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Preface 

Information technology (IT) has become the engine that drives our 
modem enterprises within the public and private sectors. Government 
agencies and businesses have become increasingly reliant on IT systems to 
carry out important missions and functions and to increase their productivity. 
However, the very same information infrastructure that has brought a high 
degree of agility to our society has also created a degree of fragility — 
which if not remedied can cause serious damage to societal and economic 
well-being. For example, there have been several incidents (e.g., Code-Red I 
& II, Nimda, and more recently the SQL Slammer and Blaster worm attacks) 
of large-scale, distributed denial-of-service attacks in just the last two or 
three years. The intention of these attacks was not simply to infect a few 
machines, but to affect large portions of the Internet by shutting down 
millions of servers and clogging the information "superhighways." 

The brunt of these attacks has been borne by those responsible for 
computer security, and the security research and development community 
has come to their aid — developing a number of techniques to make it 
harder to launch attacks. However, this battle is becoming increasingly 
difficuh as a number of factors are aiding the attackers as well. First, the 
wide adoption of the Internet by the society at large has increased the 
number of organizations that can be accessed through a network, making 
them vulnerable to attacks from anywhere in the world. Second, information 
systems have become significantly more powerful and more complex during 
the past decade with an exponential growth in features and associated 
capabilities. The more complex systems are, the more difficult it is to 
thoroughly review all of their components and ensure the absence of security 
holes in them. Finally, since September 11*, 2001, we have discovered that 
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there are well-organized groups — backed by the resources of certain 
govemments — whose express purpose is to cripple the society's 
information infrastructure. 

Against the backdrop described above, there is a need to have a 
systematic and comprehensive approach to securing the society's 
information infrastructure, also called the ''cyber infrastructure". Thus, we 
define cyber threat management (CTM) as the collection of tools, 
techniques, policies, processes, and practices that are aimed at protecting 
the cyber infrastructure, and thwarting — both retro- and proactively — 
attacks against it, 

There are a number of challenges to existing tools and techniques for 
cyber threat management. First, the amount of data being generated from 
various network-monitoring devices is at a scale that makes human analysis 
essentially impossible. This requires some form of automated analysis to 
extract higher-level information from the monitored system, in a form and 
scale comprehensible to a human analyst. Second, escalating importance of 
cyber security in our society creates the need for new techniques for 
managing cyber vulnerabilities and cyber alerts that will help to improve 
general computer security. Finally, by integrating these new techniques with 
other security disciplines such as cyber forensics, more complete and 
comprehensive systems for cyber threat management can be achieved. 

The research community must address these and various other issues, to 
develop tools, techniques, policies, processes, and practices, that will contain 
the threat against the society's cyber infrastructure, and ensure its smooth 
functioning. Towards this, there is a need for in-depth analyses and surveys 
of existing literature — a significant fraction of it carried out by universities 
and national laboratories, and sponsored by the defense and intelligence 
communities — which will help refine the societal research agenda in the 
area of cyber threat management. This book is one such effort towards this 
goal. 

The contributed chapters have been organized into four parts that focus 
on: (i) overviews of specific sub-areas, (ii) application of data mining to 
cyber threat management, (iii) techniques for managing cyber vulnerabilities 
and alerts, and (iv) cyber forensics techniques. 

The first part provides two overview articles covering the topics of cyber 
threats and intrusion detection systems. In Chapter 1, Thuraisingham 
provides an overview of various cyber threats to information systems as well 
as to data management systems. These threats include access control 
violations, unauthorized intrusions, and inference and aggregation. In 
addition, the chapter also discusses potential solutions and challenges in 
detecting such cyber threats, which include role-based access control, data 
mining techniques, and security constraint processing. In Chapter 2, 
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Lazarevic, Kumar, and Srivastava provide a detailed survey of contemporary 
intrusion detection techniques. They first provide a taxonomy of computer 
attacks and describe basic characteristics of specified attack categories. 
Then, they present a general architecture of intrusion detection systems and 
give their taxonomy, together with a short description of significant 
approaches belonging to different intrusion detection categories. 

The second part of the book focuses on the applications of data mining 
techniques for handling cyber attacks. In Chapter 3, Chan, Mahoney, and 
Arshad propose two anomaly detection techniques that use machine learning 
models for characterizing normal network behavior. The first method, called 
LERAD (Learning Rules for Anomaly Detection) is based on a rule learning 
algorithm that characterizes normal behavior in the absence of labeled attack 
data. The second method, named CLAD (Clustering for Anomaly 
Detection), uses a clustering algorithm to identify outliers in network traffic 
data. In Chapter 4, Lee and Qin describe a novel method for security alert 
correlation that is based on clustering algorithm followed by causal analysis. 
This method is used to discover new relationships among attacks. High 
volume of raw alerts is first reduced by combining low level alerts based on 
alert attributes, and then clustering techniques are used to group these low-
level alert data into high-level alerts. The method is validated on several data 
sets including DARPA's Grand Challenge Problem (GCP) datasets, the 2000 
DARPA Intrusion Detection Scenario datasets, and the DBF CON 9 datasets. 
DeBarr, in Chapter 5, focuses on the use of data mining/analysis techniques 
for effective summarization and prioritization of network security data. 
Event records are aggregated by source address and period of activity in 
order to reduce the number of records that must be reviewed. Anomaly 
detection is used to identify obvious host, port, and vulnerability scans, 
association discovery is used to recognize common sets of events, and 
cluster analysis is employed to provide a synopsis of distinctive behaviors 
within a group of interest. 

The third part provides different practical and theoretical issues of 
managing cyber vulnerabilities and alerts. In Chapter 6, Berk et al. present 
an automated system for early detection of active scanning Internet worms, 
soon after they begin to spread. The implemented system collects ICMP-T3 
(Destination Unreachable) messages from instrumented routers, identifies 
message patterns that indicate malicious scanning activities, and then 
identifies scan patterns that indicate a propagating worm. The chapter also 
examines an epidemic model for worm propagation and presents simulation 
results that illustrate detection capabilities. In Chapter 7, Kemmerer and 
Vigna present STAT framework for the development of new intrusion 
detection functionality in a modular fashion. In the STAT framework, 
intrusion detection sensors are built by dynamically composing domain-
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specific components with a domain-independent runtime. Each sensor has 
the ability to reconfigure its behavior dynamically. Dynamic reconfiguration 
and development of deployed STAT sensors is supported by a component 
model, called MetaSTAT sensor control infrastructure. The final product of 
the STAT framework is a highly-configurable, well-integrated intrusion 
detection infrastructure. Upadhyaya et al. in Chapter 8, propose a novel 
intrusion detection system that encapsulates the user's intent by querying her 
or him in a proactive manner. The encapsulated intent serves the purpose of 
a certificate based on which more accurate intrusion detection decision can 
be made. The authors present the working system implemented in a 
university environment. In Chapter 9, Jajodia, Noel, and O'Berry describe a 
Topological Vulnerability Analysis (TVA) prototype tool that implements an 
integrated, topological approach to network vulnerability analysis. This tool 
automates the labor-intensive analysis that is usually performed by 
penetration-testing experts. The TVA prototype includes modeling of 
network security conditions and attack techniques (exploits). It also 
generates a graph of dependencies among exploits, which represents all 
possible attack paths without having to explicitly enumerate them. In 
Chapter 10, Desmedt describes a novel methodology to model computer 
networks as well as information infrastructures. The chapter further proposes 
techniques that may be used to determine which infrastructures are critical 
and most vulnerable. The employed methodology is based on the PERT 
directed graphs. Grossman, in Chapter 11, provides a short overview of alert 
management systems (AMSs), which are designed to screen events, build 
profiles associated with the events, and send alerts based upon the profiles 
and events. This chapter provides a brief overview of the basic AMS 
architecture, as well as a few examples of such systems. 

The last part of the book discusses both legal and technical aspects of 
employing cyber forensics in real life applications. In Chapter 12, Kenneally 
and Fountain describe the ongoing project P^ELE (Public-Private-
Partnership Enabling Law Enforcement) at the San Diego Supercomputer 
Center. This project represents a research infrastructure for the management, 
analysis, and visualization of public and private multidimensional data. In 
addition, it also covers general legal (federal, law, govemmental) aspects of 
law enforcement process. Finally, in Chapter 13, Wang introduces the basic 
terms of cyber forensics to the reader. First, this chapter provides an 
introduction and motivation for development of this field, and then it 
introduces the computer forensics process as well as the digital evidence in 
the computer systems and computer networks. 

Threats to the society's cyber infrastructure, and thus to the society as a 
whole, have never been clearer than they are today. Equally clear are the 
gaps that exist in the society's ability to protect against them. However, there 



Preface xvii 

is a need to take stock of what our current level of understanding of the 
issues is. Specifically, what issues have been addressed, and to what degree 
have they been successful and unsuccessful? 

A book such as this would certainly not be possible without the efforts of 
a number of people. First, we would like to thank the authors of the chapters 
for accepting our invitations to present their recent research work in cyber 
threat management and for adhering to a tight publication schedule. We 
would also like to thank Angela Burke and Deborah Doherty of Springer for 
their continuous support throughout this project. Finally, we would like to 
thank the National Science Foundation, the Army Research Laboratory, and 
the Rome Labs for supporting the research on cyber security for the editors 
of this book. 
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Chapter 1 

MANAGING THREATS TO WEB DATABASES 
AND CYBER SYSTEMS 

Bhavani Thuraisingham 
The National Science Foundation and The MITRE Corporation 

Abstract: This chapter provides an overview of some of the cyber threats information 
systems as well as data management systems and then discusses potential 
solutions and challenges. The threats include access control violations, 
unauthorized intrusions and inference and aggregation. Solutions include role-
based access control, data mining techniques and security constraint 
processing. 

Keywords: Web Databases, Cyber Threats, Data Mining, Access Control, Security, 
Privacy. 

1. INTRODUCTION 

Recent developments in information systems technologies have resulted 
in computerizing many applications in various business areas. Data has 
become a critical resource in many organizations, and therefore, efficient 
access to data, sharing the data, extracting information from the data, and 
making use of the information has become an urgent need. As a result, there 
have been many efforts on not only integrating the various data sources 
scattered across several sites, but extracting information from these 
databases in the form of patterns and trends has also become important. 
These data sources may be databases managed by database management 
systems, or they could be data warehoused in a repository from multiple data 
sources. 

The advent of the World Wide Web (WWW) in the mid 1990s has 
resulted in even greater demand for managing data, information and 
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knowledge effectively. There is now so much data on the web that managing 
it with conventional tools is becoming almost impossible. New tools and 
techniques are needed to effectively manage this data. Therefore, to provide 
interoperability as well as warehousing between the multiple data sources 
and systems, and to extract information from the databases and warehouses 
on the web, various tools are being developed. 

As the demand for data and information management increases, there is 
also a critical need for maintaining the security of the databases, applications 
and information systems. Data and information have to be protected from 
unauthorized access as well as from malicious corruption. With the advent of 
the web it is even more important to protect the data and information as 
numerous individuals now have access to this data and information. 
Therefore, we need effective mechanisms for securing data and applications. 

This paper will review the various threats to information systems on the 
web with a special emphasis on threats to database security. Then it will 
discuss some solutions to managing these threats. The threats include access 
control violations, integrity violations, unauthorized intrusions and sabotage. 
The solutions include data mining techniques, cryptographical techniques 
and fault tolerance processing techniques. 

The organization of this paper is as follows. In Section 2 we provide an 
overview of some of the cyber threats. Much of our focus will be on threats 
to the public and private databases on the web. In Section 3 we discuss 
potential solutions. Directions are given in Section 4. 

2. CYBER THREATS 

2.1 Overview 

In recent years we have heard a lot about viruses and Trojan horses on 
the web. These security violations are costing several millions of dollars to 
businesses. Identity thefts are quite rampant these days. Furthermore 
unauthorized intrusions and inference problem and privacy violations are 
also occurring frequently. In this section we provide an overview of some of 
these threats. A very good overview of some of these threats has also been 
provided in [5]. We also discuss some additional threats such as threats web 
databases and information systems. 

We have grouped the threats into two. One group consists of some vemal 
cyber threats, which may include threats to web databases. The second group 
of threats focuses more on threats to web databases. Note that we have only 
provided a subset of all possible threats. There are many more threats such 
as threats to networks, operating systems, middleware, electronic payment 
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systems including spoofing, eavesdropping, cover channels and other 
malicious techniques. Section 2.2 focuses on some general cyber threats 
while section 2.3 discusses threats specific to web databases. It should be 
noted that it is difficult to group the threats so that one threat is exclusive for 
web databases while another is relevant only for operating systems. Threats 
such as access control violations are applicable both for databases and 
operating systems. However with databases due to complex relationships, 
access controls are much harder to enforce while for operating systems 
access controls are granted or denied at the file level. Another example is 
natural disasters as well as attacks to infrastructures. These attacks and 
disasters could damage the networks, databases and operating systems. 

2.2 General Cyber Threats 

In this section we discuss some general cyber threats, which are 
applicable to information systems including data management systems, 
operating systems, networks and middleware. 

Authentication Violations: Passwords could get stolen and this could 
result in authentication violations. One may need to have multiple passwords 
and additional information about the user to solve this problem. Biometrics 
and other techniques are also being examined to handle authentication 
violations. 

Nonrepudiation: Sender of a message could very well deny that he has 
sent the message. Nonrepudiation techniques will ensure that one can track 
the message to the sender. Today it is not difficult to track the owner of the 
message. However it is not easy to track the person who has accessed the 
web page. That is, while progress has been made to analyze web logs, it is 
still difficult to determine the exact location of the user who has accessed a 
web page. 

Trojan Horses and Viruses: Trojan horses and viruses are malicious 
programs that can cause all sorts of attacks. In fact, many of the threats 
discussed in this section could be caused by Trojan horses and viruses. 
Viruses can spread from machine to machine and could erase files in various 
computers. Trojan horses could leak information from a higher level to a 
lower level. Various virus protection packages have been developed and are 
now commercially available. 

Sabotage: We hear of hackers breaking into systems and posting 
inappropriate messages. For example, some information on the sabotage of 
various government web pages is reported in [5]. One only needs to corrupt 
one server, client or network for the problem to cascade to several machines. 

Fraud: With so much of business and commerce being carried out on the 
web without proper controls, Internet fraud could cause businesses to loose 
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millions of dollars. Intruder could obtain the identity of legitimate users and 
through masquerading may empty the bank accounts. 

Denial of service and infrastructure attacks: We hear about 
infrastructures being brought down by hackers. Infrastructures could be the 
telecommunication system, power system, and the heating system. These 
systems are being controlled by computers and often through the Internet. 
Such attacks would cause denial of service. 

Natural Disasters: In addition to terrorism, computers and networks are 
also vulnerable to natural disasters such as hurricanes, earthquakes, fire and 
other similar disasters. The data has to be protected and databases have to be 
recovered from disasters. In some cases the solutions to natural disasters are 
similar to those for threats due to terrorist attacks. For example, fault tolerant 
processing techniques are used for recovering databases from damage. Risk 
analysis techniques may contain the damage. In section 3 we discuss some of 
the solutions. 

23 Threats to Web Databases 

This section discusses some threats to web databases. Note that while 
these threats are mainly appHcable to data management systems, they are 
also relevant to general information systems. 

Access Control Violations: The traditional access control violations 
could be extended to the web. User may access unauthorized data across the 
web. Note that with the web there is so much of data all over the place that 
controlling access to this data will be quite a challenge. 

Integrity Violations: Data on the web may be subject to unauthorized 
modifications. This makes it easier to corrupt the data. Also, data could 
originate from anywhere and the producers of the data may not be 
trustworthy. Incorrect data could cause serious damages such as incorrect 
bank accounts, which could result in incorrect transactions 

Confidentiality Violations: Security includes confidentiality as well as 
integrity. That is confidential data has to be protected from those who are 
not cleared. Lot of work has been carried out on multilevel security where 
users access only the information at or below their clearance levels [1]. 
Statistical database techniques have also been developed to prevent 
confidentiality violations. 

Authenticity Violations: This is a form of data integrity violation. For 
example consider the case of a publisher, subscriber and the owner. The 
subscriber will subscribe to various magazines and the owner publishers the 
magazines (in electronic form) and the publisher who is the third party will 
publish the magazines. If the publisher is not trusted, he could alter the 
contents of the magazine. This violates the authenticity of the document. 
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Various solutions have been examined to determine the authenticity of 
documents (see for example, [2]). These include cryptography and digital 
signatures. 

Privacy Violations: With the web one can obtain all kinds of 
information collected about individuals. Also, data mining tools and other 
analysis tools one can make all kinds of unauthorized associations about 
individuals 

Inference problem: Inference is the process of posing queries and 
deducing unauthorized information from the legitimate responses. In fact we 
consider the privacy problem to be a form of inference problem (see for 
example, [14]). Various solutions have bee proposed to handle the inference 
problem including constraint processing and the use of conceptual structures. 
We discuss some of them in the next section. 

Identity Theft: We are hearing a lot about identity theft these days. The 
thief gets hold of one's social security number and from there can wipe out 
the bank account of an individual. Here the thief is posing legitimately as the 
owner and he now has much of the critical information about the owner. 
This is a threat that is very difficult to handle and manage. Viable solutions 
are yet to be developed. Data mining offers some hope, but may not be 
sufficient. 

Insider Threats: Insider threats are considered to be quite common and 
quite dangerous. In this case one never knows who the terrorists are. They 
could be the database administrators or any person who may be considered 
to be trusted by the corporation. Background checks alone may not be 
sufficient to detect insider threats. Role-based access controls as well as data 
mining techniques are being proposed. We will examine these solutions in 
the next section. 

The above are some of the threats. All of these threats collectively have 
come to be known as cyber terrorism. Essentially cyber terrorism is about 
corrupting the web and all of its components so that the enemy or 
adversary's system collapses. There is currently lot of funds being invested 
by the various govemments in the US and Westem Europe to conduct 
research on protecting the web and preventing cyber terrorism. Note that 
Terrorism includes cyber terrorism, bioterrroism, and violations to physical 
security including bombing buildings and poisoning food supplies and water 
supplies. In our recent book [15] we discuss terrorism and data mining 
solutions to counter-terrorism. In the next section we discuss data mining for 
detecting cyber terrorism. We also discuss some other solutions. 
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3. SOLUTIONS TO CYBER THREATS 

3.1 Overview 

This section will discuss various solutions to handle the threats 
mentioned in section 2. The goals are to prevent as well as detect security 
violations and mitigate risks. Furthermore, damage has to be contained and 
not allowed to spread further. Essentially we need effective damage control 
techniques. The solutions discussed include securing components, 
cryptography, data mining, constraint processing, role-based access control, 
risk analysis and fault tolerance processing. 

In section 3.2 we discuss solution for some generic threats. These 
solutions include firewalls and risk analysis. In section 3.3 we will discuss 
solutions for some of the threats to web databases. Note that while the 
solutions for generic threats are applicable for threats to web databases, the 
solutions for threats to web databases are also applicable for the generics 
threats. For example, risks analysis has to be carried out for web databases as 
well as for general information systems Furthermore, data mining is a 
solution for intrusion detection and auditing both for web databases as well 
as for networks. We have included them in the section on solutions for web 
databases, as data mining is part of data management and may be used for 
various threats to databases in addition to intrusions. 

3.2 Solutions for General Threats 

3.2.1 Securing Components and Firewalls 

Various components have to be made secure to get a secure web. We 
need end-end-end security and therefore the components include secure 
clients, secure servers, secure databases, secure operating systems, secure 
infrastructures, secure networks, secure transactions and secure protocols. 
One needs good encryption mechanisms to ensue that the sender and 
receiver communicate securely. Ultimately whether it be exchanging 
messages or carrying out transactions, the communication between sender 
and receiver or the buyer and the seller has to be secure. We discuss 
encryption in more detail in section 3.2. Secure cHent solutions include 
securing the browser, securing the Java virtual machine, securing Java 
applets, and incorporating various security features into languages such as 
Java. Note that Java is not the only component that has to be secure. 
Microsoft has come up with a collection of products including ActiveX and 
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these products have to be secure also. Securing the protocols include 
securing HTTP (hypertext transfer protocol) and the secure socket layer 
(SSL). Securing the web server means the server has to be installed securely 
as well as it has to be ensured that the server cannot be attacked. Various 
mechanisms that have been used to secure operating systems and databases 
may be applied here. Notable among them are access control lists, which 
specify which users have access to which web pages and data. The web 
servers may be connected to databases at the backend and these databases 
have to be secure. Finally various encryption algorithms are being 
implemented for the networks and groups such as OMG (Object 
Management Group) are envisaging security for middleware such as ORB 
(Object Request Broker). 

One of the challenges faced by the web mangers is implementing security 
policies. One may have policies for clients, servers, networks, middleware, 
and databases. The question is how do you integrate these policies? That is 
how do you make these policies work together? Who is responsible for 
implementing these policies? Is there a global administrator or are there 
several administrators that have to work together? Security policy integration 
is an area that is being examined by researchers. 

Finally, one of the emerging technologies for ensuring that an 
organization's assets are protected is firewall. Various organizations now 
have web infrastructures for internal ad external use. To access the external 
infrastructure one has to go through the firewall. These firewalls examine 
the information that comes into and out of an organization. This way, the 
internal assets are protected and inappropriate information may be prevented 
from coming into an organization. We can expect sophisticated firewalls to 
be developed in the future. 

3.2.2 Cryptography 

Numerous texts and articles have been published on cryptography (see 
for example [3]). In addition, annual cryptology conferences also take place. 
Yet cryptography is one of the areas that needs continuous research as the 
codes are being broken with powerful machines and sophisticated 
techniques. There are also many discussions on export/import controls on 
encryption techniques. This section will briefly provide an overview of some 
of the technical details of cryptography relevant to the web and therefore to 
e-commerce. Cryptography is the solution to various threats including 
authenticity verification as well as ensuring data integrity. It is also useful 
for ensuring privacy. 

