crime scene and the investigative
activities should be documented in detail by drawing crime scene diagrams
and taking notes for each collection, such as the position of the evidence,
who collects the evidence, and at what time. If an entire computer needs to
be collected, all of its peripheral devices, such as printers and scanners,
should be also sized if they were possibly used in committing the crime. If

318 Chapter 13

only some hardware components need to be collected, the independent
component doctrine'* [9] should be followed and the serial number of each
component should be documented.

The digital evidence should be unaltered and authentic in order to be
admissible in court. Thus, the state of digital evidence must be preserved as
it originally sized. There are commercial available tools and techniques to
properly collect and preserve digital evidence such that it will be admissible.
For example, message digests of files can be created to verify that they are
not altered. A message digest program accepts a digital object and produces
a number, the message digest, often also called hash value or digital
fingerprint. If data is shghtly modified or tampered, the message digest thus
created will be significantly different from the original. The most commonly
used message digest algorithms are MD5 and SHA\

Besides authentication, computer records must also satisfy the following
criteria to be admissible [10]: (1) they are produced, used, and maintained in
the regular course of business operation, (2) they must be the best evidence
available, and (3) they are collected by people who have the necessary
expertise. For example, if a log file is related to a case, instead of just
retrieving the related event log entries, the entire log file should be collected.

Bit-stream copy algorithms are usually desirable to fully backup the
contents from computer hard disks. Also, all the files collected and the
message digests for each file should also be listed, printed, and signed.
Finally, the current date/time and that on the computer, the name of the
person who collects the file, the operating system used, the software used to
copy the file, and the type of information possibly contained in the file
should be documented in detail.

3.3 Evidence Classification, Comparison and
Individualization

Evidence classification refers the process of finding the characteristics of
the evidence and describing it in general terms, and further determining the
application software used to create it. Comparison and individualization
refer to examining and revealing characteristics of digital evidence and
comparing the evidence with control specimen in order to identify the source
of the evidence. Individualization is often based on the randomly created
flaw in particular computer equipment. For example, a document created by
Word 97 software on a computer contains the computer's Ethemet address

Independent component refers to the component can articulate an independent basis for
search or seizure.
Some other messages digest software are HAVAL, and SNEFRU.

Cyber Forensics: Issues and Approaches 319

(Media Access Control, or MAC address)^ in a line headed by _PID_GUID
within the document.

3.4 Crime Reconstruction

The ultimate goal of a crime investigation is to know what happened,
when did it happen, who was involved, how it was carried out, and why, for
each activity in a crime, besides the facts that someone is injured and a
computer is broken into. Crime reconstruction process includes discovering
evidences or recovering damaged evidences and determining the actions of a
criminal act based on the evidences. The evidences recovered can be used to
determine the relational, functional, and temporal aspects of crime acts. For
example, the modified, accessed, and created times of a file, the logs of
system events, the timestamps of e-mail messages, and etc, all can be used to
reconstruct the sequence of activities of a crime act.

4. DIGITAL EVIDENCE IN COMPUTER SYSTEMS

Computer systems are ubiquitous in modem society. The vast varieties of
network stations are mostly general computer systems. The network nodes,
such as gateways and routers, are dedicated computers, which control and
provide the functioning of the network. Both kinds of computers provide
huge data storage capacity besides their computing power. In general, the
hierarchy of computer data storage consists of registers in the central
processing unit (CPU), random access memory (RAM), online secondary
storage, and offline storage. The data in the CPU registers are highly
dynamic and volatile. It will be very difficult if not impossible to recover
data from CPU registers. However, the RAM might keep a copy of some
register data, which can then be recovered. Modem computers use magnetic
disks as their primary on-line secondary storage devices. Data are abstracted
as files and mapped onto physical devices by the operating system. Offline
magnetic storage devices are rather static and the data recovering techniques
are very similar to recovering data from on-line magnetic secondary storage.
In this section, the digital evidence recoverable from the random access
memory (RAM), the file system, and the physical media are described in
detail.