The main issue with cryptology is ensuring that a message is sent 
properly. That is, the receiver gets the message the way it was intended for 
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him to receive. This means that the message should not be intercepted or 
modified. The issue can be extended to transactions on the web also. That is, 
transactions have to be carried out in the way they were intended to. 
Scientists have been working on cryptography for many decades. We hear 
about codes being broken during World War 11. The study of code breaking 
has come to be known as cryptanalysis. In cryptography, essentially the 
sender of the message encrypts the message with a key. For example he 
could use the letter B for A, C for, A for Z. If the receiver knows the 
key, then he can decode this message. So a message with the work 
COMPUTER would be DPNQVUFS. Now this code is so simple and will be 
easy to break. The challenge in cryptography is to find a code that is difficult 
to break. Number theorists have been conducting extensive research in this 
area. 

Essentially in cryptography encryption is used by the sender to transform 
what is called a plaintext message into cipher text. Decryption is used by the 
receiver to obtain the plaintext from the cipher text received. Two types of 
cryptography are gaining prominence; one is public key cryptography where 
there are two keys involved for the sender and the receiver. One is the public 
key and is visible to everyone and other is the private key. The sender 
encrypts the message with the recipient's public key. Only the recipient can 
decode this message with his private key. The second method is private key 
cryptography. Here both users have a private key. There is also a key 
distribution center involved. This center generates a session key when the 
sender and receiver want to communicate. This key is sent to both users in 
an encrypted form using the respective private keys. The sender uses his 
private key to decrypt the session key. The session key is used to encrypt the 
message. The receiver can decrypt the session key with his private key and 
then use this decrypted session key to decrypt the message. 

In the above paragraphs we have discussed just cryptography. The 
challenge is how to ensure that an intruder does not modify the message and 
that the desirable security properties such as confidentiality, integrity, 
authentication, and nonrepudiation are maintained? The answer is in 
message digests and digital signatures. Using hash functions on a message, a 
message digest is created. If good functions are used, each message will 
have a unique message digest. Therefore, even a small modification to the 
message will result in a completely different message digest. This way 
integrity is maintained. Message digests together with cryptographic 
receipts, which are digitally signed, ensure that the receiver knows the 
identity of the sender. That is, the sender may encrypt the message digests 
with the encryption techniques described in the previous paragraphs. In some 
techniques, the recipient may need the public key of the sender to decrypt 
the message. The recipient may obtain this key with what is called a 
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certificate authority. The certificate authority should be a trusted entity and 
must make sure that the recipient can legitimately get the public key of the 
sender. Therefore, additional measures are taken by the certificate authority 
to make sure that this is the case. 

3.2.3 Risk Analysis 

Before developing any computer system for a particular operation, one 
needs to study the security risks involved. The goal is to mitigate the risks or 
at least limit and contain them if the threats cannot be eliminated. Several 
papers have been published on risk analysis especially at the National 
Computer Security Conference Proceedings in the 1990s (see [7]). These 
risk analysis techniques need to be examined for cyber threats. 

The challenges include, identifying all the threats that are inherent to a 
particular situation. For example, consider a banking operation. The bank 
has to employ security experts and risk analysis experts to conduct a study of 
all possible threats. Then they have to come up with ways of eliminating the 
threats. If that is not possible, they have to develop ways of containing the 
damage so that it is not spread further. 

Risk analysis is especially useful for viruses. Once a virus starts 
spreading, the challenge is how do you stop it? If you cannot stop it, then 
how do you contain it and also limit the damage that is caused. Running 
various virus packages on one's system will perhaps limit the virus from 
affecting the system or causing serious damage. The adversary will always 
find ways to develop new viruses. Therefore, we have to be one step or 
many steps ahead of the enemy. We need to examine the current state of the 
practice in risk analysis and develop new solutions especially to handle the 
new kinds of threats present in the cyber world. 

3.2.4 Biometrics, Forensics and Other Solutions 

Some of the recent developments in computer security are tools for 
biometrics and forensic analysis. Biometrics tools include understanding 
handwriting and signatures as well as recognizing people from their features 
and eyes including the pupils. While this is a very challenging area, much 
progress has been made. Voice recognition tools to authenticate users are 
also being developed. In the future we can expect many of us to use these 
tools. 

Forensic analysis essentially carries out post mortems just as they do in 
medicine. Once the attacks have occurred then how do you detect these 
attacks? Who are the enemies and perpetrators? While progress has been 
made, there are still challenges. For example, if one accesses the web pages 



12 Chapter 1 

and uses passwords that are stolen, then it will be difficult to determine from 
the web logs who the culprit is. That is, we still need a lot of research in the 
area. 

Biometrics and Forensics are just some of the new developments. Other 
solutions being developed include smart cards, tools for detecting spoofing 
and jamming as well as tools to carry out sniffing. A discussion of all of 
these solutions is beyond the scope of this paper. 

3.3 Solutions for Threats to Web Databases 

3.3.1 Data Mining 

Data mining is the process of posing queries and extracting patterns, 
often previously unknown from large quantities of data using pattern 
matching or other reasoning techniques (see [13]). In [15] we devote an 
entire book to data mining for counter-terrorism. We discus various types of 
terrorist attacks including information related terrorism. As mentioned in 
[15], by information related terrorism we essentially mean cyber terrorism. 
Cyber security is the area that deals with cyber terrorism. We listed various 
cyber attacks including access control violations, unauthorized intrusions, 
and denial of service in section 2 as well as in [14]. We are hearing that 
cyber attacks will cause corporations billions of dollars. For example, one 
could masquerade as a legitimate user and swindle say a bank of billions of 
dollars. 

Data mining and web mining may be used to detect and possibly prevent 
cyber attacks. For example, anomaly detection techniques could be used to 
detect unusual patterns and behaviors. Link analysis may be used to trace the 
viruses to the perpetrators. Classification may be used to group various cyber 
attacks and then use the profiles to detect an attack when it occurs. 
Prediction may be used to determine potential future attacks depending in a 
way on information learnt about terrorists through email and phone 
conversations. Also, for some threats non real-time data mining may suffice 
while for certain other threats such as for network intrusions we may need 
real-time data mining. 

Many researchers are investigating the use of data mining for intrusion 
detection. While we need some form of real-time data mining, that is, the 
results have to be generated in real-time, we also need to build models in 
real-time. For example, credit card fraud detection is a form of real-time 
processing. However, here models are built ahead of time. Building models 
in real-time remains a challenge. 
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Data mining can also be used for analyzing web logs as well as analyzing 
the audit trails. Based on the results of the data mining tool, one can then 
determine whether any unauthorized intrusions have occurred and/or 
whether any unauthorized queries have been posed. There has been much 
research on data mining for intrusion detection and reported at the IFIP 
Database Security Conferences (see [6]). This is an area we can expect to see 
much progress. Some interesting work on data mining for intrusion detection 
is given in [4]. 

3,3,2 Constraint Processing 

We introduced the idea of security constraint processing for the inference 
problem. Here we define security constraints to assign security levels to the 
data and then developed a system to process the constraints (see [12]). We 
have now adapted these techniques for privacy. In a recent paper we have 
elaborated on privacy constraint processing [15]. Essentially privacy 
constraints are rules that are enforced on the data. These rules determine the 
level of privacy of the data. Our definition of privacy constraints follow 
along the lines of our work on security constraints discussed in [10]. Privacy 
values of the data could take a range of values including public, semi-public, 
semi-private, and private. Even within a privacy value we could have 
different levels of privacy including low-private, medium-privacy and high-
private. 

We have defined various types of privacy constraints. We give examples 
using a medical informatics database. The constraints we have identified 
include simple constraints, content-based constraints, context or association 
based constraints, release constraints and event constraints. While we use a 
relational database to illustrate the concepts, constraints can be defined on 
object as well as on XML databases. 

Simple constraints assign privacy values to attributes, relations or even a 
database. For example, all medical records are private. Content-based 
constraints assign privacy values to data depending on content. For example, 
all financial records are private except for those who are in public office (e.g. 
president of the United States). Association based constraints assign privacy 
values to collections of attributes taken together. For example, names and 
medical records are private, individually they are public. That is, one can 
release names and medical records separately; but one cannot release them 
together. Furthermore, one has to be careful so that the public user cannot 
infer medical records for a particular person by posing multiple queries. 
Event constraints are constraints that change privacy values after an event 
has occurred. For example, after a patient has been released, some 
information about him or her could be made public, but while he is in the 
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hospital information abut him or her is private. A good example was the 
sniper shootings that occurred in the Washington DC area in the Fall of 
2002. After the victim dies, information about him or her was released. Until 
then the identity of the person was not available to the public. Finally release 
constraints assign privacy values to the data depending on what has already 
been released. For example, after the medical records have been released, 
one cannot release any information about the names or social security 
numbers that can form a link to the medical information. 

One could define many more types of privacy constraints. As we explore 
various applications, we will start defining various classes of constraints. 
Our main purpose in [16] is to show how privacy constraints can be 
processed in a database management system. We call such a system a 
privacy enhanced database system. Our approach is to augment a database 
management system (DBMS) with a privacy controller. Such a DBMS is 
called a privacy enhanced DBMS, a high level overview of a privacy-
enhanced DBMS which we well refer to as a PE-DBMS. The privacy 
controller will process the privacy constraints. The question is what are the 
components of the privacy controller and when do the constraints get 
processed? We take an approach similar to the approach proposed in [11] for 
security constraint processing. In our approach, some privacy constraints are 
processed during database design and the database is partitioned according 
to the privacy levels. Then some constraints are processed during database 
updates. Here, the data is entered at the appropriate privacy levels. Because 
the privacy values change dynamically, it is very difficult to changes then 
privacy levels of the data in the database in real-time. Therefore, some 
constraints are processed during the query operation. 

The modules of the privacy controller include the constraint manager, 
query manager, database design tool and the update manager. The constraint 
manager manages the constraints. The database design tool processes 
constraints during database design and assigns levels to the schema. The 
query processor processes constraints during the query operation and 
determines what data is to be released. The update processors processed 
constraints and compute the level of the data. Details of our approach are 
given in [16]. 

3.3.3 Role-based Access Control 

One of the popular access control techniques is role-based access control. 
The idea here is for users based on their roles are given access to certain 
data. For example, the engineer has access to project data while the 
accountant has access to financial data. The challenges include handling 
multiple roles and conflicting roles. For example, if one is an engineer and 
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he cannot have access to financial data and if he also happens to be an 
accountant, then how can the conflict be resolved? Maintaining the 
consistency of the access control rules is also a challenge. 

Many papers have been published on role-based access control. There is 
also now a conference devoted entirely to role base access control called 
SACMAT (see [9]). Also papers relevant to role based access control on 
databases have been presented at the IFIP database security conferences. It is 
also being examined for handling insider threats. That is, using a 
combination of data mining techniques to find out information about 
employees and granting them roles depending on their trustworthiness, one 
could perhaps manage the insider threat analysis problem. More work needs 
to be done in this area. 

3.3.4 Fault Tolerant Processing Recovery and Replication 

As stated earlier, the databases could be national databases that contain 
critical information about individuals or private corporate databases or bank 
databases that contain financial information. They could also be agency 
databases that contain highly sensitive information. When such databases are 
attacked, it is then possible for the enemy to obtain classified information or 
wipe out bank accounts. Furthermore, even if the enemy does not do 
anything with the data, just by corrupting the databases, the entire operation 
could be thwarted. Today computer systems are controlling the operation of 
manufacturing plants, process control plants and many critical 
infrastructures. Corrupting the data could be disastrous. 

The fault tolerance computing community has come up with several 
algorithms for recovering databases and systems from failures and other 
problems. These techniques include acceptance testing and check pointing. 
Sometimes data is replicated so that there are backup copies. These 
techniques have to be examined for handling malicious attacks on the 
database and corrupting the data. 

4. SUMMARY AND DIRECTIONS 

This paper has discussed various cyber threats in general and threats to 
web databases in particular. The threats include access control violations, 
sabotage, infrastructure attacks, and insider threat analysis. Next we 
proposed various solutions including data mining techniques and role-based 
access control. As we have stated, the cyber threats are very real and we 
need to do everything we can to detect, prevent and manage the threats. The 
damages have to be contained. 
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Various research programs are now under way to develop solutions for 
cyber attacks. The National Science Foundation has various programs 
including the Trusted Computing Program and the Data and Applications 
Security Program (see [8]). There are also plans to initiate an umbrella 
program on Cyber Trust. Other organizations like the Defense Advanced 
Research Projects Agency, Advanced Research and Development Activity, 
and the National Institute of Standards and Technology also have programs 
in cyber security. While several techniques have been developed, we need to 
ensure that these techniques scale for very large databases and large number 
of interconnected systems. We need end-to-end security. That is, the clients, 
the servers, and the infrastructures have to be secure. We must all work 
together to combat terrorism. We need to be many steps ahead of the enemy 
and thwart all attempts by the enemy to cause damage to our systems and 
our infrastructures. 
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Chapter 2 

INTRUSION DETECTION: A SURVEY 
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Abstract: This chapter provides the overview of the state of the art in intrusion detection 
research. Intrusion detection systems are software and/or hardware 
components that monitor computer systems and analyze events occurring in 
them for signs of intrusions. Due to widespread diversity and complexity of 
computer infrastructures, it is difficult to provide a completely secure 
computer system. Therefore, there are numerous security systems and 
intrusion detection systems that address different aspects of computer security. 
This chapter first provides taxonomy of computer intrusions, along with brief 
descriptions of major computer attack categories. Second, a common 
architecture of intrusion detection systems and their basic characteristics are 
presented. Third, taxonomy of intrusion detection systems based on five 
criteria (information source, analysis strategy, time aspects, architecture, 
response) is given. Finally, intrusion detection systems are classified according 
to each of these categories and the most representative research prototypes are 
briefly described. 

Keywords: intrusion detection, taxonomy, intrusion detection systems, data mining. 

1. INTRODUCTION 

With rapidly growing adoption of the Internet, networked computer 
systems are playing an increasingly vital role in our society. Along with the 
tremendous benefits that the Internet brings, it also has its dark side. 
Specifically, new threats are created everyday by individuals and 
organizations that attack and misuse computer systems. As reported by the 
Computer Emergency Response Team/Coordination Center (CERT/CC) 
[37], the number of computer attacks has increased exponentially in the past 
few years (Figure 2-1). In addition, the severity and sophistication of the 
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attacks is also growing (Figure 2-2). For example, Slammer/Sapphire Worm 
was the fastest computer worm in history. As it began spreading throughout 
the Internet, it doubled in size every 8.5 seconds and infected at least 75,000 
hosts causing network outages and unforeseen consequences such as 
canceled airline flights, interference with elections, and ATM failures [153]. 
Earlier, the intruders needed profound understanding of computers and 
networks to launch attacks. However, today almost anyone can exploit the 
vulnerabilities in a computer system due to the wide availability of attack 
tools (Figure 2-2). 
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Figure 2-1. Growth rate of cyber incidents reported to Computer Emergency Response 
Team/Coordination Center (CERT/CC) 

The conventional approach for securing computer systems is to design 
security mechanisms, such as firewalls, authentication mechanisms. Virtual 
Private Networks (VPN), that create a protective "shield" around them. 
However, such security mechanisms almost always have inevitable 
vulnerabilities and they are usually not sufficient to ensure complete security 
of the infrastructure and to ward off attacks that are continually being 
adapted to exploit the system's weaknesses often caused by careless design 
and implementation flaws. This has created the need for security technology 
that can monitor systems and identify computer attacks. This component is 
called intrusion detection and is a complementary to conventional security 
mechanisms. 
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Figure 2-2. Attack sophistication vs. Intruder technical knowledge (source: 
http://www.cert.org/present/intemet-security-trends) 

The National Institute of Standards and Technology classifies intrusion 
detection [15] as "the process of monitoring the events occurring in a 
computer system or network and analyzing them for signs of intrusions, 
defined as attempts to compromise the confidentiality, integrity, availability, 
or to bypass the security mechanisms of a computer or network^'. 

Intmsions in computer systems are usually caused by attackers accessing 
the systems from the Internet, or by authorized users of the systems who 
attempt to misuse the privileges given to them and/or to gain additional 
privileges for which they are not authorized. An Intrusion Detection System 
(IDS) can be defined as a combination of software and/or hardware 
components that monitors computer systems and raises an alarm when an 
intrusion happens. 

This chapter provides an overview of the current status of research in 
intrusion detection. It first provides an overview of different types of 
computer intrusions, and then introduces a more detailed taxonomy of 
intrusion detection systems with an overview of important research in the 
field. Both taxonomies are illustrated and supported with several well known 
examples of computer attacks and intrusion detection techniques. Several 
surveys in the intrusion detection have been pubHshed in the past [4, 13, 31, 
55, 92, 97, 110, 114, 136]. However, the growth of the field has been very 
rapid, and many new ideas have since emerged. The survey in this chapter 
attempts to build upon these earlier surveys, but is more focused on intrusion 
detection projects proposed in academic institutions and research 
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organizations than on commercial intrusion detection systems, primarily due 
to the lack of detailed technical information available on commercial 
products. The reader interested in commercial IDSs is referred to a survey of 
IDS products [92] and to web sites that maintain lists of such systems [57, 
76]. 

2. TAXONOMY OF COMPUTER ATTACKS AND 
INTRUSIONS 

Research community in computer security has developed numerous 
definitions of computer attacks and intrusions. One of the most popular 
definitions for intrusion [181] is that it represents a ''malicious, externally 
induced, operational fault"". Computer intrusions and attacks are often 
considered synonymous. However, other definitions of the word "attack" 
that differentiate it from intrusion have also been proposed in the intrusion 
detection literature. For example, a system can be attacked (either from the 
outside or the inside), but the defensive ''shield" around the system or 
resource targeted by the attack may be sufficiently effective to prevent 
intrusion. Therefore, we may say that an attack is an intrusion attempt, and 
an intrusion results from an attack that has been (at least partially) successfijl 
[181]. 

There have been numerous attempts to categorize and classify computer 
attacks and intrusions [11, 112, 115, 128, 135]. Some of these attempts have 
provided formally developed taxonomies and specified a certain set of 
properties that the taxonomy should satisfy, e.g., they should be: (i) logical 
and intuitive [84], (ii) based on solid technical details [23], (iii) 
comprehensible [128], (iv) complete [5], (v) exhaustive [84, 128], (vi) 
mutually exclusive [84, 128], (vii) objective [108], (viii) repeatable [84, 
108], and (ix) useful [84, 128]. For more details on these characteristics, the 
reader is referred to the above pubhcations, as well as to Lough's PhD thesis 
[135]. 

Initial work in categorizing different aspects of computer security 
focused on weaknesses in computer systems and design flaws in operating 
systems [12], as well as functional vulnerabilities and computer abuse 
methods [172]. Several taxonomies that were developed later mainly focused 
on two issues: (i) categorization of computer misuse (i.e. attacks) and (ii) 
categorization of the people trying to get unauthorized access to computers 
(perpetrators), and the objectives and results of these attempts. 

In one of earlier attempts for describing types of computer attacks, 
Neumann and Parker developed the SRI Computer Abuse Methods Model 
[165, 166, 173], which outlines about 3000 attack cases and computer 



Intrusion Detection: A Survey 23 

misuses collected over nearly twenty years and categorizes them into the 
nine-level tree of attack classes. Lindqvist and Jonsson [128] extended the 
Neumann and Parker model by expanding several attack categories 
(categories 5, 6 and 7 from original nine-level tree of attacks) and by 
introducing the concept of dimension, which represents a basis of the attack 
classification. They specified two interesting criteria for system owners to 
perform attack classification, namely "intrusion techniques'' and "intrusion 
results'', and they called these criteria dimensions. Jayaram and Morse [96] 
also developed a taxonomy of security threats to networks, in which they 
provide five "classes of security threats" and two "classes of security 
mechanisms". Another significant work in computer attack taxonomies is 
performed by the CERIAS group at Purdue University [11, 108, 112]. Their 
first attempt [112] provided a classification of computer intrusions on Unix 
systems using system logs and colored Petri nets. Aslam [11] extended this 
work by providing a taxonomy of security flaws in Unix systems. Finally, 
Krsul [108] reorganized both previous taxonomies and provided a more 
complex taxonomy of computer attacks that contains four main categories 
(design, environmental assumptions, coding faults and configuration errors). 
Richardson [189, 190] extended these taxonomies by developing a database 
of vulnerabilities to help study of the problem of Denial of Service (DoS) 
attacks. The database was populated with 630 attacks from popular sites that 
report computer incidents. These attacks were cataloged into the categories 
that correspond to extensions from Aslam's taxonomy of security flaws [11] 
and Krsul's taxonomy of computer attacks [108]. Within the DARPA 
intrusion detection project, Kendall [103] developed a similar database of 
computer attacks that exist in DARPA intrusion detection evaluation data 
sets [52]. An excellent overview of these techniques as well as their 
extensions is provided in Lough's PhD thesis [135]. 

Anderson presented one of the first categorizations of attack perpetrators 
according to their types. He used a 2x2 table to classify computer threats into 
three groups (external penetration, intemal penetration and misfeasance), 
based on whether or not penetrators are authorized to use the computer 
system or to use particular resources in the system [7]. One of the most 
influential taxonomies in categorizing attack perpetrators is the classification 
of types of attackers, used tools, access information, attack consequences 
and the objectives of the attacks, performed by CERT [84]. Researchers at 
Sandia National Laboratories [45] proposed a very similar taxonomy, with a 
few added or merged categories. 

The taxonomy we provide in this survey is more general, and is obtained 
by examining and combining existing categorizations and taxonomies of 
host and network attacks published in the intrusion detection literature, and 
by revealing common characteristics among them. In previously published 
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taxonomies, categories used in classification of attacks were usually either a 
cause of a vulnerability or the result (i.e., effect) of a vulnerability. In the 
taxonomy proposed here, we use traditional cause of vulnerability to specify 
the following categories of attacks: 
• Attack type 
• Number of network connections involved in the attack 
• Source of the attack 
• Environment 
• Automation level 

Attack type. The most common criterion for classifying computer 
attacks and intrusions in the literature is according to the attack type [84, 
103]. In this chapter, we categorize computer attacks into the following 
classes: 
- Denial of Service (DoS) attaclcs. These attacks attempt to ''shut down a 

network, computer, or process; or otherwise deny the use of resources or 
services to authorized users''' [144]. There are two types of DoS attacks: 
(i) operating system attacks, which target bugs in specific operating 
systems and can be fixed with patches; and (ii) networking attacks, which 
exploit inherent limitations of networking protocols and infrastructures. 
An example of operating system attack is teardrop, in which an attacker 
exploits a vulnerability of the TCP/IP fragmentation re-assembly code 
that do not properly handle overlapping IP fragments by sending a series 
of overlapping packets that are fragmented. Typical example of 
networking DoS attack is a "SYN flood" attack, which takes advantage 
of three-way handshake for establishing a connection. In this attack, 
attacker establishes a large number of "half-open" connections using IP 
spoofing. The attacker first sends SYN packets with the spoofed (faked) 
IP address to the victim in order to establish a connection. The victim 
creates a record in a data structure and responds with SYN/ACK message 
to the spoofed IP address, but it never receives the final acknowledgment 
message ACK for establishing the connection, since the spoofed IP 
addresses are unreachable or unable to respond to the SYN/ACK 
messages. Although the record from the data structure is freed after a 
time out period, the attacker attempts to generate sufficiently large 
number of "half-open" connections to overflow the data structure that 
may lead to a segmentation fault or locking up the computer. Other 
examples of DoS attacks include disrupting connections between 
machines thus preventing access to a service, preventing particular 
individuals from accessing a service, disrupting service to a specific 
system or person, etc. In distributed DoS (DDoS) attack, which is an 
advanced variation of DoS attack, multiple machines are deployed to 
attain this goal. DoS and DDoS attacks have posed an increasing threat to 
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the Internet, and techniques to thwart them have become an active 
research area [151, 152, 154, 169, 171, 176, 226]. Researchers that 
analyze DoS attacks have focused on two main problems: (i) early 
detection mechanisms and identification of ongoing DoS activities [41, 
75, 218, 235]; and (ii) response mechanisms for alleviating the effect of 
DoS attacks (e.g. damage caused by the attack). Response mechanisms 
include identifying the origin of the attack using various traceback 
techniques [27, 91, 195, 206] and slowing down the attack and reducing 
its intensity [141, 151, 248] by blocking attack packets. In addition to 
these two main approaches, some systems use measures to suppress DoS 
attacks. For example, CenterTrack [218] is an overlay network that uses 
selective rerouting to trace the entrance points of large flooding attack, 
while SOS (Secure Overlay Services) [104] employs a combination of 
''secure overlay tunneling, routing via consistent hashing, and filtering" 
to proactively prevent large flooding DoS attacks. 

- Probing (surveillance^ scanning). These attacks scan the networks to 
identify vaHd IP addresses (Figure 2-3) and to collect information about 
them (e.g. what services they offer, operating system used). Very often, 
this information provides an attacker with the list of potential 
vulnerabilities that can later be used to perform an attack against selected 
machines and services. Examples of probing attacks include IPs weep 
(scanning the network computers for a service on a specific port of 
interest), portsweep (scanning through many ports to determine which 
services are supported on a single host), nmap (tool for network 
mapping), etc. These attacks are probably the most common ones, and 
are usually precursor to other attacks. The existing scan detection 
schemes essentially look for IP addresses that make more than N 
connections in T seconds. These schemes are very good at picking out 
fast and disperse noisy scans. Unfortunately, tools based on these 
techniques are quite inefficient at detecting slow/stealthy scans or scans 
targeted specifically at the monitored enterprise - the type of scans that 
analysts would really be interested in. Stealthy scans can be defined as 
scans that would normally not trigger typical scan alert technology. Due 
to these reasons, sophisticated adversaries typically attempt to adjust their 
scans by reducing the frequency of their transmissions in order to avoid 
detection. For detecting stealthy scans, there are a few recently proposed 
more sophisticated technique based on collecting various statistics [62, 
102, 147, 191,214,222]. 
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Figure 2-3. Typical scanning activity 

Compromises, These attacks use known vulnerabiHties such as buffer 
overflows [38] and weak security points for breaking into the system and 
gaining privileged access to hosts. Depending upon the source of the 
attack (outside attack vs. inside attack), the compromises can be further 
split into the following two categories: 
• R2L (Remote to Local) attacks, where an attacker who has the ability 

to send packets to a machine over a network (but does not have an 
account on that machine), gains access (either as a user or as the 
root) to the machine. In most R2L attacks, the attacker breaks into 
the computer system via the Internet. Typical examples of R2L 
attacks include guessing passwords (e.g. guest and dictionary 
attacks) and gaining access to computers by exploiting software 
vulnerability (e.g. phf attack, which exploits the vulnerability of the 
phf program that allows remote users to run arbitrary commands on 
the server). 

• U2R (User to Root) attacks, where an attacker who has an account 
on a computer system is able to misuse/elevate her or his privileges 
by exploiting a vulnerability in computer mechanisms, a bug in the 
operating system or in a program that is installed on the system. 
Unlike R2L attacks, where the hacker breaks into the system from 
the outside, in U2R compromise, the local user/attacker is already in 
the system and typically becomes a root or a user with higher 
privileges. The most common U2R attack is buffer overflow, in 
which the attacker exploits the programming error and attempts to 
store more data into a buffer that is located on an execution stack. 
Since buffers are created to contain a specific amount of data, the 
additional information used by the attacker can overflow into 
adjacent buffers, corrupting or overwriting the vahd data held in 
them. This data may contain codes designed to trigger specific 
actions, such as damaging user's files or providing the user with root 
access. Many approaches have recently been proposed for detection 
and prevention of buffer overflow attacks [49, 71], due to increased 
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interest in them. It is important to note that buffer overflow attacks 
can also belong to R2L attacks, where remote users attempts to 
compromise the integrity of target computer. For example, a 
vulnerabiHty discovered in Microsoft Outlook and Outlook Express 
in July 2000 [35] allowed the attackers to simply send an e-mail 
message and to overflow the specific areas with superfluous data, 
which allowed them to execute whatever type of code they desired 
on the recipient's computers. 

Viruses/Worms/Trojan horses are programs that replicate on host 
machines and propagate through a network. 
• Viruses are programs that reproduce themselves by attaching them to 

other programs and infecting them. They can cause considerable 
damage (e.g. erase files on the hard disk) or they may only do some 
harmless but annoying tricks (e.g. display some funny messages on 
the computer screen). Viruses typically need human interaction (e.g. 
trading files on a floppy or opening e-mail attachments) for 
repHcation and spreading to other computers. One of the most well 
known virus examples is Michelangelo virus that infects the hard 
disk's master boot record and activates a destructive code on March 
6, which is Michelangelo's birthday. There are various types of 
viruses, and classifying them is not easy as many viruses have 
multiple characteristics and may fall into multiple categories. The 
most common virus classification is according to the environment, 
operating system, different algorithms of work and destructive 
capabilities [150], although there are other categorizations based on 
what and how viruses infect [48, 87]. 

• Worms are self-replicating programs that aggressively spread 
through a network, by taking advantage of automatic packet sending 
and receiving features found on many computers. Worms can be 
organized into several categories [105, 215, 236]: 
• traditional worms (e.g. Slammer [37]) usually use direct 

network connections to spread through the system and do not 
require any user interaction. 

• e-mail (and other client application) worms, (e.g. Melissa worm 
[34]) infect other hosts on the network (Intemet) by exploiting 
user's e-mail capabilities or utilizing other client applications 
(e.g. ICQ - "I seek you"). 

• windows file sharing worms (e.g. ExploreZip [221]) repHcate 
themselves by utilizing MS Windows peer-to peer service, 
which is activated every time a networking device is detected in 
the system. This type of a worm very often occurs in 
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combination with other attacks, such as MS-DOS and Windows 
viruses. 

• hybrid worms (e.g. Nimda [36]) typically exploit multiple 
vulnerabilities that fall into different categories specified above. 
For example, Nimda used many different propagation 
techniques to spread (e-mail, shared network drives and 
scanning for backdoors opened by the Code Red II and Sadmind 
worms). Success of Nimda demonstrated that e-mail and http 
traffic are effective ways to penetrate the network system, and 
that the file sharing is quite successful in replicating within the 
system [236]. 

It is important to note that some of the worms that appeared recently 
have also been used to launch DoS attacks [83]. For example, the 
erkms and liOn worms were used to deploy DDoS tools via BIND 
vulnerabilities [83], while Code Red was used to launch TCP SYN 
DoS attacks [83]. However, traditional DoS attacks typically target a 
single organization, while worms (e.g. SoBig.F worm) typically 
affect a broad range of organizations. Over the last few years, many 
DoS attacks have gradually mutated and merged with more 
advanced worms and viruses (e.g. Blaster worm in August 2003), 
Analysts also expect that in the future DoS attacks will be more 
often part of worm payloads [83]. 

Trojan horses are defined as "malicious, security-breaking programs" 
that are disguised as something benign [134]. For example, the user may 
download a file that looks like a free game, but when the program is 
executed, it may erase all the files on the computer. Victims typically 
download Trojan horses from an archive on the Intemet or receive them 
via peer-to-peer file exchange using IRC/instant messaging/Kazaa etc. 
Some actual examples include Silk Rope and Saran Wrap. 

Many people use terms like Trojan horse, viruses and worms 
interchangeably since it is not easy to make clear distinction between them. 
For example, ''Love Bug" is at the same time a virus, worm, and Trojan 
horse. It is a trojan horse since it pretends to be a love letter but it is a 
harmful program. It is a virus because it infects all the image files on the 
disk, turning them into new Trojan horses. Finally, it s also a worm since it 
propagates itself over the Intemet by hiding in trojans that it sends out using 
peoples' email address book, IRC client, etc. 

Number of network connections involved in an attack. Attacks can be 
classified according to the number of network connections involved in the 
attack: 
- Attacks that involve multiple network connections. Typical examples of 

such attacks are DoS, probing and worms (Figure 2-3). 
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- Attacks that involve a single or very few network connections. Typical 
attacks in this category usually cause compromises of the computer 
system (e.g. buffer overflow). 
Source of the attack. Computer attacks may be launched from a single 

location {single source attacks) or from several different locations 
{distributed/coordinated attacks). Most of the attacks typically originate 
from a single location (e.g. simple scanning), but in the case of large 
distributed DoS attacks or other organized attacks, multiple source locations 
may participate in the attack. In addition, very often distributed/coordinated 
attacks are targeted not only to a single computer, but also to multiple 
destinations. Detecting such distributed attacks typically requires the 
analysis and correlation of network data from several sites. 

Environment. Attacks may be categorized according to the environment 
where they occur: 
- Intrusions on the host machine are intrusions that occur on a specific 

machine, which may not even be connected to the network. These attacks 
are usually detected by investigating the system information (e.g. system 
commands, system logs). The identity of the user that performs an attack 
in this case is typically associated with the usemame, and is therefore 
easier to discover. 

- Network intrusions are intrusions that occur via computer networks 
usually from outside the organization. Detection of such intrusions is 
performed by analyzing network traffic data (e.g. network flows, 
tcpdump data). However, such analysis often cannot reveal the precise 
identity of the attackers, since there is typically no direct association 
between network connections and a real user. 

- Intrusions in a P2P environment are intrusions that occur in a system 
where connected computers act as peers on the Intemet. Unlike standard 
"client/server" network architectures, in P2P environment, the computers 
have equivalent capabilities and responsibilities and do not have fixed IP 
address. They are typically located at "the edges of the Internet [240], 
and actually disconnected from the DNS systems. Although P2P file 
sharing applications can increase productivity of enterprise networks, 
they can also introduce vulnerabilities in them, since they enable users to 
download executable codes that can introduce rogue or untraceable 
"backdoor" applications on users* machines and jeopardize enterprise 
network security. 

- Intrusions in wireless networks are intrusions that occur between 
computers connected through wireless network. Detection of attacks in 
wireless networks is based on analyzing information about the 
connections in wireless networks, which is typically collected at wireless 
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access points [126]. In general, security threats in wireless networks can 
be categorized into: 
• eavesdropping, when intruder only listens for the data; 
• intrusions, when intruder attempts to access or to modify the data; 
• communication hijacking, when a rogue node captures the channel, 

poses as a rogue wireless access point and attracts mobile nodes to 
connect to it and then collects confidential data from them (e.g. 
passwords, secret keys, logon names); 

• Denial of Service (jamming) attacks, when an attacker disturbs the 
communication channel with various frequency domains (cordless 
phones, microwave ovens), physical obstacles and disables all 
communication on the channel. 

Automation level. Depending on the level of the attack automation, there 
are several categories of attacks as follows: 
- Automated attacks use automated tools that are capable of probing and 

scanning a large part of the Intemet in a short time period. Using these 
easily available tools, even inexperienced attackers may create highly 
sophisticated attacks (Figure 2-2). Such attacks are probably the most 
common method of attacking the computer systems today. 

- Semi-automated attacks deploy automated scripts for scanning and 
compromise of network machines and installation of attack code, and 
then use the handler (master) machines to specify the attack type and 
victim's address. 

- Manual attacks involve manual scanning of machines and typically 
require a lot of knowledge and work. Manual attacks are not very 
frequent, but they are usually more dangerous and harder to detect than 
semi-automated or automated attacks, since they give to attackers more 
control over the resources. Experts or organized groups of attackers 
generally use these attacks for attacking systems of critical importance. 

3. INTRUSION DETECTION SYSTEMS 

Since the first model for intrusion detection was developed by Dorothy 
Denning [56] at SRI Intemational, many intrusion detection systems (IDSs) 
have been proposed both in the research and commercial world. For 
information about these research and commercial products, the reader is 
referred to Web sites that contain links to them [32, 76, 149, 198, 223]. 
Although these systems are extremely diverse in the techniques they employ 
to gather and analyze data, most of them rely on a relatively general 
architectural framework (Figure 2-4), which consists of the following 
components: 
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Data gathering device (sensor) is responsible for collecting data from the 
monitored system. 
Detector {Intrusion Detection {ID) analysis engine) processes the data 
collected from sensors to identify intrusive activities. 
Knowledge base {database) contains information collected by the 
sensors, but in preprocessed format (e.g. knowledge base of attacks and 
their signatures, filtered data, data profiles, etc.). This information is 
usually provided by network and security experts. 
Configuration device provides information about the current state of the 
intrusion detection system (IDS). 
Response component initiates actions when an intrusion is detected. 
These responses can either be automated (active) or involve human 
interaction (inactive). 

I 
Knowledgebase Configuration 

System State 

System 
State 

Detector - ID Engine 

i Alarms 

Response 
Component 

Events 

Data gathering (sensors) 

i 
Actions 

Raw data 
• 

Information Source - Monitored System 

Figure 2-4. Basic architecture of intrusion detection system (IDS) 

3.1 Characteristics of Intrusion Detection Systems 

A number of desired characteristics for intrusion detection systems 
(IDSs) have been identified [55, 180], as follows: 
• Prediction performance. In intrusion detection, simple performance 

measure such as prediction accuracy is not adequate. For example, the 
network intrusions typically represent a very small percentage (e.g. 1%) 
of the entire network traffic, and a trivial IDS that labels all network 
traffic as normal, can achieve 99% accuracy. In order to have good 
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prediction performance, an IDS needs to satisfy two criteria: (i) it must 
be able to correctly identify intrusions and (ii) it must not identify 
legitimate action in a system environment as an intrusion. Typical 
measures for evaluating predictive performance of IDSs include detection 
rate and false alarm rate (Table 1). Detection rate is defined as the ratio 
of the number of correctly detected attacks and the total number of 
attacks, while the false alarm (false positive) rate is the ratio of the 
number of normal connections that are incorrectly misclassified as 
attacks and the total number of normal connections. In practice, it is very 
difficult to evaluate these two measures, since it is usually infeasible to 
have global knowledge of all attacks. Since detection rate and false alarm 
rate are often in contrast, evaluation of IDSs is also performed using 
ROC (Receiver Operating Characteristics) analysis [183]. ROC curve 
represents a trade-off between detection rate and false alarm rate as 
illustrated in Figure 2-5. The closer the ROC is to the left upper comer of 
the graph (point that corresponds to 0% false alarm and 100% detection 
rate), the more effective the IDS is. 

Table 2-1. Evaluations of intrusions (attacks) 
Predicted connection label 

Normal Intrusions (Attacks) 

Actual , True Negative (TN) False Alarm (FP) 
connections 

connection — : ;—; --: \ 
, , , Intrusions ^ , ^̂  . .̂ ^̂ ^ Correctly detected intrusions 
label False Negative (FN) T̂  r» ^ /T̂ m 

(Attacks) ^ - True Positive (TP) 

Time Performance. The time performance of an intrusion-detection 
system corresponds to the total time that the IDS needs to detect an 
intrusion. This time includes the processing time and the propagation 
time. The processing time depends upon the processing speed of the IDS, 
which is the rate at which the IDS processes audit events. If this rate is 
not sufficiently high, then the real time processing of security events may 
not be feasible. The propagation time is the time needed for processed 
information to propagate to the security analyst. Both times need to be as 
short as possible in order to allow the security analyst sufficient time to 
react to an attack before much damage has been done, as well as to stop 
an attacker from modifying audit information or altering the IDS itself 
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Figure 2-5. ROC Curves for different intrusion detection techniques 

• Fault tolerance. An IDS should itself be dependable, robust and resistant 
to attacks, and should be able to recover quickly from successful attacks 
and to continue providing a secure service. This is especially true in the 
case of very large distributed DoS attacks, buffer overflow attacks and 
various deliberate attacks that can shut down the computer system and 
thus IDS too. This characteristic is very important for the proper 
functioning of IDSs, since most commercial IDSs run on operating 
systems and networks that are vulnerable to different types of attacks. In 
addition, IDS should also be resistant to scenarios when an adversary can 
cause the IDS to generate a large number of false or misleading alarms. 
Such alarms may easily have a negative impact on the availability of the 
system, and the IDS should be able to quickly overcome these obstacles. 

3.2 Taxonomy of Intrusion Detection Systems (IDSs) 

Several classifications of intrusion detection methods have been proposed 
in the past [4, 13, 55, 97, 110, 114, 136], but there is still no universally 
accepted taxonomy. In this chapter, we present a taxonomy that is based on 
the synthesis of a number of existing ones [13, 55]. We use five criteria to 
classify IDSs, as summarized in Figure 2-6. 

The first criterion is information (data) source, which distinguishes IDSs 
based on the system that is monitored, i.e. source of input information (see 
Figure 2-4). The source information can be (i) audit trails (e.g. system logs) 
on a host, (ii) network connections/packets, (iii) apphcation logs, (iv) 
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wireless network traffic or (v) intrusion-detection and/or sensor alerts 
produced by other intrusion-detection systems. 
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Figure 2-6. Taxonomy of intrusion detection systems according to proposed six criteria 

The analysis strategy describes the characteristics of the detector 
(intrusion detection engine from Figure 2-4). When the IDS looks for events 
or sets of events that match a predefined pattem of a known attack, this 
analysis strategy is called misuse detection. When the IDS identifies 
intrusions as unusual behavior that differs from the normal behavior of the 
monitored system, this analysis strategy is called anomaly detection. 

Time aspects are used to categorize the IDSs into on-line IDSs that detect 
intrusions in real time and off-line IDSs that usually first store the monitored 
data and then analyze it in batch mode for signs of intrusion. 

The architecture of IDSs is used to differentiate between centralized 
IDSs that analyze the data collected only from a single monitored system 
and distributed IDSs that collect information from multiple monitored 
systems in order to investigate global, distributed and coordinated attacks. 



Intrusion Detection: A Survey 35 

Detection response describes the reaction of the IDS to an attack 
(intrusion). If the IDS reacts to the attack by taking corrective action (e.g. 
closing holes) or pro-active action (e.g. logging out possible attackers, 
closing down services), the response is called active. If the IDS only 
generates alarms (including paging security analysts) and does not take any 
actions, the response is called passive. 

4. INFORMATION SOURCE 

Early intrusion detection systems were largely host-based, since 
mainframe computers were common and all users were local to the system. 
In such an environment, intrusion-detection was focused only on insider 
threats, since interaction with outside world was quite rare. The audit 
information collected at the mainframe was analyzed either locally [137] or 
on a separate machine [204] and security-suspicious events were reported. 

However, with the growth of computer networks, there has been an 
increasing focus on IDSs for the networked environment. Initial attempts of 
intrusion detection in a networked environment were focused on enabling 
communication among host-based intrusion-detection systems [93] and then 
exchanging information at several levels, either through a raw audit trail 
over the network [80, 204], or issuing alarms generated by local analysis 
[205]. 

In the late nineties, the intrusion detection research community debated 
the superiority of network-based vs. host-based approaches. However, today 
many systems attempt to provide an integrated tool by incorporating both 
variants. These IDSs are usually called hybrid IDSs. For example, in the 
distributed intrusion detection system (DIDS) developed by Snapp et al 
[205], Haystack [80, 204] is used on each host to detect local attacks, while 
network security monitor (NSM) [81] is employed to monitor the network. 
Both systems. Haystack and NSM, send information to the DIDS Director, 
where the final analysis is performed. 

Network/host based IDSs typically analyze past network traffic and host 
OS activity, but they are unable to detect unauthorized use of specific 
applications. This caused the emergence of application-based IDSs that 
focus on monitoring interactions between a user and specific applications. 