The MAC address is the same as the serial number of the network interface card. Viewing
the Word 97 document using NotePad or other text editors can easily reveal the information.

320 Chapter 13

4.1 Digital Evidence in Random Access Memory

It may be necessary to recover programs or data from main memory for
forensic analysis. For example, an intruder may leave a back door process
with it source codes as well as its executable removed to cover his trails.
Some modem UNIX systems, such as Solaris, FreeBSD, and Linux, keep a
copy of the executable files, current directory, and process memory of a
running process in a /proc file system [11], as shown in Table 13-1. The
information of a process is stored in the directory /proc/pid, where pid is the
process identification number and the attribute of the process is specified by
the /proc/pid/filename. For other systems, the TCT's^ pact utility can be used
to recover process memory, including code, data, and stack.

Table 13-1, Process attributes and their correspond files in /proc
Attribute of Process Solaris FreeBSD UNIX
Executable Code /proc/pid/object/a.out /proc/pid/file /proc/pid/exe
Process Image /proc/pid/as /proc/pid/mem /proc/pid/mem
Memory Map /proc/pid/map /proc/pid/map /proc/pid/maps

4.2 Digital Evidence in File Systems

A file system can be divided into two main components: namely the
logical file system and the physical file system. The logical file system is
further consisted of two parts: a collection of files and a directory structure.
A file is the logical storage unit abstracted from the physical properties of its
storage devices by the logical file system. The directory structure, which
provides information about files in the system, is also abstracted and mapped
onto physical devices by the logical file system. From a user's perspective, a
file is the primitive allotment of secondary storage, and it is a named
collection of related information that is recorded on secondary storage. The
name of a file consists of two parts: primary file name and secondary file
name, separated by "dot". Usually, the primary file name reflects the content
of the file and the secondary file name indicates its type. Other file attributes
include identifier, location, size, protection, time, date, and user
identification [12]. The physical file system consists of the data structures
recorded on the disk by the operating system for the purpose of disk space
management. The operating system needs to do two tasks before storing files
on a disk. Firstly, the operating system partitions the disk into one or more
groups of cylinders, called partitions, and treats each partition as a separate
disk. Secondly, the operating system needs to store the initial file system

^ http:/www.fish.com/forensics

Cyber Forensics: Issues and Approaches 321

data structures onto the disk, such as an initial directory and the map of free
and allocated space for each partition. Magnetic disk is one of the major
storage media in computer system. A typical disk set consists one or more
platters. Each platter surface is further divided into several tracks. Tracks,
which are at the same position on different platter surfaces, form a cylinder.
Each track is further divided into many sectors. A typical sector consists of
512 bytes. The organization of a typical disk platter is shown in Figure 13-1.

Figure 13-1. The Organization of a Disk Platter

While disk sector is the basic storage unit, the allotment of disk storage to
files is often by cluster, which typically consists of several sectors. The
number of sectors in a cluster is depended on the storage capacity of a disk.
For example, a cluster in a 256MB disk using FAT16 may have 8 sectors,
while in a 512MB disk the number of sectors per cluster is 16.

4.2.1 Recovering Deleted Files

In a Windows environment, when a file is deleted the first character of
the directory entry is changed to hex value "E5" for distinction and the
entries assigned to the deleted file in the FAT are changed to zero. The
actual data stored on the disk clusters remained intact if the clusters are not
reassigned and overwritten by other files. Thus, the deleted file can be
recovered by putting the fragmented clusters together. There are some tools
available for recovering deleted file in certain operating system. For
example, PowerQuest's^ Lost & Found utility can be used to recover deleted
file in DOS FAT systems and RecoverNT^ can be used to recover deleted
files in Windows NTFS or 2000 systems.

http://www.powerquest.com/
http://www.lc-tech.com/Forensicsuit.asp

322 Chapter 13

A typical UNIX system partitions an entire disk into several partitions,
which is further divided into several zones, and each of which contains its
block allocation bitmap, data blocks, and I-node blocks, as shown in Figure
13-2.

Disk

label Partition] Partition2
(File system)

partitiorik

Super
block

I-node
bitmap

Data
bitmap

I-node
block

Data
block

• • •

Figure 13-2, Disk Layout for a Typical UNIX File System

Thus, the data blocks of a small file are normally stored on the same zone
and good file locality allows the contents of a deleted file to survive long
after it is deleted. When a file is deleted, the system makes following
changes [13]:
• The directory entry is marked as unused, but the name of the file still can

be found by search the directory with the ''strings" command.
• The I-node block is marked as unused in the block allocation bitmap.

Some of the file attributes (information stored in I-node) are destroyed
but a lot of them are preserved, such as owner, group ID, last read access
timestamp and last write access timestamp. In particular, Linux also
preserved the first 12 data block pointers and the deleted file can be
recovered up to 12 data blocks by chasing the data block pointers.

• Data blocks assigned to the file are marked as unused in the block
allocation bitmap. The actual data stored on the data blocks remained
intact unless the data blocks are reassigned to save other files. Thus, the
deleted file can still be recovered by putting the fragmented data blocks
together.

Cyber Forensics: Issues and Approaches 323

The icat utility from the Coroner's Toolkit̂ ^ can be used to recover parts
of the information from deleted files in UNIX or Linux systems

4.2,2 Recovering Data on Slack and Unused Disk Space

The unit allotment of memory chunk that file system allocates to files is
by block or cluster. A cluster normally consists of several sectors. In general,
the size of a file is not exact multiple of cluster size, thus the last disk cluster
allocated to a file may not be fully occupied and overwritten completely. The
fraction of the last cluster which is not overwritten, often called slack space,
may contain contents of a preexist file. Similarly, unused disk space may
contain contents of previously deleted files. Therefore, it is important in
forensic practice to recover these hidden files. There are several tools
available for recovering hidden files, such as Guidance's^^ EnCase, NTI's ^̂
getslack and getfree utilities, and Ontrack^^

4.3 Data Recovery from Physical Storage Medium

The user's view of files and the directory hierarchies and disk blocks are
all abstractions provided by the operating system. At the physical medium
level, every bit of information is recorded as a magnetic domain. Although it
is relatively easy to delete a file from the file system, it is very difficult to
destroy its contents in physical medium [14,15,16]. Firstly, when data is
written to the physical medium, the read-write head sets the polarity of most
of the magnetic domains, but not all, due to the inability for the device to
precisely position the read-write head at the exactly same location each time
and the variations in medium sensitivity and field strength difference over
time and among devices. Secondary, when a ''0" is written to disk the
medium stores a "0" by setting the strength of the magnetic domain to a
certain value, say 0, and when a " 1 " is written the strength of the magnetic
domain is set to 1. However, in reality the actual effect is closer to 1.05
when a "V is overwritten with a "V\ and 0.95 when a ''0" is overwritten
with a "V\ Although the read-write head of a disk is set up to read both
values as a " 1 " , these differences can be detected by using magnetic force
microscopy (MFM) techniques. It tums out that the magnetic medium
contains an image of everything ever stored on it. Thus, data can still be
recovered even after which has been overwritten by an arbitrarily large
number of times. This makes it very difficult to "truly" remove information

http://www.porcupine.org/forensics
http://www.guidancesoftware.com

12

http://www.forensics-intl.com
13

http://www.ontrack.com

324 Chapter 13

from magnetic storage simply by overwriting or disk wiping. Although it is
possible to recover layers of overwritten data when armed with MFM
techniques, it is a very complex process to piece bits of information together.
Thus, MFM is only used as a last resort in computer forensics.