More recently, increasing popularity of wireless networks has caused 
intrusion detection researchers to focus on detecting attacks in wireless 
environment. Wireless network are highly sensitive and extremely insecure, 
as they are vulnerable to easy eavesdropping and jamming thus requiring 
additional security poHcies as well as specific intrusion detection techniques. 
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4.1 Host-based IDSs 

Host based intrusion detection systems (IDSs) analyze users' activities 
and behavior on a given machine. Host-based IDSs have an advantage that 
they are able to work with high quality data that is typically very 
informative. However, depending upon the processing performed, host-
based IDSs can significantly impact the performance of the machine they are 
running on. In addition, audit sources used in host-based intrusion analysis, 
can be easily modified by a successful attack, which represents another 
limitation of host-based IDSs. In order to alleviate these drawbacks, host-
based IDSs have to process the audit trail sufficiently fast to be able to raise 
alarms before an attacker has an opportunity to observe and/or modify the 
audit trail or the intrusion-detection system itself 

There are several types of information that are typically used in host-
based IDSs, e.g. (i) system commands, (ii) system accounting, (iii) syslog 
and (iv) security audit information. 

4.1.1 System commands 

System commands are a useful source of information that can be 
employed by host based IDSs for detecting malicious users [51, 116, 145, 
193]. By analyzing system commands that users invoke in their sessions, it is 
possible to build user profiles, which describe users' characteristics and 
common behavior. Examples of such logged system commands in Unix are 
p s , p s t a t , vmstat , g e t r l i m i t . Information about different events 
provided by these commands can be very precise and informative. Since the 
audit information is collected as unstructured data, and has to be 
preprocessed before analysis. 

4.1.2 System accounting 

System accounting is present in both Windows and Unix operating 
systems. Although the interest for system accounting in Windows 
environment is increasing, there have not been many intrusion detection 
approaches that used this type of data for intrusion analysis. On the other 
hand, system accounting is commonly used in the Unix environment to 
collect information on system behavior, such as consumption of shared 
resources (e.g. processor time, memory, disk) by the users of the system. 
Data generated by system accounting can serve as a valuable and convenient 
source of information for IDSs [63]. 

There are two typical Unix accounting logs that are used for easy 
extraction of system behavioral information, without extensive kernel 
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modifications often required for detailed auditing, namely: process 
accounting and login accounting. The standard file for storing the process 
accounting information is p a c c t or a c c t , while the standard file for the 
login accounting information is wtmp. Process accounting keeps track of 
information about a process at the time of process completion (e.g. user and 
group IDs of those that use the process, beginning and elapsed times of the 
process, CPU time for the process, amount of memory used). The login 
accounting (wtmp) system records information about users' login and logout 
from the system. When users successfully log in and log out or 
unsuccessfully attempt to login, the Unix kernel appends utmp structures to 
the log file. 

Use of system accounting as a source of information for IDSs has several 
advantages. First, all Unix systems have the same format of the accounting 
records. Second, the time needed to store system accounting records is 
generally small, since information is compressed. Finally, system accounting 
is quite common in the modem operating systems, and it is easy to setup and 
use. However, using system accounting also has a few drawbacks that limit 
their use in security applications. First, in order to perform real time analysis 
of system accounting data, all historical profiles have to be compared to each 
currently active profile, which can be computationally intensive. This 
generally impacts the system load and therefore slows down potential 
statistical data analysis. Second, accounting is either enabled for all users or 
not enabled at all, and cannot be selectively activated only for particular 
individuals of interest. Third, system accounting logs require a large amount 
of disk storage, and hence, they must be periodically removed. Fourth, the 
accounting structures limit the length of recorded command name to only a 
fixed number of characters (typically eight), thus losing important 
information (e.g. common arguments are not recorded). Finally, the 
accounting data is recorded only when the application terminates, so 
continuously running executables such as system daemons (e.g. sendmail) 
are never audited (these applications have to be audited using syslogs). In 
such cases, it is only possible to perform off-line intrusion analysis. 

Due to these drawbacks of system accounting, its use is not very 
common. Nevertheless, there are several systems that employ this 
information for intrusion detection [54, 63]. For example, the statistical and 
neural network modules in Hyperview [54] use system accounting only as 
additional information to security audit, but not as a substitute for it, while 
anomaly-based detection techniques in Eschrich's thesis [63] use accounting 
logs to identify imposters. Imposters are special class of intruders who are 
valid users in a system but gain illegal access to the account of other users. 
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4.1.3 System log information 

System log data contains information that is not available at the network 
level, such as when users log in, when they send email, who they send email 
to, which ftp logs commands are issued, and which files are transferred. 
Capturing and collecting system log file information in a readable format is 
typically performed by the syslog daemon. 

One of the major drawbacks of using syslog information for intrusion 
detection is that syslog information is not very secure, since several syslog 
daemons exhibit buffer overflow exploitation [33]. On the other hand, due to 
straightforward use of syslog, this information is widely employed by 
numerous network services and applications, such as log in , sendmail , 
n f s , h t t p , as well as security-related tools such as sudo, klaxon, or TCP 
wrappers [55]. For example, Swatch [78] and TkLogger [85] perform regular 
expression matching against system log files, search for certain pattems and 
take appropriate actions when they are found. These tools are especially 
useful for identifying things that may indicate very specific problems. 

4.1.4 Security audit processing 

The security audit trails represent records that contain all potentially 
important activities related to the security of the system. Since these 
activities are usually logged to a file in chronologically sorted order, their 
analysis could allow easier investigation of sequential intrusive pattems. One 
of the most popular security audit trails is BSM (Basic Security Module), 
auditing facility in Solaris operating system form Sun Microsystems Inc 
[219]. BSM monitors security related events and records the "crossing of 
instructions executed by the processor in the user space and instructions 
executed in the kerneF [219]. 

In general, the security audit trail can provide information about full 
system call traces, which includes detailed user and group identification, the 
parameters of system call execution, memory allocation, context switches, 
internal semaphores, and successive file reads that typically do not appear in 
the regular audit trail. In addition, advantages of using security audit data 
include strong user authentication, easier audit system configuration, and 
fine-grain parameterization of collected information [55]. On the other hand, 
drawbacks of using security audit trails include complex setup, intensive 
resource requirement and possible vulnerability to DoS attack due to filling 
audit file system [55]. 

Several research groups [77, 155, 180, 217] have been actively using 
security audit trails mainly for host-based intrusion detection systems. The 
focus of their research has been mainly to define what information the 
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security audit trail should contain in order to increase the IDS prediction 
performance as well as to establish an acceptable common format for audit 
trail records. 

4.2 Network-based information sources 

With rapidly growing popularity of the Intemet, there have been an 
increasing number of attacks aimed at the network itself (e.g. spoofing, TCP 
hijacking, port scanning, ping of death) that cannot be (at least not easily) 
detected by examining the host audit trail alone. These reasons have led to 
the development of specific tools that sniff network packets [161, 175, 224] 
in real time and facilitate searching for network attacks. In addition, by 
analyzing the payload of the packet, a number of typical attacks against 
servers can also be detected. 

There are several advantages of using network based IDSs over host-
based IDSs. First, network-based IDSs can be installed such that they do not 
have effect on existing computer systems or infrastructures. Second, they are 
usually more resistant than host-based IDSs, since they do not reside on the 
hosts that may be the targets of certain attacks. Third, the majority of 
network-based IDSs typically do not depend on the operating system that is 
used and can extract useful information at a network level (e.g. packet 
fragmentation). Finally, they can be installed at strategic points in a network 
(e.g. routers, borders) where they can be used to watch all traffic passing 
through these ports and therefore used to discover network attacks. 
However, their major drawbacks are their weak scalability, high possibility 
for dropping packets in fast networks under heavy load, and inability to 
perform intrusion detection when data is encrypted. 

Network based intrusion detection systems analyze various kinds of 
information that are obtained by monitoring network infrastructures. Typical 
sources of such information are network connections/packets collected by 
network sniffers and management information between network devices 
collected due to use of Simple Network Management Protocol (SNMP). 

4.2.1 Network connections and network packets 

Network packet sniffers are commonly used for collecting information 
about events that occur on a network. Sniffers capture copies of network 
packets directly from the network interface and provide administrators with 
detailed information about the IP addresses of senders and receivers, the 
number of transferred packets/ bytes and other low-level information about 
those packets. Certain sniffers also provide protocol-level analysis of data 
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flowing through network, packet by packet. This information is typically 
beneficial for administrators to diagnose and fix network related problems. 

Some organizations also collect information about network events at the 
firewalls. There are several categories of firewalls (packet filters, circuit 
level gateways, application level gateways and stateful multilayer inspection 
firewalls [21, 231]) that all collect firewall logs and use them to detect 
suspicious activity and alert human analysts. 

Use of network connections/packets as source of intrusion detection data 
has several advantages: 
- There are numerous network-specific attacks (e.g. large distributed 

denial-of-service attacks) that cannot be detected using audit information 
on the host but only using information about network infrastructure. 

- TCP/IP standardization of network traffic facilitates collecting, 
formatting and analyzing information from heterogeneous audit trail 
formats that come from different portions of large and complex networks. 

- Using the payload information (content of the packets) can be very 
informative in detection of attacks against hosts. 

However, using network connections/packets also has several drawbacks: 
- When an intrusion has been detected, it is not straightforward to identify 

an attacker, since there is no direct association between network 
connections/packets and the identity of the user who actually performed 
the attack. 

- If the packets are encrypted, it is practically impossible to analyze the 
payload of the packets, as important information may be hidden from 
network sniffers. In addition, if the attack signatures are not sufficiently 
comprehensive, it is possible to evade detection by making the contents 
of the packet more complex [184]. 
Packet sniffers can be placed at the gateways between the protected 

system and the outside world, or on switches within the network. Which of 
these is the most appropriate location, it is not always clear. Placing sniffers 
on switches gives better audit information but at a higher cost, due to a larger 
number of switches in the network. Nevertheless, networks that use switches 
are commonly used since they are less vulnerable to sniffer attacks [42, 184]. 

Network packets are the source of information used by most of the recent 
commercial products [8, 47, 89, 159, 160, 210, 222, 238], as well as by 
many projects in the research community [61, 120, 142, 174, 188, 192, 216]. 
Other network-based systems such as Bro [174] have been developed as 
network data-acquisition tools, but not as tools to directly support intrusion-
detection task. 
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4.2.2 Simple Network Management Protocol (SNMP) information 

The Simple Network Management Protocol (SNMP) is the Internet 
standard operations and maintenance protocol that facilitates the exchange of 
management information between network devices. SNMP was designed to 
help network administrators to manage network performance, to find and 
solve network problems, and to minimize resources necessary for supporting 
network management. 

An SNMP-managed network typically consists of three components: 
managed devices, agents, and one or more network management systems 
(NMSs). A managed device corresponds to any SNMP-compliant equipment 
that resides on a managed network, collects management information and 
sends this information to NMSs using SNMP. Examples of managed devices 
include routers, switches, hubs, workstations, printers, etc. An agent is 
typically a ''network-management software''' module that resides on a 
managed device. The agent gathers management information from managed 
devices and converts that information into a format that can be passed over 
the network using SNMP. Finally, an NMS monitors and controls managed 
devices, issues requests and returns responses from devices. Information 
collected from NMSs can serve as a useful audit source. 

One of the earliest projects that used SNMPvl Management Information 
Base (MIB) for Ethernet and TCP/IP was SECURENET [212]. The 
SECURENET project showed that the counters maintained in the SNMPvl 
MIBs could be potentially interesting as an audit source for anomaly 
detection techniques. SNMPv2 and SNMPv3 have also been used for 
security and intrusion detection [100], but the failure of SNMPv2 has 
lowered the interest of the intrusion-detection community in these 
information sources. 

4.3 Application log files 

Application based IDSs monitor only specific applications such as 
database management systems, content management systems, accounting 
systems, etc. An application based IDS has access to types of information 
that network based or host based IDSs do not have. For example, by 
analyzing application log files, application based IDSs can detect many types 
of computer attacks, suspicious activities that can be difficult to detect using 
host based or network based IDSs. In addition, they can be used to trace 
down unauthorized activities from individual users or to analyze encrypted 
data by employing application-based encryption/decryption services [20]. As 
application servers have recently become increasingly popular, application 
log files are used more often as an information source for intrusion detection. 
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In general, there are two approaches to implement application based IDSs 
[20]. In the first approach, IDS monitors an application and analyzes its audit 
log files. This post analysis allows suspicious activities in the application to 
be observed easily, but only after they happen. In a second, more complex 
approach, application based IDS is integrated into the application itself. This 
integration allows IDS to analyze the data at the same time the application 
interprets it, to detect attacks in real-time making it possible to take an 
immediate action. 

The operation of an application based IDS in general is not impacted by 
the total amount of network traffic unless most of the traffic is due to the 
application (e.g., at a large commercial vendor sites such as Amazon.com, 
appHcation-based IDSs highly depend on the network traffic). 

In general, appHcation based IDSs offer several advantages: 
- Unencrypted information. Unlike the analyzed data at the network level, 

the data at the application level is not encrypted, thus giving more 
information for intrusion analysis to application based IDSs. 

- Prediction performance. Since an application based IDS focuses on 
monitoring operations specific to the application, it is easier to define the 
normal and the anomalous behavior. There are certain types of 
information (e.g. query logs from database applications) that are 
available only to appHcation based IDSs but not visible to the operating 
system. As a result, application based IDSs can detect intrusions that are 
not detectable by host-based IDSs. This results in a lower false alarm 
rate, as well as in higher detection rate. 

- Complete sessions. Unlike network monitoring where network 
connection may be fragmented during recording, the application typically 
records complete transaction, and there is no inconsistency involved in 
the reconstruction of session records. 

- Prevention. When an application based IDS is embedded in the 
application module itself, it can stop the intruder from proceeding with 
the attack by denying malicious operations. 

However, application based IDSs have also certain limitations: 
- Performance penalty. When an application based IDS is not a part of an 

application itself, it usually needs to be installed on the same host as the 
application. In such scenario, this installation could result in a decrease in 
the system performance. 

- Larger system overhead. Since the application based IDSs have to be 
installed on every individual host machine, and the organization may 
have numerous hosts, there is a larger administration overhead. 

- Non-detectable attacks below the application layer. Although analyzing 
the data at the application level allows application-based IDSs access to 
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encrypted information, they are not able to detect attacks that target 
protocols below the application layer. 

- Specific development. Every application based IDS has to be developed 
for a specific application, since there is no general application-based IDS. 

4.4 Wireless networks 

Wireless network systems have become increasingly popular recently, 
mainly due to the ease of their installation and maintenance. However, this 
convenience comes at a price, since wireless networks pose a serious 
security risk. There are numerous, potentially devastating threats that have 
emerged in wireless networks that are more difficult to detect due to the 
following reasons [3, 88, 126]: 
- Physical layer in wireless networks is essentially a broadcast medium and 

therefore less secure than in fixed computer networks. For example, an 
attacker that enters the wireless network, bypasses existing security 
mechanisms and can easily sniff sensitive and confidential information. 
In addition, the attacker also has access to all the ports that are regularly 
available only to the people within the network. In wired networks, 
attempts to access these ports from outside world through Internet are 
stopped at the firewalls. Finally, the attacker can also excessively load 
network resources thus causing denial of service to regular users. 

- There are no specific traffic concentration points (e.g. routers) where 
packets can be monitored, so each mobile node needs to run an intrusion 
detection system. 

- Separation between normal and anomalous traffic is often not clear in 
wireless ad-hoc networks, since the difference between compromised or 
false node and the node that is temporarily out of synchronization due to 
volatile physical movement can be hard to observe. 
There are currently only a few commercial wireless IDS solutions [3, 88] 

in the market that try to detect a wide range of known attacks as well as 
identify abnormal network activities and policy violations for wireless 
networks. For Linux operating system, Lin et al have developed a 
homegrown wireless IDS [126] along with a freely available software. Other 
open source solutions include Snort-Wireless [208] and WIDZ [239]. 

4.5 Alerts from intrusion detection systems 

Due to increase in a traffic volume, current commercial IDSs usually tend 
to produce a very large number of alarms [185]. These alarms are raised both 
for actual intrusions (attacks), but very often for regular behavior, thus 
increasing false alarm rate and overwhelming security administrator. In 



44 Chapter 2 

addition, a large distributed DoS or scanning attack may trigger multiple 
alarms since many network connections are involved in such attacks. This 
further increases the number of alarms that security analysts have to analyze. 
In order to decrease this number, the threshold for detecting intrusions is 
raised, but this can reduce the overall detection rate. 

Due to these reasons, a number of researchers have attempted to develop 
a new generation of intrusion-detection systems that correlate information 
from several, "lower-level" IDSs to identify intrusions [50, 101, 168, 177, 
186, 225, 229]. These IDSs employ different correlation and data-mining 
techniques in order to reduce both false alarm rate and the burden on the 
security analyst. In addition, some of these IDSs can typically provide 
security analysts with a summarized view of detected anomalous activities. 
Examples of such IDSs include distributed intrusion detection system 
(DIDS) [217] that correlates user identification by using information from 
sensors and GrIDS [225] that measures the traffic on hosts and network links 
and then correlates information from sensors on multiple networks. In 
general, there are three basic groups of alert correlation methods: 
- Methods based on similarities between alert attributes (features) [101, 

229] compare the degree to which alerts have similar features (e.g. source 
IP address, destination IP address, ports), and then correlate alerts with a 
high degree of feature similarity. 

- Correlation methods based on known attack scenarios [50, 186, 225] 
utilize the fact that intrusions often require several actions to take place in 
order to succeed (e.g. to carry out a DoS attack on the DNS server, the 
attacker could first do an nslookup, ping, and scan port 139, and then a 
winnuke (sends out-of-Band data to an IP address of a windows 
machine)). Every attack scenario has corresponding steps required for the 
success of the attack. Low-level alerts from IDS(s) are compared against 
the predefined attack scenario before the alerts can be correlated. Major 
drawbacks of this method are (i) it requires that human users specify the 
attack scenarios and (ii) it is limited to detection of known attacks. 

~ Correlation methods based on preconditions and consequences of 
individual attacks [168] work at a higher level then correlation based on 
feature similarities, but at a lower level then correlation based on known 
scenarios. Preconditions are defined as conditions that must exist for the 
attack to occur, and the consequences of the attack are defined as 
conditions that may exist after a specific attack has occurred. 
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5. ANALYSIS STRATEGY: MISUSE DETECTION 
VS. ANOMALY DETECTION 

There are two primary approaches for analyzing events to detect attacks; 
namely misuse detection and anomaly detection. Misuse detection is based 
on extensive knowledge of known attacks and system vulnerabilities 
provided by human experts. The misuse detection approaches look for 
hackers that attempt to perform these attacks and/or to exploit known 
vulnerabilities. Although the misuse detection can be very accurate in 
detecting known attacks, misuse detection approaches cannot detect 
unknown and emerging cyber threats. 

Anomaly detection, on the other hand, is based on the analysis of profiles 
that represent normal behavior of users, hosts, or network connections. 
Anomaly detectors characterize normal "legitimate" computer activity using 
different techniques and then use a variety of measures to detect deviations 
from defined normal behavior as potential anomaly. The major benefit of 
anomaly detection algorithms is their ability to potentially recognize 
unforeseen attacks. However, the major limitation is potentially high false 
alarm rate. Note that deviations detected by anomaly detection algorithms 
may not necessarily represent actual attacks, as they may be new or unusual, 
but still legitimate, network behavior. 

Many contemporary IDSs integrate both approaches to benefit from their 
respective advantages [164, 167, 200, 207]. 

5.1 Misuse Detection 

Misuse detection is the most common approach used in the current 
generation of commercial intrusion detection systems (IDSs). The misuse 
detection approaches can be classified into the following four main 
categories: (i) signature-based methods, (ii) rule-based techniques, (iii) 
methods based on state-transition analysis, and (iv) data mining based 
techniques. 

5.1.1 Signature-based techniques 

Signature-based IDSs operate analogously to virus scanners, i.e. by 
searching a database of signatures for a known identity - or signature - for 
each specific intrusion event. In signature-based IDSs, monitored events are 
matched against a database of attack signatures to detect intrusions. 
Signature-based IDSs are unable to detect unknown and emerging attacks 
since signature database has to be manually revised for each new type of 
intrusion that is discovered. In addition, once a new attack is discovered and 
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its signature is developed, often there is a substantial latency in its 
deployment across networks [130]. The most well known signature-based 
IDSs include SNORT [207], Network Flight Recorder [167], NetRanger 
[47], RealSecure [89], Computer Misuse Detection System (CMDS™) 
[230], NetProwler [14], Haystack [204] and MuSig (Misuse Signatures) 
[127]. 

SNORT [207] is a widely used open source signature-based network 
IDS, which is used for performing real-time traffic logging and analysis over 
IP networks. Currently, SNORT has an extensive database of over a 
thousand attack signatures. There are three main modes in which SNORT 
can be configured; namely sniffer, packet logger, and network IDS. In the 
sniffer mode, SNORT monitors the network packets and continuously 
displays them on the console. Packet logger mode is used to store (log) the 
packets to the disk. In the network intrusion detection mode, the system 
analyzes network traffic for matches against a database of user defined rules 
and performs one of five corresponding actions: 
- Alert - raise an alarm using the selected alert method and then log the 

packet; 
- Log - log the analyzed packet; 
- Pass - ignore the analyzed packet; 
- Activate - generate an alert and then tum on another dynamic rule; 
- Dynamic - stay inactive until turned on by an activate rule. 

Network Flight Recorder (NFR) is a network-based IDS that also creates 
alerts based on rules. These rules, called "backends" in NFR terminology, 
contain filters (hard-coded signatures) written to trigger in response to 
different computer attacks. NFR includes a complete programming 
language, called N, designed for packet analysis and creating filters. 

NetRanger [47], an IDS developed at Cisco, was introduced to intrusion 
detection community in November 1998. Over the years NetRanger grew 
into a more complex Cisco IDS [46] that provides complete intrusion 
protection and is a component of a SAFE BluePrint Cisco security system. 
NetRanger is composed of three major components: sensors, director and 
post office. Sensors are network appliances that analyze the network traffic 
using a rule-based engine, which distills large volumes of network traffic 
into meaningful security events, which are then forwarded to a Director. 
Directors are responsible for the management of security across a distributed 
network of sensors and can be structured hierarchically to manage large 
networks. Finally, the post office provides communication between 
NetRanger services and hosts. 