5. DIGITAL EVIDENCE IN NETWORKS

The threats to information systems were at approximately 80% intemal
and 20% extemal in early 1990s. However, with the integration of
telecommunications and personal computers into the Intemet, the threats
appeared to be approaching an equal split between intemal and external
agents in the year of 2000 [17]. Furthermore, the sixth annual "Computer
Crime and Security Survey '̂̂ " for the year 2002 published by the Computer
Security Institute showed that 74% of the respondents cited that more attacks
are from the intemet connections than from their intemal systems. Seeing
this trend, we believe that in the near future, the Intemet will become one of
the most important areas for crime investigation, and to search digital
evidence in the computer networks will also be one of the most challenging
tasks as well.

5.1 Network Architecture

The network subsystem of a modem computer system is designed and
organized as a series of layers. Each layer offers certain services to the
higher layer and shields the higher layer from the detail implementation of
its services. The services between two adjacent layers define an interface
between them. A computer network is normally characterized by the number
of layers, the contents, and the functionality of each layer. The
communication between layer n on two different machines is govemed by a
set of rules and conventions, collectively csiWcd protocols. The International
Standard Organization defined an Open Systems Interconnection Reference
Model [18], which has seven layers, namQly physical, data link, network,
transport, session, presentation, and application layers. One of the most
widely implemented network protocols is the TCP/IP suite. TCP/IP is a four-
layer network, as shown in Figure 13-3. The four layers mainly correspond
to the physical layer, data link, network, and transport layers in OSI
reference model and above the top TCP/IP layer is the application layer.

http://www.crime-research.org/eng/library/Cybercrime_Stat.htm

Cyber Forensics: Issues and Approaches 325

TCP K^ UDP

ARP

IP

Network Interface

%

Figure 13-3. A Conceptual TCP/IP Architecture

The functions of the transport layer are managing the delivery of data and
session management, such as establishing and terminating connections. The
network layer is mainly responsible for routing message to its destination
according to its addresses. The data link is responsible for establishing
connection for data transmission between computers that are connected to
each other. In addition to provide network functionalities, each layer usually
maintains some housekeeping data. For example, a router usually keeps a
routing table for determining the outgoing link for each message it received
according its destination addresses.

On top of the network system, various applications are implemented to
provide interfaces between users and networks. For example, mail server
enables us to exchange e-mail, web server allows us to view web pages, and
so on. The architecture of network services is shown in Figure 13-4.

^PipDDcailtSoirD

S®irv®r
CDDool t

Figure J3-4. The Architecture of Network Services

Since a message needs to travel through many layers before being sent
through communication media to its destination, it often leaves some trails

326 Chapter 13

behind in certain layers. Thus, it is often possible to recover links to network
from a computer, as shown in Figure 13-5.

electronic

trail ^^V^
Figure 13-5. The Relationship between a Crime Scene and Network

5.2 Evidence in Application Layer

Most people use the network services through application programs, such
as Internet Explorer (IE) or Netscape Navigator, bulletin board server (BBS),
world wide web server (WWW), internet relay chat server (IRC), news
server, e-mail server, and etc. Since the application layer is essentially the
mostly widely used interface to computer networks, many trails may be left
in this layer. Also many sources of digital evidence are created by
applications. For example, the user's workstation may keep a copy of each e-
mail message sent or received by the computer, the Cookies'^ may keep
records of web sites visited, and so on.

5.3 Evidence in Transport and Network Layers

The process in the application layer often generates associated logs on
the transport and network layers. For example, when a web page is surfed,
very often the IP address and the connection time are logged on the web
server. Similarly, the timestamp and IP address used to send an e-mail
message are usually logged on the e-mail server when a message is sent or

' Cookie is a file stored within a web browser's file area for a user. Cookie is a text file and
typically holds the following information: user name and password for a given web site,
any custom settings for a given web site, the web sites visited by the user, and anything the
web site has been programmed to store there.

Cyber Forensics: Issues and Approaches 327

received. The log files of a UNIX system normally include acct or pacct,
aculog, lastlog, loginlog, messages or syslog, sulog, utmp and utmpx, wtmp
and wtmpx, void Jog, and xferlog. Most of the log files are stored in /var/adm
or /var/log directories and can be viewed directly with a text viewer, such as
''more" or "v/". The two log files, utmp and wtmp may be stored in /etc and
can be viewed by "w/zo" and ''last" commands respectively. The log entries
in Windows keep records of application usage, activities that have security
implications, and system events (such as shutdown), and can be displayed by
using the Event Viewer. Another source of digital evidence in transport and
network layers is the state tables, which contain information about current or
recently terminated TCP/IP connections. The list of recently terminated and
current connections can be listed by typing "netstat" command on UNIX and
Windows environment. Additionally, RADIUS/DHCP servers usually log
the records of IP assignment. Firewalls and routers may also be configured
to keep records of TCP/IP packets passed through them. The logs and state
tables in computer network are shown in Figure 13-6. These are all wealthy
sources for digital evidences.

k)g tiles
state fabtes

Internet Service
Provider

log flic
• tn to tabioa log fllos

»tmbl»
loo f1l»«

vtato tabl0«

Figure 13-6. Network Log files and State Tables

5.4 Evidence in Data Link Layer

Data link layer is responsible for enabling communication between
computers on the same network. A message in this layer is identified by its
Media Access Control (MAC) address, which is directly associated with the
identification number of the Network Interface Card (NIC) in a computer.
However, the source and destination addresses of any outgoing message
from a network router have to be translated into IP addresses using Address
Resolution Protocol (ARP) before they are sent to the Internet. Thus, the
router often caches a MAC/IP address translation table for address

328 Chapter 13

resolution. The mapping information can be retrieved by typing "arp -a"
command on the router console. However, a record in the cache will be
deleted if it is not used for a period of time between 20 minutes and 2 hours
[6]. Furthermore, network management software, such sniffers, can be used
to configure the NIC into ''promiscuous mode" and force it to listen in and
capture all network packets for forensic analysis.

6. RESEARCH AND DEVELOPMENT ISSUES

Recognizing or search crime related information from computer disks
could be a challenge for cyber forensics. Often a list of key words related to
a crime are generated and used as the surrogates for the case. A full text
scanner then searches the disk for matches with the surrogates. However, the
search results may still contain too much information for human
examination. Thus, it is critical to develop better search methods to precisely
search the disk. Furthermore, evidence collected from a computer crime may
contain a huge number of files. It may take months for human expert to
classify and analyze these files, thus automatic document clustering and
analyzing techniques need to be developed for supporting such applications.

Most of the forensic techniques were designed for known post-attack
analysis. However, compared to real world, the activities in cyber space are
less detectable. Automatic detection methods should be developed to address
this issue. Although there are many researches on intrusion detection and
related area, most researches focus on the network defense area. The huge
amount of cyber world activities are mainly left free. Research must be done
to monitor and detect unknown crime or trans-attacks in computer network.
The huge amount of web sites, web pages, online documents, and etc, may
need to be analyzed and monitored by techniques based on data mining
technology under "right to monitor" environment. Again many of the issues
remain opened.

There are a large number of forensic tools developed by individuals from
academia and law enforcement. However, standards to ensure the quality
and interoperability of these tools have not been established. Furthermore,
most of the commercially available tools were designed for gathering
evidence in a single computer system. The evidence gathering process in
computer network still mainly relies on the network utilities. Techniques and
tools for searching and gathering digital evidence from computer network
shall be developed to address this problem.

Quick data recovery after attack is also a critical issue. An attack may
damage a huge amount of files in a computer system or in many computers
across networks. Efficient techniques, such as integrity checksum, should be

Cyber Forensics: Issues and Approaches 329

developed to quick detect the damages and restore data to their original
states before the attack.