RealSecure, is an earlier version of the Proventia system developed at 
Intemet Security Systems [182]. While Real Secure was principally a 
signature-based IDS composed of three modules: network engines, system 
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agents, and managers, Proventia provides a more complete security solution 
including: inspection firewall, antivirus protection, intrusion detection and 
prevention, anti-spam filters and application protection. 

CMDS [230] was a predecessor of Intrusion SecureHost [90], which 
represents a host-based IDS that monitors and protects applications at the 
kernel level of operating system by building a profile of the application's 
normal behavior based on the ^^code paths of a running program". 
NetProwler [14] is another host basd IDS that is based on "Stateful Dynamic 
Signature Inspection" virtual processor proposed by Anxent, which was 
acquired by Symantec recently. Today, NetProwler is a part of Symantec 
Intruder Alert IDS [220]. NetProwler collects various types of information 
"sniffed" from the network and then integrates them into more complex 
events that are matched against predefined signatures in real time. In 
addition, the system can install novel signatures without stopping the 
intrusion detection process. 

The Haystack prototype [204] was one of the first signature based IDSs 
developed for the task of intrusion detection in a multi-user Air Force 
computer system. Haystack employs both misuse detection and anomaly 
detection strategy for detecting intrusions. The misuse detection module 
identifies intrusions according to behavioral constraints (rules) imposed by 
official security policies. On the other hand, the anomaly detection module is 
based on building profiles of users' behavior in the past and on constructing 
generic user group models that describe generic acceptable behavior for a 
particular group of users. 

Adaptable real-time misuse detection system (ARMD) [127], developed 
at George Mason University, provides a high-level language for abstract 
misuse signatures, called MuSigs, and a mechanism to translate MuSigs into 
a monitoring program. With the notion of abstract events, the high-level 
language specifies a MuSig as a pattern over a sequence of abstract events, 
which is described as conditions that the abstract event attributes must 
satisfy. In addition, on the basis of MuSigs, the available audit trail, and the 
strategy costs, ARMD uses a strategy generator to automatically generate 
monitoring strategies to govern the misuse detection process. 

Kumar and Spafford proposed a generalized framework for matching 
intrusion signatures based on Colored Petri Nets [113]. In this approach, 
every signature of an attack is represented as a Petri net, and start states and 
final state are used to perform signature matching. 

5.1.2 Rule-based systems 

Rule-based systems use a set of "if-then" implication rules to characterize 
computer attacks. At the early stage of intrusion detection era, rule based 
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languages represented one of the regular methods for describing the expert's 
knowledge that is collected about numerous attacks and vulnerabilities. In 
rule-based IDSs, security events are usually monitored and then converted 
into the facts and rules that are later used by an inference engine to draw 
conclusions. Examples of such rule-based IDSs include Shadow [170], IDES 
[56, 95, 138, 139], NIDX [19], ComputerWatch [58], P-BEST [129], ISOA 
[241, 242] and AutoGuard that uses case-based reasoning [66, 67]. 

IDES [138] is a rule-based expert system trained to detect known 
intrusion scenarios, known system vulnerabihties, and site-specific security 
policies. IDES can also detect (i) outside attacks from unauthorized users; 
(ii) internal attacks from authorized users who masquerade as other users and 
(iii) attacks from authorized users who abuse their privileges by avoiding 
access controls. NIDX [19] extends the IDES model by including system 
dependent knowledge such as a description of file systems, and rules 
regarding system policies. It integrates (i) information obtained from the 
target computer system, (ii) user profiles built through history and (iii) 
intrusion detection heuristics into rules that are used to detect violations from 
the audit trail on the target system. 

The ComputerWatch [58] data reduction tool was developed as an expert 
system IDS by the Secure Systems Department at AT&T. Computer Watch 
employs the host audit trail data to summarize system security activities and 
provides mechanisms for further investigation of suspicious security events 
by security analysts. The tool checks users' actions according to a set of rules 
that describe proper usage policy, and flags any suspicious action that does 
not match the acceptable patterns. 

Production Based Expert System Toolset (P-BEST) [129] is a rule-based, 
forward-chaining expert system developed at SRI, and used in the 
EMERALD IDS [179]. The system was first deployed in the MIDAS ID 
system at the National Computer Security Center, and then used as the rule-
based inference engine of NIDES, which is an IDES successor. P-BEST is a 
programmable expert system shell that consists of the definition of several 
fact types, and a set of inference rules on these facts. Inference rules are 
composed of two parts. The first part is a guard, which tests the existence of 
facts satisfying logical expressions; and the second part is composed of 
actions upon the fact base (adding, removing, modifying facts) and of calls 
to external functions. 

ISOA (Information Security Officer's Assistant) [241, 242] is a real time 
IDS for monitoring security relevant behavior in computer networks. ISOA 
serves as the central point for real-time collection and analysis of audit 
information. It has two components; i.e. statistical analysis module and an 
expert system. These components cooperate in the automated analysis of 
various "concern levels". If a recognized set of indicators are matched, 
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concern levels increase and the IDS starts to analyze the growing classes of 
audit events in more details to flag suspicious users or hosts. 

5.1.3 State transition analysis 

Intrusion detection using state transition analysis requires the 
construction of a finite state machine, in which states correspond to different 
IDS states, and transitions characterize certain events that cause IDS states to 
change. IDS states correspond to different states of the network protocol 
stacks or to the integrity and validity of current running processes or certain 
files. Every time when the automation reaches a state that is flagged as a 
security threat, the intrusion is reported as a sign of malicious attacker 
activity. This is the technique first proposed in USTAT (Unix State 
Transition Analysis Tool) [86, 178] and later in NetSTAT (Network-based 
State Transition Analysis Tool) [232]. 

USTAT, developed at UC Santa Barbara, is a real-time state transition 
analysis tool developed for the Unix system and based on STAT (State 
Transition Analysis Tool) [178]. STAT introduced the idea of representing 
computer attacks with high level descriptions and providing an expert 
system model to detect compromises. In STAT, attack scenarios are 
represented as states that describe security status of the system, and 
intrusions are detected by modeling the transition between states. The 
computer initially exists in a secure state, but as a result of a number of 
intrusions it may end up in a compromised target state. USTAT uses the C2 
security audit trail data produced by the computer as the source of 
information about the system's state transitions. It records only those critical 
actions that have visible effect on the system state and must happen in order 
to successfully complete the penetration. 

NetSTAT is a real-time network-based IDS that employs state transition 
analysis techniques from the STAT approach, for detecting intrusions that 
occur in a networked environment. The networked environment is 
represented by hypergraphs, where network interfaces are modeled as nodes, 
and hosts are modeled as edges of the hypergraph. By using state transition 
analysis for the states of network attacks, it is possible to automatically 
determine which network events have to be monitored in order to support 
intrusion analysis. 

5.1.4 Data mining based techniques 

In data mining methods for misuse detection, each instance in a data set 
is labeled as 'normal' or 'intrusive' and a learning algorithm is trained over 
the labeled data. These techniques are able to automatically retrain intrusion 
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detection models on different input data that include new types of attacks, as 
long as they have been labeled appropriately. Research in misuse detection 
has focused mainly on classification of network intrusions using various 
standard data mining algorithms [16, 74, 121, 140, 202], rare class predictive 
models [40, 98, 99], cost sensitive modeling [99] and association rules [16, 
122, 143]. Unlike signature-based intrusion detection systems, models of 
misuse are created automatically, and can be more sophisticated and precise 
than manually created signatures. The advantage of data mining based 
misuse detection techniques over signature-based intrusion detection systems 
is their high degree of accuracy in detecting known attacks and their 
variations. 

MADAM ID [120, 122] at Columbia University was one of the first 
project that applied data mining techniques to the intrusion detection 
problem. Association rules and frequent episodes were extracted from 
network connection records to obtain additional features for data mining 
algorithms. Three groups of features are constructed, namely: content-based 
features that describe intrinsic characteristics of a network connection (e.g. 
number of packets, acknowledgments, data bytes from source to 
destination), time-based traffic features that compute the number of 
connections in some recent time interval (e.g. last few seconds) and 
connection based features that compute the number of connections from a 
specific source to a specific destination in the last N connections (e.g. N = 
1000). In addition to the standard features that were available directly from 
the network traffic (e.g. duration, start time, service), these constructed 
features were also used by the RIPPER algorithm to leam intrusion detection 
rules from DARPA 1998 data set [132, 133]. 

Other classification algorithms for the intrusion detection problem 
include decision trees [24, 202], modified nearest neighbor algorithms [246], 
fuzzy association rules [26, 72, 140], neural networks [30, 51, 131, 247], 
naiVe Bayes classifiers [196], genetic algorithms [26, 145], genetic 
programming [158], support vector machines [65, 156], and adaptive 
regression splines [157]. Most of these approaches attempt to directly apply 
specified standard techniques to some of publicly available intrusion 
detection data sets [132, 133], assuming that the labels for normal and 
intrusive behavior are already known. 

Computer intrusions, however, are much rarer than normal behavior, and 
in such scenarios standard classification algorithms do not perform well. 
Thus, some researchers have developed specially designed algorithms for 
handhng rare classes and applied them to the problem of intrusion detection 
[40,98,99]. 

Finally, association pattems, often expressed in the form of frequent 
itemsets or association rules, have also been found to be valuable for 
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analyzing network traffic data [16, 121, 143]. In [121], association patterns 
generated at different times were used to study significant changes in the 
network traffic characteristics at different periods of time, while in [16, 121, 
143] they were used to construct a profile of the normal network traffic 
behavior for anomaly detection systems. 

5.2 Anomaly Detection 

Increase in the number of computer attacks, in their severity and 
complexity has raised substantial interest in anomaly detection algorithms 
due to their potential for recognizing unforeseen and emerging cyber 
activities. There are many anomaly detection algorithms proposed in the 
literature that differ according to the information used for analysis and 
according to techniques that are employed to detect deviations from normal 
behavior. In this section, we provide classification of anomaly detection 
techniques based on employed techniques into the following five groups: (i) 
statistical methods; (ii) rule based methods; (iii) distance based methods (iv) 
profiling methods and (v) model based approaches. Although anomaly 
detection algorithms are quite diverse in nature, and thus may fit into more 
than one proposed category, our classification attempts to find the most 
suitable category for all described anomaly detection algorithms. 

5.2.1 Statistical methods 

Statistical methods monitor the user or system behavior by measuring 
certain variables over time (e.g. login and logout time of each session). The 
basic models keep averages of these variables and detect whether thresholds 
are exceeded based on the standard deviation of the variable. More advanced 
statistical models also compare profiles of long-term and short-term user 
activities. These statistical models are used in host-based IDSs, network-
based IDSs, as well as in application-based IDSs for detecting malicious 
viruses. Some of the first proposed anomaly detection algorithms were 
integrated in well known IDSs such as IDES [56, 95, 138, 139], NIDES [6], 
EMERALD [164, 179] and SPADE [214]. 

IDES [138], whose misuse detection module is explained in section 
4.1.2., also has an anomaly detection module. This module characterizes 
normal user activity using an audit data and detects deviations from 
described normal user behavior. Each new audit record is processed as it 
enters the system, and verified against the known profile. To further 
distinguish unusual but authorized behavior, the prototype was extended to 
handle two sets of profiles for monitored subjects depending on whether the 
activity took place on "normal" or "suspicious" days. The security analyst 
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defines whether working days are "normal" or not. The NIDES system [6] 
extends IDES by integrating results from misuse detection component with 
the results produced by the anomaly detection module. NIDES monitors 
ports and addresses and builds a statistical model of long term behavior over 
a period of hours or days, which is assumed to contain few or no attacks. If 
short-term behavior (seconds, or a few packets) differs significantly from 
normal, then an alarm is raised. 

EMERALD [164, 179] has statistical profile-based anomaly detection 
module that tracks subject activity through one of four types of statistical 
variables: categorical, continuous, traffic intensity (e.g., volume over time), 
and event distribution (e.g., a meta-measure of other measures). The eBayes 
system [228] is a recently developed module that extends earlier anomaly 
detection component from the EMERALD system [164, 179] by encoding 
probabilistic models of normal, attack, and anomalous behavior modes with 
hypotheses. The eBayes system first collects basic variables of network 
sessions as well as derives new ones (e.g. maximum number of open 
connections to any unique host), and then applies probabilistic Bayesian 
inference to them in order to obtain a belief for the session over the states of 
hypotheses. For example, the session hypotheses in the eBayes TCP tree 
may correspond to both normal traffic modes (MAIL, FTP, etc.) and to 
attack scenario modes PORTSWEEP, SYNFLOOD, etc.). The eBayes builds 
a table of conditional probabilities for all the hypotheses and variables, 
which is adjusted every time the current observation is made. The eBayes 
has an option of detecting novel attacks by dynamically generating new 
hypothesis, which is obtained by adding a fake state of hypothesis and a new 
conditional probability table row initialized by a uniform distribution. 

Similarly to eBayes, many anomaly detection techniques have been 
proposed recently to overcome limitations of earlier statistical anomaly 
detection algorithms. For example, SPADE [214] is a statistical based 
system, that is available as a plug-in for SNORT as a plug-in, and used for 
automatic detecting stealthy port scans. Unlike traditional scan detectors that 
look for X events in Y seconds, SPADE takes a fundamentally different 
approach and looks at the amount of information gained by probing. It has 
four different methods of calculating the likelihood of packets, of which 
most successful method measures the direct joint probability P(dest IP, dest 
Port) between destination IP address and destination port. SPADE examines 
TCP-SYN packets and maintains the count of packets observed on (destIP, 
destPort) tuples. When a new packet is observed, SPADE checks the 
probability of observing that packet on the (dest IP, dest Port) tuple. The 
lower the probability of the packet, the higher the anomaly score. However, 
in a real life system, SPADE gives a high false alarm rate, since all unseen 
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(dest IP, dest Port) tuples are detected as attacks regardless whether or not 
they correspond to actual intrusions. 

Another recently proposed statistical method employs statistical traffic 
modeling [29] for detecting novel attacks against networks. In this approach, 
a network activity model is used to detect large classes of Denial of Service 
and scanning attacks by monitoring the network traffic volume. By applying 
the KolmogorovSmimov test on the DARPA dataset [132], it was 
demonstrated that, for example, normal telnet connections are statistically 
different from the attacks that use telnet connections. 

Chi-square (x^) statistics have also been successfully used to detect 
anomalies both in host-based and network based intrusion detection. For 
host-based IDSs, Ye [245] proposed approach where activities on a host 
machine are captured through a stream of events and then characterized by 
the event type. For each event type, the profiles of audit events from normal 
behavior are defined, and then used to compute y^ as a measure of difference 
between the test audit event and the normal audit event, whereas large 
deviations are detected as anomaHes. In network based IDS, the chi-square 
statistic has also been used [111] to differentiate the payload distribution 
(distribution of characters in the content of the network packets) in normal 
network packets and anomalous ones. 

Some researchers have used outlier detection algorithms for anomaly 
detection, since outliers are typically defined as data points that are very 
different from the rest of the data. The statistics community has studied the 
concept of outliers quite extensively [17]. In these techniques, the data points 
are modeled using a stochastic distribution, and points are determined to be 
outliers depending on their relationship with this model. For example, 
SmartSifter [244] uses a probabilistic model as a representation of 
underlying mechanism of data generation, and scores each data example by 
measuring how large the model has changed after the leaming. Smart sifter 
extension [243] gives positive labels to higher scored data and negative to 
the lower scored data, and then constructs an outlier filtering rule by 
applying supervised leaming. Eskin's approach [64] computes the likelihood 
of data distribution Lt{D) at some specific time interval /, removes a data 
example at the interval /-I and measures the likelihood of data distribution 
without removed data example Lt.j(D). The probability that removed data 
example is an outlier is proportional to the difference between the new 
likelihood Lt.j(D) and the original one Lt(D). Information theoretic measures 
such as entropy, conditional entropy, relative conditional entropy, 
information gain, and information cost [123] were also proposed for 
anomaly detection task. These measures were used to characterize the 
characteristics of an audit data set by measuring their regularity, and to build 
appropriate anomaly detection models according to these regularity 
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measures. The higher regularity of audit data, the better the anomaly 
detection module is. 

Statistic based anomaly detection techniques have also been used in 
detecting malicious viruses through e-mail messages. For example, the MET 
(Malicious Email Tracking) [22] system keeps track of email attachments as 
they are exchanged between users through a set of collaborating email 
servers that forward a subset of their data to a central data warehouse and 
correlation server. Only attachments with a high frequency of appearance are 
deemed suspicious, while the email exchange patterns among users are used 
to create models of normal behavior. MET system contains MET server and 
MET clients. MET server is used to collect data on malicious activity, store 
them in a database, and calculate derived statistics, while MET clients 
analyze email attachments across all mail domains and then detect email-
based attacks. 

5.2.2 Distance based methods 

Most statistical approaches have limitation when detecting outliers in 
higher dimensional spaces, since it becomes increasingly difficult and 
inaccurate to estimate the multidimensional distributions of the data points 
[2]. Distance based approaches attempt to overcome limitations of statistical 
outher detection approaches and they detect outliers by computing distances 
among points. Several distance based outlier detection algorithms have been 
recently proposed for detecting anomalies in network traffic [117]. These 
techniques are based on computing the full dimensional distances of points 
from one another [107, 187] using all the available features, and on 
computing the densities of local neighborhoods [25, 117]. MINDS 
(Minnesota Intrusion Detection System) [61] uses net-flow data to extract 
useful set of features to be used in anomaly detection. MINDS anomaly 
detection module employs an outlier detection algorithm to assign an 
anomaly score to each network connection. A human analyst then has to 
look at only the most anomalous connections to determine if they are actual 
attacks or other interesting behavior. MINDS anomaly detection module is 
used at the University of Minnesota and is also incorporated into the 
Interrogator architecture at the ARL Center for Intrusion Monitoring and 
Protection (CIMP), where network data from multiple sensors are collected 
and analyzed by human analysts to detect intrusions and attacks. 
Experiments on live network traffic at the University of Minnesota and at the 
ARL-CIMP have shown that MINDS is able to routinely detect various 
suspicious behavior (e.g. policy violations), worms, as well as various 
scanning activities, 
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In addition, in several clustering based techniques (fixed-width and 
canopy clustering [65]), network intrusions in DARPA 1998 evaluation data 
sets have been detected as small clusters when compared to the large ones 
that corresponded to the normal behavior. 

In another interesting approach [68], artificial anomalies in the network 
intrusion detection data are generated around the edges of the sparsely 
populated data regions, thus forcing the leaming algorithm to discover the 
specific boundaries that distinguish these regions from the rest of the data. 

5.2.3 Rule based systems 

Rule based systems used in anomaly detection characterize normal 
behavior of users, networks and/or computer systems by a set of rules. 
Examples of rule based IDSs include ComputerWatch [58] and Wisdom & 
Sense [124, 125]. 

ComputerWatch system [58] employs a typical rule based system that 
summarizes "normal" security events and then detects anomalous behavior 
as deviations from them. The rule system creates rules to describe proper 
usage policy, to check users' actions according to these rules, and to flag any 
action that does not match the described rule pattems. Wisdom & Sense 
[124, 125] employs historic audit data to produce a set of rules describing 
normal behavior, forming the "wisdom" of the title. These rules are then fed 
to an expert system that evaluates recent audit data for violations of the 
rules, and alerts the security analyst when the rules indicate ("sense") 
anomalous behavior. 

Recently, Valdes [227] proposed an unsupervised technique that does not 
require attack free training data and detects novel scans through pattem-
based anomaly detection. The model assigns network connections into one 
of a number of modes discovered by competitive leaming. The technique is 
applied to port pattems in TCP sessions in simulated and real network 
traffic. 

5.2.4 Profiling metliods 

In profiling methods, profiles of normal behavior are built for different 
types of network traffic, users, programs etc., and deviations from them are 
considered as intrusions. Profiling methods vary greatly ranging from 
different data mining techniques to various heuristic-based approaches. In 
this section, we provide an overview of several distinguished profiling 
methods for anomaly detection. 

ADAM (Audit Data and Mining) [16] is a hybrid anomaly detector 
trained on both attack-free traffic and traffic with labeled attacks. The 
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system uses a combination of association rule mining and classification to 
discover attacks in tcpdump data. One of the advantages of ADAM is its 
ability to detect novel attacks, without depending on attack training data, 
through a novel application of the pseudo-Bayes estimator [16]. Recently 
reported IDDM system [1] represents an off-Hne IDS, where the intrusions 
are detected only when sufficient amounts of data are collected and 
analyzed. The IDDM system describes profiles of network data at different 
times, identifies any large deviations between these data descriptions and 
produces alarms in such cases. 

Human immune system has gained a lot of attention among researchers 
in intrusion detection community, especially when analyzing attacks at the 
host level [73, 119, 209]. These techniques first collect data pattems 
representing the appropriate behavior of the service and extract a reference 
table containing all the known good sequences of system calls. These 
pattems are then used for live monitoring to check whether the sequences 
generated are listed in the table or not. If they are not listed, an alarm is 
generated. Wespi [237] also proposed a novel technique for modeling 
process behavior by building a table of variable length pattems, which is 
based on the Teiresias algorithm. Experimental results show that the variable 
length pattem model is significantly better than a fixed length approach, both 
in reducing the number of pattems to describe the normal process behavior 
and in achieving better detection rates. Although the immune system 
approach is interesting and intuitively appealing, so far it has proven to be 
difficult to apply [60]. 

The temporal sequence leaming [116] has been shown successful in 
profiling Unix user command line data, where user shell commands are used 
to build user profiles for activities during an intmsion and for activities 
during normal use. By comparing these profiles, it is possible to detect new 
types of anomalous user behavior. 

Association pattem analysis has been shown to be beneficial in 
constructing a profile of normal network traffic behavior [61, 118, 143]. For 
example, Manganaris [143] used association mles to characterize the normal 
stream of IDS alerts from a sensor and later to distinguish between false 
alarms and real ones. On the other hand, MINDS [61] uses association 
pattems to provide high-level summary of network connections that are 
ranked highly anomalous in the anomaly detection module. These 
summaries allow a human analyst to examine a large number of anomalous 
connections quickly and to provide templates from which signatures of novel 
attacks can be built for augmenting the database of signature-based intrusion 
detection systems. 