7. CONCLUSIONS

Our society has become more and more dependent on computer and
computer network as the continuous expansion of computer applications.
Consequently, more and more information, such as financial, military,
proprietary business data, and personal communications are stored,
processed and transmitted electronically. As our day-to-day life becomes
more dependent on computer and computer network, it is inevitable that
criminal activities will also be involved with the usage of computer and
computer network. As a result, effective computer crime investigation will
become an important challenge for law enforcement agencies. It is
fundamental to develop valid and robust methods to recover digital
evidences from computers for crime investigation. The methods must ensure
that all probative information is collected in a way such that it is admissible,
and ensure that nothing was added, altered and deleted from the evidence
originally sized in the forensic processes. Furthermore, current commercially
available forensic tools were designed for post attack analysis, and only
good for searching case related information from a single computer system.
Forensic tools in the future should also be able to detect unknown attacks,
search across computer networks, monitor on-line traffics, and recover data
from attacks in a timely manner. Standards to ensure the quality and
interoperability of these tools should also be established.

REFERENCES

[1] J. Marcella and R. S. Greenfield. Cyber Forensics: A Field Manual for Collecting,
Examining, and Preserving Evidence of Computer Crimes, Auerbach Publications,
2002.

[2] R. Saferstein, Criminalistics—An introduction to Forensic Science, 2^^ edition,
Prentice Hall, 1981.

[3] S. F. Galton, Personal Identification and Description - I, Nature, 1888.
[4] R. Saferstein, Criminalistics—An introduction to Forensic Science, 6̂ edition,

Prentice Hall, 1998,
[5] K. Graham, J. R. Evidence, CASENOTE Law Outlines, 2000.
[6] E. Casey, Digital Evidence and Computer Crime: Forensic Science, Computers and

the Internet, Academic Press, 2000.
[7] W. G. Kruse II and J. G. Heiser, Computer Forensics: Incident Response Essentials,

Addison-Wesley, 2002.

330 Chapter 13

[8] H. C. Lee, Crime Scene Investigation, Central Police University Press, Taoyuan,
Taiwan, ROC.

[9] US Department of Justice. Federal Guidelines for Searching and Seizing Computers,
[http.7/www.usdoj.gov/criminal/cybercrime/search_docs/toc.htm], 1994.

[10] D. Icove, K. Seger, and W. VonStorch, Computer Crime - A Crimefighter's
Handbook, O'Reilly & Associates, 1995.

[11] W. Venema, Strangers in the Night, Dr. Dobb's Journal,
[http://www.ddj.com/documents/s=879/ddj001 lg/001 Ig.htm], November, 2000.

[12] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, John Wiley
& sons, 6'̂ ed, 2003.

[13] W. Venema, File Recovery Techniques, Dr. Dobb's Journal, [http://www.ddj.com/
documents/s=878/ddj0012h/0012h.htm], December, 2000.

[14] D. Farmer and W. Venema, Forensic Computer Analysis: An Introduction. Dr.
Dobb 's Journal, September, 2000.

[15] P. Gutmann, Secure Deletion of Data from Magnetic and Solid-State Memory.
Proceedings of the Sixth USENIX Security Symposium, San Jose, California, July 22-
25, 1996.

[16] S. L. Garfinkel and A. Shelat, Remembrance of Data Passed - A Study of Disk
Sanitization Practices, IEEE Security & Privacy, Vol. No. 1, 2003.

[17] G. L. Kovacich, and W. C. Boni, High-Technology Crime Investigator's Handbook,
Butterworth Heinemann, 2000.

[18] A. S. Tanenbaum, Computer Networks, 2""* ed., Prentice Hall, 1988.
[19] E. Casey, Handbook of Computer Crime Investigation, Academic Press, 2002.
[20] K. Mandia and C. Prostise, Incident Response: Investigating Computer Crime,

Osbome/McGraw-Hill, 2001.