PHAD (packet header anomaly detection) [142] monitors network packet 
headers and builds profiles for 33 different fields from these headers by 
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observing attack free traffic and building contiguous clusters for the values 
observed for each field. The number of clusters is pre-specified and if a new 
value that is observed does not fit into any of the clusters, it is treated as a 
new cluster and the closest two clusters are merged. The number of updates, 
r, is maintained for each field as well as the number of observations, n, 
When a new packet is being tested for anomaly, the values of all fields are 
checked to see if they fit into the clusters formed in the training phase. If the 
values for some fields do not fit into any clusters, then each of them 
contributes to the anomaly score value of the packet proportional to the n/r 
ratio for the field. ALAD (application layer anomaly detection) [142] uses 
the same method for calculating the anomaly scores as PHAD, but it 
monitors TCP data and builds TCP streams when the destination port is 
smaller than 1024. It constructs five features from these streams as opposed 
to 33 fields used in PHAD. 

ADMIT (Anomaly-based Data Mining for InTrusions) [201] attempts to 
discriminate between masqueraders and true users on computer terminals. 
This task is performed by augmenting conventional password authentication 
measures and by continuously running a terminal-resident IDS program, 
which monitors the terminal usage by each user, creates an appropriate 
profile and verifies user data against it. 

Call stack information [71] was also effectively used to detect various 
exploits on computer systems. The anomaly detection approach, called 
VtPath, first extracts retum addresses information from the call stack and 
generates "abstract execution paths" between two execution points in the 
program. These "abstract execution paths" are then compared to the 
"abstract execution paths" leamed during normal runs of the program. 

Finally, there have also been several recently proposed commercial 
products that use profiling based anomaly detection techniques. For 
example, Antura from System Detection [222] use data mining based user 
profiling, while Mazu Profiler form Mazu Networks [147] and Peakflow X 
from Arbor networks [8] use rate-based and connection profiling anomaly 
detection schemes. 

5.2.5 Model based approaches 

Many researchers have used different types of models to characterize the 
normal behavior of the monitored system. In the model-based approaches, 
anomalies are detected as deviations for the model that represents the normal 
behavior. 

Very often, researchers have used data mining based predictive models 
such as replicator neural networks [79] or unsupervised support vector 
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machines [65, 117]. Replicator four-layer feed-forward neural network 
(RNN) [79] have the same number of input and output nodes. During the 
training phase, RNNs reconstruct input variables at the output layer, and then 
use the reconstruction error of individual data points as a measure of 
outlyingness. Unsupervised support vector machines [65, 117] attempt to 
separate the entire training data set from the origin, i.e. to find a small region 
where most of the data lies and label data points in this region as a normal 
behavior. In the test phase they detect deviations from leamed models as 
potential intrusions. In addition, standard neural networks (NN) were also 
used in intrusion detection problems to leam a normal profile. For example 
NNs were often used to model the normal behavior of individual users [193], 
to build profiles of software behavior [74] or to profile network packets and 
queue statistics [122]. 

User Intention Identification [213] is a technique developed within the 
SECURENET project [212]. The goal of this technique is to model the 
normal behavior of users using a set of high-level tasks they have to perform 
on the system. These tasks are then refined into actions, which in tum are 
related to the audit events observed on the system. The analyzer keeps a set 
of tasks that each user can perform. Whenever an action occurs that does not 
fit the task pattem, an alarm is issued. User intention identification was also 
successfully used in several recently proposed approaches [43, 44]. 

Wagner [234] proposed to statically generate a non-deterministic finite 
automaton (NDFA) or a non deterministic pushdown automaton (NDPDA) 
from the global control flow graph of the program. The approach first 
computes a model of expected application behavior, built statically from 
program source code, then monitors program execution online at run time, 
and finally checks its system call trace for compliance to the model. 

Specification based intrusion detection techniques have been recently 
proposed to produce a low rate of false alarms [199], but they have not been 
as effective as anomaly detection in detecting novel attacks. Hence, 
specification based anomaly detection [199] was designed to mitigate the 
weaknesses of both specification based IDSs and anomaly detection 
techniques and complement their strengths. The approach begins with state-
machine specifications of network protocols, and augments these state 
machines with information about statistics that need to be maintained to 
detect anomalies. 

Finally, anomaly detection has also been used in embedded systems 
[146], where Markov models were employed to determine whether the states 
(events) in a sequential data streams, taken from a monitored process, are 
normal or anomalous. It computes the probabilities of transitions between 
events in a training set, and uses these probabilities to assess the transitions 
between events in a test set. 
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6. TIME ASPECTS 

When considering time aspects of IDSs, we distinguish two main groups: 
real-time (on-hne) IDSs and off-line IDSs. Real-time (on-line) IDSs attempt 
to detect intrusions in real-time or near real-time. They operate on 
continuous data streams from information sources and analyze the data while 
the sessions are in progress (e.g. network sessions for network intrusion 
detection, login sessions for host based intrusion detection). Real-time IDSs 
should raise an alarm as soon as an attack is detected, so that action that 
affects the progress of the detected attack can be taken. Most commercial 
IDSs claim continuous processing capability [8, 147]. 

Off-line IDSs perform post-analysis of audit data. This method of audit 
data analysis is common among security analysts who often examine 
network behavior, as well as behavior of different attackers, in an off-line 
(batch) mode. Many early host-based IDSs used this timing scheme, since 
they used operating system audit trails that were recorded as files [77, 155]. 

Off-line analysis is also often performed using static tools that analyze 
the snapshot of the environment (e.g. host vs. network environment), look 
for vulnerabihties and configuration errors and assess the security level of 
the current environment configuration. Examples of these tools include 
COPS [69] and Tiger [194] for host environments, and Satan [70] and 
CyberCop Scanner [163, 197] for networks. Virus detectors belong to static 
tools too and they scan the disks searching for pattems matching known 
viruses. Although static tools are very popular and broadly used by system 
administrators, they are typically not sufficient to ensure high security [55]. 

Static tools can be also specifically designed for active investigation of 
vulnerabilities over the Internet. For example. Tripwire [106] or ATP [233] 
can be used to monitor a designated set of files and to detect computer 
intrusions that exploited older vulnerable applications. These intrusions 
should also be identified and reported to the system administrator as 
potential security holes using other tools like COPS [69] or Tiger [194]. 

7. ARCHITECTURE 

There are two principal architectures that are used in IDSs, namely 
centralized and distributed IDSs. Most IDSs employ centralized architecture 
and detect intrusions that occur in a single monitored system. However, there 
is a recent increasing trend towards distributed and coordinated attacks, 
where multiple machines are involved, either as attackers (e.g. distributed 
denial-of-service) or as victims (e.g. large volume worms). Analysis that 
uses data from a single site and that is often employed by many existing 
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intrusion detection schemes is often unable to detect such attacks. To 
effectively combat them, there is a need for distributed IDS and cooperation 
among security analysts across multiple network sites. 

Unlike a centralized IDS, where the analysis of data is performed on a 
fixed number of locations (independent of how many hosts are being 
monitored), in a distributed IDS the analysis of data is performed on a 
number of locations that is proportional to the number of hosts that are being 
monitored [211]. An excellent comparison of centrahzed and distributed 
IDSs, with their advantages and drawbacks, is provided in a paper by 
Spafford and Zamboni [211]. Despite several drawbacks of distributed IDSs, 
many commercial vendors have realized the need for detecting coordinated 
cyber attacks from distributed locations, and adapted their systems to address 
these challenges [9, 162]. 

Starting from the first proposed distributed IDS [205], the most typical 
architectures of distributed IDSs assume employment of intelligent agents. 
There are several advantages of using mobile agent based intrusion detection 
systems over other approaches for distributed intrusion detection [94]. First, 
agents are independently running entities and can be added, removed and 
reconfigured without altering other components, and without restarting local 
IDSs. Second, agents can be tested on their own before introducing them 
into a more complex environment. Finally, agents can exchange information 
to derive more complex results than any one of them may be able to obtain 
on their own. Although IDSs based on mobile agents are still in their infancy 
and fully implemented systems are still emerging, there are many agent-
based distributed IDSs [39, 109]. The typical examples include DIDS [59], 
AAFID [211], Argus [203], IDA [10], Mic^l [53]. 

DIDS [59] and distributed autonomous-agent NID [18] use a similar 
architecture that consists of a central analysis server and multiple IDS agents 
that communicate with each other. AAFID (autonomous agents for intrusion 
detection) [211] has a hierarchical design with three levels. At the lowest 
level, agents perform host security monitoring and data analysis. The 
information gathered by agents is forwarded to transceivers that distribute 
the information either to other agents or monitors, and control and configure 
agents at the second level. At the highest level, each monitor collects data 
from transceivers and evaluates their input. InteUigent agents in [82] employ 
classifier algorithms and travel among collection points, referred to as data 
cleaners, and uncover suspicious activities. The architecture is hierarchical, 
with a data warehouse at the root, data cleaners at the leaves, and classifier 
agents in between. A classifier agent specializes in a specific category of 
intrusion and is capable of collaborating with agents of another category to 
determine the severity level of an activity deemed suspicious. Moving the 
computational analysis to each collection point avoids the costly movement 
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of information to an aggregation unit. Argus [203] employs a similar 
architecture with low-level agents that serve as data cleansers, and data 
mining agents that generate not only rules for matching a normal profile but 
also generate feedback for knowledge-based components. These rules can be 
used then to update the rule database of the NFR knowledge component 
[167]. Bayesian multiple hypothesis tracking was also used to more 
effectively analyze information provided by existing IDSs from multiple 
networks [28]. Hypotheses that explain the measured intrusion events are 
generated and stored, and then evaluated against the understanding of the 
sensor behavior in order to determine the likelihood of the hypotheses. The 
hypothesis with the greatest likelihood is assumed correct, while other 
hypotheses are treated as intrusions. 

The Intrusion Detection Agent (IDA) system [10] is a multi-host based 
IDS that relies on mobile agents to trace intruders among the various hosts 
involved in an intrusion. IDA watches specific events that are related to 
various intrusions. These events are called "Marks Left by Suspected 
Intruder" (MLSI). If a specific MLSI is identified, IDA collects all the 
information related to this MLSI, analyzes this information and determines 
whether the MLSI is related to a real attack or not. The IDA system has a 
hierarchical tree structure, in which the central manager is placed at the root 
of the tree, while numerous agents are located at the leaves. 

Micad [53] is a distributed IDS that uses autonomous mobile intelligent 
agents able to make various decisions in the process of intrusion detection 
(e.g. investigating intrusions and initiating countermeasures against them). 
The Mic^l architecture contains the following agents: (i) headquarters, i.e. 
specialized centralized agents that are responsible for creating other agents 
and maintaining their executable codes. They receive information about 
potential intrusions from sentinel agents and can create new detachment 
agents that will be sent to hosts when needed; (ii) sentinels, i.e. immobile 
agents that collect data about the activities on the host machines and inform 
headquarter agents about detected anomalies; and (iii) detachments, i.e. 
mobile agents that are used to face possible intrusions (hazards) by starting a 
detailed analysis of log files. 

Applying intrusion detection techniques on a system-wide basis allows 
the system to be protected against general misuse, but may require 
significant resources. By optimizing the placement and configuration of 
these tools, it is possible to offer both increased protection for sensitive 
systems, and more context-sensitive detection, at the cost of general 
protection. For example, distributed IDS deployment often concentrates 
monitors in high-risk areas, such as network ingress points (e.g. adjacent to 
firewalls), or in the presence of valuable resources (such as network server 
farms) [148]. 
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8. RESPONSE 

The response of IDSs to identified attacks may be either passive or 
active. In the most common scenario, IDSs have passive response and 
simply inform responsible personnel of an event, but no countermeasure is 
actively applied to thwart the attack. The most common method for such 
notifications is through pop-up windows or on-screen alerts or through 
recording alerts into a file. These alerts may vary from notification of alarms 
only to detailed information about computer attacks such as source IP 
address, target of the attack, specific port of interest, the tools used to 
perform the attack, the outcome of the attack, etc. Some products also offer 
remote notification through sending alarms or alerts to cellular phones and 
pagers carried by system security personnel. In addition, notification is often 
sent through e-mail messages, but this may be unsafe, as attackers may 
monitor email and might even block the message. Certain IDSs (e.g. Cisco 
IDS [46]) use SNMP traps and messages to report generated alarms to a 
network management system, where network operations personnel can 
investigate them. Passive response is often used for off-line analysis. 

Altematively, IDSs can also provide an active response to critical events, 
such as ''patching" a system vulnerabiHty, logging off a user, re-configuring 
routers and firewalls, or disconnecting a port. 

Given the speed and frequency at which attacks can occur, an ideal IDS 
would automatically respond to computer attacks at machine speed without 
requiring any operator intervention. However, this is an unrealistic 
expectation, largely due to the difficulty in eliminating false alarms. 
Nevertheless, IDS products can still provide a variety of active response 
mechanisms that may be used at the discretion of the system administrator. 

One of the most harmless, but often most productive, active responses is 
to collect additional information about a suspected attack and to perform 
damage control. This might involve increasing the sensitivity level of 
information sources (e.g., increasing the number of events logged by an 
operating system audit trail, or increasing the sensitivity of a network 
monitor that captures all packets). Such additional information collected can 
help resolve the detection of the attack (assisting the system in diagnosing 
whether an attack did or did not take place) thus allowing the IDS to gather 
information that can be used to support investigation of the attacker. 

In more recent IDS tools, active responses that include countermeasure 
against the attacker have become increasingly popular. An example of such a 
tool with early countermeasure capability is NetProbe [192], which monitors 
a network for undesired connections and immediately terminates them. 
There are also other tools with similar capabilities, such as RealSecure [89], 
NetRanger [47], and WebStalker [204] that have options to interrupt 
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suspicious network connections that carry attacks, to block network traffic 
from the hosts that are originating attacks, or to reconfigure routers and 
firewalls. 

9. CONCLUSIONS 

Intrusion detection techniques have improved dramatically over time, 
especially in the past few years. Initially developed to automate tedious and 
difficult log parsing activity, IDSs have developed into sophisticated, real­
time applications with the ability to have a detailed look at traffic and to 
sniff out malicious activity. They can handle high-speed networks and 
complex traffic, and deliver detailed insight - previously unavailable - into 
active threats against critical online information resources. IDS technology is 
developing rapidly and its near-term future is very promising. It is 
increasingly becoming an indispensable and integral component of any 
comprehensive enterprise security program, since it complements traditional 
security mechanisms. 

This chapter provides an overview of the current state of the art of both 
computer attacks and intrusion detection techniques. The overview is based 
on presented taxonomies exemplified with the most illustrative paradigms. 
The taxonomy of computer attacks and intrusions provides the current status 
and trends in techniques that attackers employ today. The taxonomy of IDSs 
highlights their properties and provides an overview of the past and current 
developments. Although a variety of techniques have been developed for 
detecting different types of computer attacks in different computer systems, 
there are still a number of research issues conceming the prediction 
performance, efficiency and fault tolerance of IDSs that need to be 
addressed. Signature analysis, the most common strategy in the commercial 
domain until recently, is increasingly integrated with different anomaly 
detection and alert correlation techniques in order to detect emerging and 
coordinated computer attacks. 

We hope this survey provides actionable information and advice on the 
topics, as well as serves to acquaint newcomers with the world of IDSs and 
computer attacks. The information provided herein is by no means complete 
and we recommend further reading to the interested reader. 
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Abstract: Much of the intrusion detection research focuses on signature (misuse) detection, 
where models are built to recognize known attacks. However, signature detec­
tion, by its nature, cannot detect novel attacks. Anomaly detection focuses on 
modeling the normal behavior and identifying significant deviations, which could 
be novel attacks. In this chapter we explore two machine learning methods that 
can construct anomaly detection models from past behavior. The first method 
is a mle learning algorithm that characterizes normal behavior in the absence of 
labeled attack data. The second method uses a clustering algorithm to identify 
outliers. 

Keywords: anomaly detection, machine learning, intmsion detection 

1. INTRODUCTION 

The Intemet is one of the most influential innovations in recent history. 
Though most people use the Intemet for productive purposes, some use it as 
a vehicle for malicious intent. As the Intemet links more users together and 
computers are more prevalent in our daily lives, the Intemet and the computers 
connected to it increasingly become more enticing targets of attacks. Com­
puter security often focuses on preventing attacks using usually authentication, 
filtering, and encryption techniques, but another important facet is detecting 
attacks once the preventive measures are breached. Consider a bank vault, 
thick steel doors prevent intmsions, while motion and heat sensors detect in-
tmsions. Prevention and detection complement each other to provide a more 
secure environment. 
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How do we know if an attack has occurred or has been attempted? This 
requires analyzing huge volumes of data gathered from the network, host, or 
file systems to find suspicious activity. Two general approaches exist for this 
problem: signature detection (also known as misuse detection), where we look 
for pattems signaling well-known attacks, and anomaly detection, where we 
look for deviations from normal behavior. Signature detection works reliably 
on known attacks, but has the obvious disadvantage of not being capable of 
detecting new attacks. Though anomaly detection can detect novel attacks, it 
has the drawback of not being capable of disceming intent; it can only signal 
that some event is unusual, but not necessarily hostile, thus generating false 
alarms. A desirable system would employ both approaches. 

Signature detection methods are more well understood and widely applied. 
They are used in both host based systems, such as virus detectors, and in network 
based systems such as SNORT [32] and BRO [26]. These systems use a set of 
rules encoding knowledge gleaned from security experts to test files or network 
traffic for pattems known to occur in attacks. A limitation of such systems is that 
as new vulnerabilities or attacks are discovered, the rule set must be manually 
updated. Also minor variations in attack methods can often defeat such systems. 
For anomaly detection, a model of acceptable behavior can also be specified 
by humans as well. For example, firewalls are essentially manually written 
policies dictating what network traffic is considered normal and acceptable. 

How do security experts discover new unknown attacks? Generally, the 
experts identify something out of ordinary, which triggers further investigation. 
Some of these investigations result in discovering new attacks, while others 
result in false alarms. From their experience, security experts have learned a 
model of normalcy and use the model to detect abnormal events. We desire to 
endow computers with the capability of identifying unusual events similar to 
humans by leaming (data mining) from experience, i.e., historical data. 

Since what is considered normal could be different in different environments, 
a distinct model of normalcy need to be learned individually. This contrasts to 
manually written polices of normal behavior that require manual customization 
in each environment. Moreover, since the models are customized to each envi­
ronment, potential attackers would find them more difficult to circumvent than 
manually written policies that might be less customized due to inexperienced 
system administrators who do not change the default parameters and policies 
supplied by the vendors. Our goal is to learn anomaly detectors that can be 
customized to individual environments. This goal has a few challenges. 

First, anomaly detection is a harder problem than signature detection be­
cause signatures of attacks can be very precise but what is considered normal 
is more abstract and ambiguous. Second, classical machine leaming problems 
are classification tasks—given examples of different classes, learn a model that 
distinguishes the different classes. However, in anomaly detection, we are es-
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sentially given only one class of examples (normal instances) and we need to 
learn a model that characterizes and predicts the lone class reliably. Since ex­
amples of the other classes are absent, traditional machine learning algorithms 
are less applicable to anomaly detection. Third, research in anomaly detection 
uses the approach of modeling normal behavior from a (presumably) attack-free 
training set. However, clean data for training may not be easy to obtain. Lastly, 
to help humans analyze the alerts, anomaly detectors need to be able to describe 
the anomalies, though not as precisely as signature detectors are capable. 

To meet the second challenge, we propose two methods for leaming anomaly 
detectors: rule leaming (LERAD) and clustering (CLAD). CLAD does not 
assume the training data are free of attacks—the third challenge. For the last 
challenge, our models are not black boxes. Alerts can be explained by rules that 
are violated in LERAD or by the centroids of the "near miss" normal clusters 
in CLAD. Our experimental results indicate that, though anomaly detection 
is a harder problem (the first challenge), our methods can detect attacks with 
relatively few false alarms. 

This chapter is organized as follows. Section 2 contrasts related techniques 
in anomaly detection. Section 3 proposes the LERAD algorithm that learns 
the characterization of normal behavior in logical rules. Section 4 describes a 
clustering algorithm that can identify behavior far from the normal behavior. 
We summarize our findings and suggest improvements in Section 5. 

2. RELATED WORK 
Anomaly detection is related to biological immunology. Forrest et al. [11] 

observe that part of our immune system functions by identifying unfamiliar 
foreign objects and attacking them. For example, a transplanted organ is often 
attacked by the patient's immune system because the organ from the donor 
contains objects different from the ones in the patient, Forrest et al. found that 
when a vulnerable UNIX system program or server is attacked (for example, 
using a buffer overflow to open a root shell), that the program makes sequences 
of system calls that differ from the sequences found in normal operation [12]. 
Forrest used n-gram models (sequences of n = 3 to 6 calls), and matched them to 
sequences observed in training. A score is generated when a sequence observed 
during detection is different from those stored during training. Other models 
of normal system call sequences have been used, such as finite state automata 
[34] and neural networks [13]. Notably, Sekar et al. [34] utilize program 
counter information to specify states. Though the program counter carries 
limited information about the state of a program, its addition to their model is 
different from typical n-gram models that rely solely on sequences of system 
calls. Lane and Brodley [18] use instance-based methods and Sequeira and 
Zaki [35] use clustering methods for detecting anomalous user commands. 
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A host-based anomaly detector is important since some attacks (for exam­
ple, inside attacks) do not generate network traffic. However, network-based 
anomaly detectors can warn of attacks launched from the outside at an earlier 
stage, before the attacks actually reach the host. Current network anomaly de­
tection systems such as eBayes [37], ADAM [4], and SPADE [7] model only 
features of the network and transport layer, such as port numbers, IP addresses, 
and TCP flags. Models built with these features could detect probes (such as 
port scans) and some denial of service (DOS) attacks on the TCP/IP stack, but 
would not detect attacks of the type detected by Forrest, where the exploit code 
is transmitted to a public server in the application payload. 

Network anomaly detectors estimate the probabilities of events, such as that 
of a packet being addressed to some port, based on the frequency of similar 
events seen during training or during recent history, typically several days. 
They output an anomaly score which is inversely proportional to probability. 
Anomaly detectors are typically just one component of more comprehensive 
systems. eBayes is an anomaly detection component of EMERALD [24], which 
integrates the results from host and network-based detectors that use both sig­
nature and anomaly detection. ADAM is a Bayes classifier with categories for 
normal behavior, known attacks, and unknown attacks. SPADE is a SNORT 
[32] plug-in. Some anomaly detection algorithms are for specific attacks (e.g., 
portscans [36]) or services (e.g., DNS [17]). 

Most current anomaly detectors use a stationary model, where the probability 
of an event depends on its average rate during training, and does not vary with 
time. However, using the average rate could be incorrect for many processes. 
Paxson and Floyd [27] found that many network processes, such as the rate 
of a particular type of packet, have self-similar (fractal) behavior. Events do 
not occur at uniform rates on any time scale. Instead they tend to occur in 
bursts. Hence, it is not possible to predict the average rate of an event over a 
time window by measuring the rate in another window, regardless of how short 
or long the windows are. An example of how a stationary model fails in an 
anomaly detector would be any attack with a large number of events, such as a 
port scan or a flooding attack. If the detector correctly identifies each packet as 
anomalous, then the user would be flooded with thousands of alarms in a few 
minutes. 

Clustering and related techniques have been used to locate outliers in a 
dataset. Knorr and Ng [16] define an outlier as an object where a fraction 
p of the dataset is further than distance D from the object, where p and D are 
parameters specified by the users. Instead of a global perspective [16], LOF [5] 
uses a local perspective and locates outliers with respect to the density in the lo­
cal/neighboring region. They illustrate the inability of conventional approaches 
to detect such outliers. LOF has two short-comings: one, their approach is very 
sensitive to the choice of MinPts, which specifies the minimum number of 
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objects allowed in the local neighborhood (similar to k in k-NN, k-Nearest 
Neighbor); second, and more importantly, their approach is not well-suited for 
very high dimensional data such as network traffic data. Ramaswamy et al. 
[31] investigate the problem of finding the top n outliers. They characterize 
an outlier by the distance of the fcth-nearest neighbor and their algorithm ef­
ficiently partitions the input space and prunes partitions that cannot contain 
the top outliers. Aggarwal and Yu [1] calculate the sparsity coefficient, which 
compares the observed and expected number of data points, in "cubes" (spatial 
grid cells) generated by projections on the dataset. 

3. LEARNING RULES FOR ANOMALY DETECTION 
(LERAD) 

To build a model for anomaly detection, from a probabilistic perspective, 
one can attempt to estimate P{x\Di^oAttacks)•> where x is an instance under 
consideration and D^^oAttacks is a data set of instances that do not contain 
attacks. Since all the probabilistic estimations are based on the training data set 
DNoAttacks, for notation convenience, we use P(x) in lieu of P{X\DNoAttacks)-
Under this model, the smaller P{x) is, the more likely x is anomalous. 

Each instance x is represented by values from a set of m attributes ai, a2,..., 
am- That is, a; is a tuple of values (ai = I'l, ^2 — ^2^ •--•, dm = Vm)-> where vi 
is the value for attribute a .̂ The probability P{x) is hence: P{ai = Vj,a2 = 
V2: •••) CLm = Vm) or more concisely, P{vi, f2,..., Vm)- Using the chain rule is 
frequently is too computationally expensive. Some researchers assume the at­
tributes to be independent in "Naive" Bayes algorithms [9, 6, 8]. However this 
assumption is usually invalid. To incorporate attribute dependence, Bayesian 
networks [28] model a subset of the conditional probabilities structured in net­
works, which are selected using prior knowledge. Recent work in Bayesian net­
works attempts to learn the network structures from data. However, Bayesian 
networks model the entire distribution of each conditional probability and could 
consume significant computational resources. 

Instead of estimating the probability of an instance x, an alternative approach 
is to estimate the likelihood of values among the attributes in each instance. That 
is, given some attribute values, we estimate the likelihood of some other attribute 
values. Again, consider vi, ...,Vm = V axe the values of attributes ai,. . . , a^ of 
an instance. Let U cV,W CV, and U OW = ^,WQ would like to estimate: 
P{W\U). For example, consider these network packet values: V = {Srclp = 
12S.1.2.3, Destip = 12SA.5.Q, SrcPort = 2222, DestPort = 80}. Fur­
ther we consider U = {Srclp = 128.1.2.3, Destip = 128.4.5.6} and W = 
{DestPort = SO},hmceP{W\U) is: P{DestPort = SO\SrcIp = 128.1.2.3, 
Destlp= 128.4.5.6). 
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In anomaly detection we seek combinations of U and W with large 
P{W\U)—W is highly predictive by U. These combinations indicate pat­
terns in the normal training data and fundamentally constitute a model that 
describes normal behavior. If these patterns are violated during detection, we 
calculate a score that reflects the severity of the violation and hence the degree of 
anomaly. That is, the anomaly score depends on P(--W\U), where W, though 
expected, is not observed when U is observed. Finding these patterns could be 
computationally expensive since the space of combinations is 0{d^), where d 
is the domain size of an attribute and m is the number of attributes. In the next 
section we describe our proposed learning algorithm. 

LERAD Algorithm 

Our goal is to design an efficient algorithm that finds combinations of U 
and W with large P{W\U) during training and uses P{-^W\U) to calculate an 
anomaly score during detection. The task of finding combinations of U and W 
is similar to finding frequent patterns in association rules [2], where U is the 
antecedent, W is the consequent, and P{W\U) is the confidence. Algorithms 
for finding association rules, for example Apriori [2], typically find all rules 
that exceed the user-supplied confidence and support thresholds; consequently, 
a large number of rules can be generated. Checking large number of rules 
during detection incurs unacceptable amounts of overhead. However, our goal 
is different from finding association rules in two fundamental respects. First, the 
semantics of our rules are designed to estimate P{-^W\U). Second, we want a 
"minimal" set of rules that succinctly describes the normal training data. These 
differences are exhibited in our proposed rules and algorithm called LERAD 
(LEaming Rules for Anomaly Detection). 

Semantics of LERAD Rules. The semantics of LERAD rules seek to 
estimate P{-^W\U); in rule form, a LERAD rule is: 

U^^W \p = P(-^W\U)l (3.1) 

where p denotes P{-^W\U) and reflects the likelihood of an anomaly. These 
rules can be considered as anomaly rules. We also extend the semantics of W. 
In the consequent instead of allowing a single value for each attribute, our rules 
allow each attribute to be an element of a set of values. For example, consider 
W = {DestPort € {21,25,80}} (instead of 1^ -= {DestPort = 80}), 
P{W\U) is: P(DestPort e {21,25,80}|5rc7p = 128.1.2.^, Destip = 
128.4.5.6) and P{-nW\U) becomes: P{DestPort ^ {21,25,80}|5'rc7p = 
128.1.2.3, Destip = 128.4.5.6) or in rule form: Srclp = 128.1.2.3, Destip 
= 128.4.5.6 => DestPort ^ {21,25,80}. Given U, the set of values for 
each attribute in W represents all the values seen in the training data for that 
particular attribute. Following the above example, given Srclp = 128.1.2.3 
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and Destip = 128.4.5.6, DestPort is either 21, 25, or 80 in the normal 
training data. This extension allows our models to be more predictive and 
conservative so that false alarms are less likely to occur. However, since W 
includes all the seen values in training, a simplistic estimation of P{W\U) 
would yield 1 and P(-^W\U) 0. Obviously, these estimates are too extreme. 
Since event -\W is not observed when event U is observed during training, 
estimating P{-^W\U) becomes a "zero-frequency" problem [38]. 

Zero-frequency Problem. Laplace smoothing is commonly used in the 
machine leaming community to handle the zero-frequency problem [25,23,30]. 
One variant of the technique is to assign a frequency of one, instead of zero, to 
each event at the beginning. Hence, all events, observed or not, will have at least 
a count of one and none of the events have an estimated probability of zero. That 
is, the likelihood of a novel event can be estimated by: P{NovelEvent) = 
I^^TLJ where |^ | is the size of the alphabet A of possible values, n is the 
total number of observed events and r is the number of unique observed events. 
However, Laplace smoothing is appropriate only for the case where A is known, 
and for which the apriori distribution over A is uniform. In general, A could 
be very large and unknown (for example, the set of all possible strings in the 
application payload), and the distribution could be highly skewed toward a few 
common values. 

Witten and Bell [38] proposed a few estimates for novel events in the context 
of data compression that are independent of alphabet size and which do not 
assume an apriori uniform distribution; one estimate is: 

P(NovelEvent) = - . (3.2) 
n 

This measures the average rate of novel values in the sample. Eq. 3.2 is used 
to estimate p = P{-^W\U) in Eq. 3.1, where n is the number of instances 
satisfying the antecedent U and r is the number of unique values in the attribute 
of the consequent W, We attempted more sophisticated estimators in initial 
experiments for anomaly detection, but Eq. 3.2 seems to perform as effectively 
as others and requires the least computation, which is advantageous in mining 
large amounts of data. 

Randomized Algorithm. In the previous sections we have discussed the 
semantics of LERAD rules and how P{-iW\U) can be estimated. We now 
discuss an efficient algorithm that finds combinations of U and W with low 
P{-^W\U) (or high P{W\U)). Our algorithm is based on sampling and ran­
domization. Let D be the entire training data set, DT and Dy be the training 
and validation sets respectively such that DT U Dy = D, DT H Dy = 0, and 
\DT\ > \Dv\^ and Ds is a random sample of DT such that Ds C DT and 
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Table 3.1. Example Training Data Set D = {di} for i = 1..6 (marked by rk in Step 3) 

di 

di 

d2 
dz 
di 
ds 
de \ 

1 ai 
1 
1 

2 
2 
1 
2 

a2 

2(r2) 
2(r2) 
6( r i ) 

7 
2 
8 

as 
3 
3 
3 
3 
3 
3 

0-4 

4 
5 
5 
5 
4 

4 

1 in subset 
1 Ds and £>T 

JDS and DT 

Ds and Z?T 

DT 

Dv 
1 Dv 

Ta^/e 3.2. Rules (r^) Generated by LERAD Steps 1-5 

Step 1 
r i : * ^ a2 = 2 
r2: ax = I => a2 = 2 
ra: ai = 1, as = 3 => a2 = 2 

' Step 2 (rewritten in Eq.3.1 form) 
n : *=>a2 ^{2,6}[p = 2/3] 
r2: ai = l = ^ a 2 ^ { 2 } [ p = l / 2 ] 
ra: ai = 1, 03 = 3 =^ 02 0 {2}[p = 1/2] 

Step 4 
r2: ai = l - » a 2 0 { 2 } [ p = l / 2 ] 
r i : *=>a2 ^ {2, 6, 7}[p = 3/4] 

Step 2 
r i : * =^a2 G {2,6} 
r2: ai = 1 =^ a2 = 2 
rs: ai = 1, as = 3 => a2 = 2 

Step 3 
r2: ai = 1 =^ a2 ^ {2}[p = 1/2] 
n : *=^a2 0{2,6}[p = 2/3] 

Steps 
ra: ai = 1 :^ 02 ^ { 2 } [ p = 1/3] 

\Ds\ <C li^rl- ^£; is a separate test/evaluation set disjoint from the training 
set D. Our proposed mining algorithm consists of five main steps: 

1 generate candidate rules from Ds, 
2 evaluate candidate rules from Ds, 
3 select a ''minimal" set of candidate rules that covers Ds, 
4 train the selected candidate rules on DT, and 
5 prune the rules that cause false alarms on Dy 

Steps 1-3 intend to select a small and predictive set of rules from a small sample 
Ds of the data. The selected rules are then trained on the much larger set DT 
in Step 4. The validation set Dy is used to reduce overfitting in Step 5. For 
simplicity, we only consider rules that have only one attribute in the consequent. 
Further details are in [20]. 

Step 1. Pairs of instances are randomly chosen from D^. For each pair of 
instances, we identify the matching attribute values between the two instances. 
Consider di and d2 in Table 3.1 as a random pair, ai = 1, a2 = 2, and as = 3 
occur in both instances. The three values are then chosen in random order, e.g., 
a2 = 2,ai = 1, and as = 3; and the candidate rules in Table 3.2 are generatedc 
The first value (a2 = 2) is chosen to be in the consequent (W) and the the 
later values are iteratively added to the antecedent ([/). In r i , * is a wild card 
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and matches anything. If the matching attribute values occur often in different 
instances, they will likely be found matching again in another randomly chosen 
pair of instances and more rules for these matching attribute values will be 
generated. That is, the more likely the values are correlated, the more rules will 
be generated to describe the correlation (duplicate rules are removed). 

Step 2. We evaluate the candidate rules on Ds^ Note that the consequent in 
the candidate rules generated from Step 1 has only one value. In Step 2 we add 
values to the attribute in the consequent if more values are observed in Ds* di 
and (̂ 2 do not change the rules. ^3 causes ri is to be updated because a2 == 6 in 
ds; the other two rules are unchanged because the antecedents are not satisfied 
for da. The new set of candidate rules are in Table 3.2. We then write the 
rules in the form of Eq. 3.1 and estimate p = P{-^W\U) for each rule by using 
Eq. 3.2 in Table 3.2. 

Step 3, We select a "minimal" subset of candidate rules that sufficiently 
describe Ds. Our method is based on two heuristics. First, we prefer rules with 
lower p = P{-iW\U). Second, a rule can cover multiple instances in Ds, but 
an instance does not need to be covered by more than one rule (more details 
later). Hence, we sort the rules based on p and evaluate the rules in ascending 
order. For each rule, we mark instances that are covered by the rule. If a rule 
cannot mark any remaining unmarked instances, it is removed. That is, we keep 
rules with lower p and remove rules that do not contribute to covering instances 
not covered by previous rules with lower p values. 

Step 4. This step is similar to Step 2, except that the rules are updated based 
on DT, instead of D5. 0̂4 does not affect r2 since its antecedent does not match. 
However, 7 is added to the consequent of ri and p is updated to 3/4 in Table 3.2. 
After Step 4, the rules have been trained from D^. 

Step 5. Since all instances in the validation set Dy are normal, an alarm 
generated by a rule with any instance in Dy is a false alarm. To reduce overfit-
ting, during Step 5, we remove rules that generate alarms in the validation set. 
Using our running example, ^5 is normal according to vi and r2. However, ri 
generates an alarm for d^ since a2 = 8 ^ {2, 6, 7}. r2 does not generate an 
alarm because ai = 2, which does not satisfy the antecedent of r2. Hence, only 
r2 remains in Table 3.2. During Step 5, to fully utilize legitimate training data 
in the validation set, we also update p for rules that are not removed. Hence, p 
for r2 was updated to 1/3. 

Anomaly Score and Nonstationary Model. During training, a set of 
anomaly rules R that "minimally" describes the training data are generated and 
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their p = P{-^W\U) is estimated. During detection, given an instance x, we 
generate an anomaly score if x satisfies any of the anomaly rules (U => ^W), 
Let S' C i? be the set of anomaly rules that x satisfies. The anomaly score is 
calculated as: AnomalyScore(x) = Ylvk^s ^T' ^here Vk is a rule in S and pk 
is the p value of rule Vk^ The reciprocal ofpk reflects a surprise factor that is 
large when anomaly has a low likelihood (small p^)-

The p estimate is an aggregate over a stationary training period; however, 
recent events can greatly influence current events. Bursty network traffic or OS 
activities are common. In intrusion detection we experience that attacks cause 
bursty behavior as well. In order to incorporate recent novel events into our 
scoring mechanism, we introduce t^ which is the duration since the last novel 
value was observed in the consequent of anomaly rule Vk (or when r^ was 
satisfied). The smaller tk is, the higher the likelihood that we will see another 
novel value. That is, intuitively, we are less surprised if we have observed a 
novel value in a more recent past. Hence, we calculate the anomaly score as: 

Anomaly S cor e{x) = ^ —. (3.3) 

Summary of Current Results 

To evaluate LERAD, we use network traffic recorded in tcpdiimp provided 
by the DARPA evaluation in 1999 [19,15]. Week 3 inside sniffer traffic (which 
contains no attacks) was used for training (D) and Weeks 4 and 5 (DE) were 
used for testing. The size of the validation set (|D\/1) was set to be 10% of the 
training set (D). We set Ds = 100 samples. LERAD was run five times with 
a different random seed. Attributes used in our data sets include IP addresses, 
port numbers, length, duration, opening and closing TCP flags, and the first 8 
words of the application payload of reassembled inbound client TCP streams. 
LERAD is evaluated based on the number of detected attacks with at most 10 
false alarms per day. 

In our experiments the resulting set of rules usually contains 50 to 75 rules. 
Though the rule set is relatively small, LERAD, on the average, detects about 
117 attacks out of 201 attacks with at most 10 false alarms per day. Under a 
''blind" evaluation (the test set was not available apriori), the original DARPA 
participant with the most detections detected 85 attacks [19]. This indicates 
LERAD is quite successful in finding highly predictive normal patterns. More 
importantly, LERAD detects about 58% of the attacks poorly detected by the 
original participants [19]. That is, LERAD increases the overall coverage of 
detectable attacks. The total computational overhead is about 30 minutes for 
three weeks of training and test data. Much of the overhead is in preprocessing 
of the raw data to generate feature values for training and testing. Training and 
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testing on three weeks of data take less than two minutes. We also analyzed and 
categorized why our detected anomalies were successful in detecting attacks. 
The more common categories (covering about 70% of the detected attacks) are 
unexpected user behavior (e.g., unusual client addresses for servers) and learned 
(partial) attack signatures (e.g., unusual input that exploit bugs in software). 
Details of our findings are described in [20]. 

In [22] we tested LERAD on 623 hours of traffic collected on a university 
departmental server over a 10 week period. We first used SNORT and manual 
inspection to identify six attacks that evaded our gateway firewall: an inside au­
tomated port/security scan which tests for multiple vulnerabilities, three HTTP 
worms (Code Red II, Nimda, and Scalper), an HTTP proxy probe, and a DNS 
version probe. We evaluated LERAD using two attribute sets: TCP streams as 
above, and a simpler set consisting of just the first 32 pairs of bytes (i.e. 16 bit 
values) of inbound client IP packets. (To reduce the traffic load, we limited all 
packets to 16 per minute per session, and TCP up to the first payload packet). 
Lacking clean training data, we simply used each week's data as training for the 
following week. Averaged over five runs at 10 false alarms per 24 hours, the 
TCP version detects 2.4 attacks and the packet version detects 1.4, for a total of 
3.0 (50%) after removing overlap. The probability of detection is highest for 
the most malicious attack (the inside scan), and lowest for the two probes. 

LERAD is based on our simpler algorithms PHAD and ALAD, which use 
fixed rule sets [21]. PHAD was also adapted to detect attacks by modeling 
accesses to the Registry in the Windows OS [3]. 

4. CLUSTERING FOR ANOIMALY DETECTION 
(CLAD) 

LERAD assumes the training data are free of attacks, however, making sure 
the data is clean could be time consuming. We propose to use a clustering 
approach to identify "outliers" as anomalous. Our clustering method, CLAD, is 
inspired by the work of [ 10,29], and is related to k-NN. CLAD locates anomalies 
by finding local and global outliers with some restrictions, where k-NN and LOF 
[5] concentrate mainly on local outliers. One key difference of CLAD from 
other clustering algorithms is that clusters are of fixed width (radius) and allows 
clusters to overlap (i.e., the clusters are not mutually exclusive). This difference 
permits CLAD to process large amounts of data efficiently. 

CLAD has two phases: Phase 1 creates the clusters and Phase 2 assigns data 
points to additional clusters. Fig. 3.1 illustrates the steps of the 2 phases. Given 
a dataset, D, Phase 1 creates clusters of fixed width, W (which will be discussed 
later), and assigns data points, d e D,to the created clusters. If a data point is 
further away than width W from any existing cluster, the data point becomes 
the centroid of a new cluster; otherwise it is assigned to all existing clusters that 
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Input: Dataset D 
Output: Set of clusters C 

1 initialize the set of clusters, C, to 0 
Phase 1: Creating clusters 

2 fox deD 
3 f or c e C 
4 if distance{dj c) < W, assign d to c 
5 if d is not assigned 
6 create cluster ĉ  with d as the centroid and add ĉ  to C 

Phase 2: Assigning data points to additional clusters 
7 fovdeD 
8 for c € C 
9 if distance(d^ c) <W and d is not assigned to c 

10 assign d toe 

Figure 3.1, Overall CLAD Algorithm 

are not further away than W. In Phase 1 since data points can only be assigned 
to existing clusters, some data points might miss assignment to clusters that are 
subsequently created. Phase 2 assigns these data points to additional clusters. 
So far our CLAD algorithm is basically the clustering algorithm proposed in 
[10, 29], however, the methods significantly diverge on how data points are 
represented for calculating distance, how the cluster width is determined, and 
how the properties of outliers are decided. 

Feature Vectors and Distance Function 

Each data point, d, is represented by a feature vector, and a cluster, c, is 
represented by its centroid, which is a data point. We use the Euclidean distance 
as our distance function: 

distance{Yi^Y2) = 

\ 

\yi\ 

E ( ^ i 7 - ^ 2 i ) ^ (3.4) 

where Yi and Y2 are two feature vectors, Yij denotes the jth component of Yi, 
and \Yi\ denotes the length of vector Yi. 

To obtain a feature vector for a data point, we transform the data points 
represented in the input attribute vectors (Xi) into our feature vectors (Yi). We 
have two types of transformation depending on whether the input attribute is 
continuous or discrete. Discrete attributes are usually problematic for distance 
functions. In anomaly detection since values that are observed more frequently 
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are less likely to be anomalous and we want distance to indicate the difference 
in the degree of normalcy (separating normal from abnormal behavior), we 
represent a discrete value by its frequency. That is, discrete values of similar 
frequency are close to each other, but values of very different frequency are far 
apart. As a result, discrete attributes are transformed to continuous attributes. 

In our domain continuous attributes, including those transformed from dis­
crete attributes, usually exhibit a power-law distribution—smaller values are 
much more frequent than larger values. Distances involving the infrequent 
large values are large and "drowns" the distances involving only small values. 
To reduce this problem, we use a logarithmic scale. In addition, to discount 
variance among values, we quantize the values using the floor operation, after 
taking the logarithm. Furthermore, in order to consider each attribute equally, 
the values of each attribute are normalized to the range [0,1]. Formally, an input 
attribute value, Xij, is transformed to a, feature value, Yij as follows: 

Yij = normalize(l\n{Xij + 1)J), (3.5) 

where normalize{vj) = {vj — Minj)/{Maxj — Miuj), Vj is a value from 
vector component j , and Mirij (Maxj) is the minimum (maximum) value of 
component j . To avoid negative and undefined values (when 0 < Xij < 1), 
we add 1 to Xij before taking In. 

For normalization, we also considered the number of standard deviations 
(SD) away from average. However, power-law distributions are one-sided and 
heavy-tailed, so standard deviations are not very appropriate for our purpose. 
Using SD for normalization resulted in noticeable degradation in performance 
in our experiments. Therefore, we revert to simple scaling as a means of nor­
malization. 

Cluster Width 

The cluster width, W, specifies the local neighborhood of clusters that are 
considered close. The width is specified by the user in [29]. CLAD derives the 
width from the smallest distances between pairs of data points. To efficiently 
calculate the width, CLAD randomly draws a sample, of size s = 1% x \D\, 
from the entire dataset, D, and calculates the pair-wise distances. The bottom 
1% of the pair-wise distances (i.e., 1% x s{s — l) /2 pairs) are considered the 
smallest and their average is the cluster width. That is, CLAD samples pair-
wise distances and uses the average distance of the closest neighbors as W. 
Though CLAD has a fixed parameter of 1% for deriving W, it is much less 
ad hoc than asking the user to specify W, which becomes a parameter. Our 
parameter is similar to specifying k in k-NN methods, but our parameter is 
in relative percentage, which is different from the absolute count of k and is 
conceptually easier to specify and understand. 
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Density^ Inter-cluster Distance, and Anomalies 

To determine if a cluster is an outlier, CLAD relies on two properties of a 
cluster: density and distance from the other clusters. Since each cluster has the 
same W (and hence ''area"), we define the density of cluster Q as the number 
of data points, Counti, in ĉ . For the distance from the other clusters, we 
calculate the average inter-cluster distance {ICD) between Q and the other 
clusters. Formally, we denote ICDi as the ICD of cluster ci and define ICDi 
as: 

^ \c\ 
ICDi = 7——r ^ distance(ci^Cj) (3.6) 

where C, as similarly defined before, is the set of clusters. 
Outliers are generally distant and sparse. A cluster Q is considered distant 

if ICDi is more than a standard deviation away from the average ICD. From 
our initial experiments, we observe that the distribution of Count exhibits a 
power-law distribution; when we use average and SD for Count, the average is 
very small and few/no clusters have County one SD smaller than the average. 
Hence, instead of using the average we use the median; a cluster Ci is considered 
sparse when County is more than one median absolute deviation (MAD) [14] 
smaller than the median Count. Interestingly, in our domain an attack could be 
composed of many data points (e.g., flooding attacks), and hence dense regions 
could be attacks as well. We will discuss this issue further in the next section 
when we evaluate CLAD. Accordingly, we define dense clusters, which have 
Counti more than one MAD larger than the median Count. More formally, 
the set of distant clusters Cdistant-> sparse clusters Csparse^ and dense clusters 
Cdense^ are defined as: 

Cdistant = {ci e C\ICDi > AVG{ICD) + SD{ICD)}, (3.7) 

Csparse = {Q G C\Counti < AVG{Count) - MAD{Count)], (3.8) 

Cdense = {Q G C\Counti > AVG(Count) + MAD{Count)], (3.9) 

where AVG is the average function. CLAD generates alerts for clusters that 
are sparse and distant, or dense and distant. Each cluster is represented by its 
centriod. 

A sparse cluster/region is essentially a local outlier, i.e., it reflects how many 
neighbors are within W. This is similar to k-NN which computes distance to 
the closest k neighbors, as discussed previously. Labeling a region distant is 
equivalent to saying that the region is a global outlier. 

Summary of Current Results 

As with the evaluation of LERAD, we use the same DARPA 99 dataset to 
evaluate CLAD. Connections are similarly reassembled and the first 10 bytes 
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Figure 3.2. Count and ICD of clusters for port 25 with CD a. < 20%, b. > 80% 
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Figure 3.3. Count and ICD of clusters for port 80 with CD a. < 20%, b. > 80% 

from the application payload are in the input data. Unlike LERAD, CLAD 
does not require an explicit training phase, we combine the normal training 
data (Weeks 1 and 3) and test data (Weeks 4 and 5); the additional normal 
training data also help reduce the unusually high rate of attacks in the test data. 

To improve effectiveness and efficiency, CLAD learns a model for each port 
(application protocol). For ports that are rarely used (< 1% of the dataset), we 
lump them into one model: "Other." Only clusters that are sparse and distant, 
or dense and distant trigger alerts. To make anomaly scores comparable across 
models, anomaly scores are normalized to the number of SD's away from the 
average ICD. 

Density is not used in the anomaly score because it is not as reliable as 
ICD. This results from our analysis of how attacks are distributed between 
density and ICD on ports 25 and 80, which have the most traffic. Since we 
do not have exact labels (attack or normal) for each data point, we rely on 
how DARPA/LL counts an alert as a detection of an attack [19]. We define 
CD (counted as detection) of a cluster as the percentage of data points in the 
cluster, when used to trigger an alert, is counted as a detection of an attack. 
This is an indirect rough approximation of the likelihood of an attack present in 
the cluster. We plot clusters with CD < 20% (''unlikely anomalies") against 
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Table 3.3. 

Port 
Detections 

Slumber of detections by CLAD (duplicates are 

20 
3 

21 
14 

23 
17 

25 
33 

53 
5 

79 
8 

80 
37 

110 
2 

removed in Combined^, 

111 
1 

143 
3 

Other 
14 

I 

Combined 
76 

Count and ICD in Fig. 3.2a and similarly for CD > 80% ("likely anomalies") 
in Fig. 3.2b. Both Count and ICD are in log scale. As we compare the two 
plots, we observe that the likely anomalies occur more often in regions with 
larger ICD, and the opposite for unlikely anomalies with smaller ICD. The 
same observation cannot be made for Count. This is related to the fact that 
some attacks can occur in dense clusters as we explained previously. For port 
80 in Fig 3.3, similar observations can be made. The figures also indicate that 
sparse and distant, or dense and distant clusters, which we use to trigger alerts, 
are likely to detect attacks. Furthermore, for port 80, 96% of the clusters have 
CD = 100% or < 9% (similarly for port 25). This indicates that most of the 
clusters are near homogeneous and hence our combination of feature vectors, 
distance function, and cluster width can sufficiently characterize the data. 

Table 3.3 shows the number of attacks detected by models learned for each 
port with at most 100 false alarms during the 10 day attack period in Weeks 4 and 
5. The combined model detected 76 attacks, after removing duplicate detections 
from individual models. As mentioned perviously, the original DARPA partici­
pant with the most detections detected 85 attacks [19], which was achieved by a 
signature detector built by hand—unlike CLAD, which is an anomaly detector 
with no apriori knowledge of attacks. Compared to LERAD, CLAD detected 
fewer detections, but CLAD is handicapped by not assuming the availability of 
attack-free training data. However, we seem to detect more attacks than similar 
techniques [10, 29], which make similar assumptions, but we cannot claim that 
since the datasets are different. Further experimentation would help reduce the 
uncertainty. 

5. CONCLUDING REIMARKS 

We motivated the significance of a machine learning approach to anomaly 
detection and have proposed two machine learning methods for constructing 
anomaly detectors, LERAD is a learning algorithm that can characterize normal 
behavior in logical rules. CLAD is a clustering algorithm that can identify 
outliers from normal clusters. We evaluated both methods with the DARPA 99 
dataset and show that our methods can detect more attacks than similar existing 
techniques. 

LERAD and CLAD have different strengths and weaknesses. We would like 
to investigate more how one's strengths can benefit the other. Unlike CLAD, 
LERAD assumes the training data are free of attacks. This assumption can be 
relaxed by assigning scores to events that have been observed during training; 
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these scores can be related to the estimated probability of observing the seen 
events. Unlike CLAD, LERAD is an offline algorithm. An online LERAD 
would update the random sample used in the rule generation phase with new 
data by a replacement strategy, and additional rules would be constructed that 
consider both new and old data. 

Unlike LERAD, CLAD does not aim to generate a concise model, which 
can affect the efficiency during detection. We plan to explore merging similar 
clusters in a hierarchical manner and dynamically determine the appropriate 
number of clusters according to the L method [33]. Also, CLAD does not 
explain alerts well; we plan to use the notion of "near miss" to explain an alert by 
identifying centriods of normal clusters with few attributes contributing much of 
the distance between the alert and the normal centroid. We are also investigating 
extracting features from the payload, as well as applying our methods to host-
based data. 
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Chapter 4 

STATISTICAL CAUSALITY ANALYSIS OF 
INFOSEC ALERT DATA 

Wenke Lee, Xinzhou Qin 
College of Computing, Georgia Institute of Technology 

Abstract: With the increasingly widespread deployment of security mechanisms, such as 
firewalls, intrusion detection systems (IDSs), antivirus software and authentica­
tion services, the problem of alert analysis has become very important. The large 
amount of alerts can overwhelm security administrators and prevent them from 
adequately understanding and analyzing the security state of the network, and ini­
tiating appropriate response in a timely fashion. Recently, several approaches for 
alert correlation and attack scenario analysis have been proposed. However, these 
approaches all have limited capabilities in detecting new attack scenarios. In this 
paper, we study the problem of security alert correlation with an emphasis on at­
tack scenario analysis. In our framework, we use clustering techniques to process 
low-level alert data into high-level aggregated alerts, and conduct causal anal­
ysis based on statistical tests to discover new relationships among attacks. Our 
statistical causality approach complements other approaches that use hard-coded 
prior knowledge for pattern matching. We perform a series of experiments to 
validate our method using DARPA's Grand Challenge Problem (GCP) datasets, 
the 2000 DARPA Intrusion Detection Scenario datasets, and the DBF CON 9 
datasets. The results show that our approach can discover new patterns of attack 
relationships when the alerts of attacks are statistically correlated. 

Keywords: Intrusion detection, alert correlation, attack scenario analysis, time series analysis 

1. INTRODUCTION 
Information security (INFOSEC) is a complex process with many challeng­

ing problems. Deploying INFOSEC mechanisms, e.g., authentication systems, 
firewalls, intrusion detection systems (IDSs), antivirus software, and network 
management and monitoring systems, is just one of the necessary steps in the 
security process. INFOSEC devices often output a large amount of low-level 
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or incomplete alert information because there is a large number of network and 
system activities being monitored and multiple INFOSEC systems can each re­
port some aspects of the same (coordinated) security event. The sheer quantity 
of alerts from these security components and systems also overwhelms security 
administrators. The large number of low-level or incomplete alert information 
can prevent intrusion response systems and security administrators from ade­
quately understanding and analyzing the security state of the network, and initi­
ating appropriate response in a timely fashion. From a security administrator's 
point of view, it is important to reduce the redundancy of alarms, intelligently 
integrate and correlate security alerts, construct attack scenarios (defined as a 
sequence of related attack steps) and present high-level aggregated informa­
tion from multiple local-scale events. Correlating alerts of the related attack 
steps to identify an attack scenario can also help forensic analysis, response and 
recovery, and even prediction of forthcoming attacks. 

Recently there have been several proposals on alert correlation (e.g., [4], 
[7], [10], [23], [26], [29]). Most of these proposed approaches have limited 
capabilities because they rely on various forms of predefined knowledge of at­
tack conditions and consequences. They cannot recognize a correlation when 
an attack is new (previously unknown) or the relationship between attacks is 
new. In other words, these approaches in principle are similar to misuse de­
tection techniques, which use the ''signatures" of known attacks to perform 
pattem matching and cannot detect new attacks. It is obvious that the number 
of possible correlations is very large, potentially a combinatorial of the num­
ber of (known and new) attacks. It is infeasible to know a priori and encode 
all possible matching conditions between attacks. To further complicate the 
matter, the more dangerous and intelligent adversaries will always invent new 
attacks and novel attack sequences. Therefore, we must develop significantly 
better alert correlation algorithms that can discover sophisticated and new attack 
sequences. 

In this paper, we study the problem of INFOSEC alert analysis with an em­
phasis on attack scenario analysis. The analysis mechanism is based on time 
series and statistical analysis. We reduce the high volume of raw alerts by com­
bining low-level alerts based on alert attributes. Clustering techniques are used 
to group low-level alert data into high-level alerts. We prioritize alerts based 
on the relevance of attacks to the protected networks and hosts and the impacts 
of attacks on the mission goals. We then conduct causality analysis to correlate 
alerts and construct attack scenarios. We perform a series of experiments to 
validate our method using DARPA's Grand Challenge Problem (GCP) datasets 
and the DEF CON 9 datasets. Our results show that our approach can discover 
new patterns of alert relationships without depending on prior knowledge of at­
tack scenarios. Our statistical approach complements other approaches in that 
our correlation approach does not depend on the hard-coded prior knowledge 
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for pattern matching and can discover new attack relationships when the alerts 
of attacks are statistically correlated. 

The emphasis of this paper is on statistical causality analysis. The remainder 
of this paper is organized as follows. In Section 2, we introduce Granger 
Causality Test, a time series analysis method. Our alert correlation steps and 
algorithms are presented in Section 3. In Section 4, we report the experiments 
and results on the GCP datasets, the 2000 DARPA Intrusion Detection Scenario 
datasets and the DEF CON 9 datasets. Section 5 discusses related work. We 
summarize our work and future work in Section 6. 

2. GRANGER CAUSALITY ANALYSIS 
Time series analysis aims to identify the nature of a phenomenon represented 

by a sequence of observations. The objective requires the study of patterns of 
the observed time series data. Time series analysis has been widely used in 
many applications, e.g., earthquake forecasting and economy analysis. In this 
section, we introduce time series based causal analysis, and in particular, the 
Granger Causality Test [11]. 

Time Series Analysis 

A time series is an ordered finite set of numerical values of a variable of 
interest along the time axis. It is assumed that the time interval between con­
secutively recorded values is constant. We denote a univariate time series as 
x{k), where k = 0^1^... ^N — 1, and N denotes the number of elements in 
x(k), 

Time series causal analysis deals with analyzing the correlation between 
time series variables and discovering the causal relationships. Causal anal­
ysis in time series has been widely studied and used in many applications, 
e.g., economy forecasting and stock market analysis. Network security is an­
other application in which time series analysis can be very useful. In our prior 
work [1, 3], we have used time series-based causality analysis for pro-active 
detection of Distributed-Denial-of-Service (DDoS) attacks using MIB II [28] 
variables. We based our approach on the Granger Causality Test (GCT) [11]. 
Our results showed that the GCT is able to detect the ''precursor" events, e.g., 
the communication between Master and Slave hosts, without prior knowledge 
of such communication signatures, on the attacker's network before the victim 
is completely overwhelmed (e.g., shutdown) at the final stage of DDoS. 

In this work, we apply the GCT to INFOSEC alert streams for alert correlation 
and scenario analysis. The intuition is that attack steps that do not have well-
known pattems or obvious relationships may nonetheless have some statistical 
correlations in the alert data. For example, there are one or more alerts for 
one attack only when there are also one or more alerts for another attack. We 
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can apply statistical causality analysis to find such alerts to identify an attack 
scenario. We next give some background on the GCT. 

Granger Causality Test 

The intuition of Granger Causality is that if an event Z is the cause of another 
event F, then the event X should precede the event Y. Formally, the Granger 
Causality Test (GCT) uses statistical functions to test if lagged information on 
a time-series variable x provides any statistically significant information about 
another time-series variable y. If the answer is yes, we say variable x Granger-
causes y. We model variable y by two auto-regression models, namely, the 
Autoregressive Model (AR Model) and the Autoregressive Moving Average 
Model (ARMA Model). The GCT compares the residuals of the AR Model with 
the residuals of the ARMA Model. Specifically, for two time series variables y 
and X with size Â , the Autoregressive Model of y is defined as: 

p 

y{k) = Y.^iy(k-i) + eo(k) (4.1) 

The Autoregressive Moving Average Model of y is defined as: 

p p 

y{k) = Y, c^iVik - 0 + E PMk - 0 + ei {k) (4.2) 
1=1 i=l 

Here, p is a particular lag length, and parameters ai, (3i and 6i {1 < i < 
p) are computed in the process of solving the Ordinary Least Square (OLS) 
problem (which is to find the parameters of a regression model in order to 
have the minimum estimation error). The residuals of the AR Model is RQ = 
X^^^i eg (A;), and the residuals of the ARMA Model is i?i =J2k=i^i{f^)- Here, 
T = N-p. 

The AR Model, i.e., Equation 4.1, represents that the current value of variable 
y is predicted by its past p values. The residuals RQ indicate the total sum of 
squares of error. The ARMA Model, i.e.. Equation 4.2, shows that the current 
value of variable y is predicted by the past p values of both variable y and 
variable x. The residuals Ri represents the sum of squares of prediction error. 

The Null Hypothesis HQ of GCT is HQ : Pi = 0,i = 1,2,-•• ,p. That is, 
X does not affect y up to a delay of p time units. We denote g as the Granger 
Causality Index (GCI): 

Here, F(a, b) is Fisher's F distribution with parameters a and 6 [14]. F-test 
is conducted to verify the validity of the Null Hypothesis. If the value of g 
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is larger than a critical value in the F-test, then we reject the Null Hypothesis 
and conclude that x Granger-causes y. Critical values of F-test depends on the 
degree of freedoms and significance value. The critical values can be looked 
up in a mathematic table [15]. 

The intuition of GCI {g) is that it indicates how better variable y can be 
predicted using histories of both variable x and y than using the history of y 
alone. In the ideal condition, the ARMA model precisely predicts variable y 
with residuals R\ = 0, and the GCI value g is infinite. Therefore, the value of 
GCI (g) represents the strength of the causal relationship. We say that variable 
{xi{k)} is more likely to be causally related with {y{k)} than {x2{k)} if 
9i > g2 and both have passed the F-test, where gi, i = 1,2, denotes the GCI 
for the input-output pair (x^, y). 

Applying the GCT to alert correlation, the task is to determine which hyper 
alerts among 5 i , ^ 2 , . . . , 5/ are the most likely to have the causal relationship 
with hyper alert A (a hyper alert represents a sequence of alerts in the same 
cluster, see Section 3). For a hyper alert time series, say A, each A{k) is the 
number of alerts occurring within a certain time period. In other words, we are 
testing the statistical correlation of alert instances to determine the causal rela­
tionship between alerts. For each pair of hyper alerts (S^, A)^i = 1,2,... ,/, 
we compute the GCI value gi. We record the alerts whose GCI values have 
passed the F-test as the candidates, and rank order the candidate alerts accord­
ing to their GCI values. We can then select the top m candidate alerts and regard 
them as being causally related to alert A, These (candidate) relationships can 
be subject to more inspection by other analysis techniques such as probabilistic 
reasoning or plan recognition. 

The main advantage of using statistical causality test such as GCT for alert 
correlation is that this approach does not require a priori knowledge about attack 
behaviors and how the attacks could be related. This approach can identify the 
correlation between two attack steps as long as the two have a high probability 
(not necessarily high frequency) of occurring together. We believe that there 
is a large number of attacks, e.g., worms, that have attack steps with such 
characteristics. Thus, we believe that causal analysis is a very useful technique. 
As discussed in [1], [3], [2], when there is sufficient training data available, we 
can use GCT off-line to compute and validate very accurate causal relationships 
from alert data. We can then update the knowledge base with these ''known'' 
correlations for efficient pattem matching in run-time. When GCT is used in 
real-time and finds a new causal relationship, as discussed above, the top m 
candidates can be selected for further analysis by other techniques. 
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3. ALARM CORRELATION 
In this section, we describe our framework for alert correlation and attack 

scenario construction. Specifically, the steps include alert aggregation and 
clustering, alert prioritization, alert time series formulation, alert correlation, 
and scenario construction. 

Alert Aggregation and Clustering 

One of the issues with deploying multiple security devices is the sheer amount 
of alerts output by the devices. The large volume of alerts makes it very difficult 
for the security administrator to analyze attack events and handle alerts in a 
timely fashion. Therefore, the first step in alert analysis is alert aggregation and 
volume reduction. 

In our approach, we use alert fusion and clustering techniques to reduce the 
redundancy of alerts while keeping the important information. Specifically, 
each alert has a number of attributes such as timestamp, source IP, destination 
IP,port(s), user name, process name, attack class, and sensor ID, which are de­
fined in the standard document "Intrusion Detection Message Exchange Format 
(IDMEF)" [12] drafted by the IETF Intrusion Detection Working Group. 

In alert fusion, there are two steps. First, we combine alerts that have the 
same attributes except timestamps. The timestamps can be slightly different, 
e.g., 2 seconds apart. Second, based on the results of step 1, we aggregate alerts 
with the same attributes but are reported from different heterogeneous sensors. 
The alerts varied on time stamp are fused together if they are close enough to 
fall in a pre-defined time window. 

Alert clustering is used to further group alerts after alert fusion. Based on 
various clustering algorithms, we can group alerts in different ways according 
to the similarity among alerts, (e.g., [29] and [17]). Currently, based on the 
results of alert fusion, we further group alerts that have same attributes except 
time stamps into one cluster. After this step, we have further reduced the 
redundancy of alerts. 

A Hyper Alert is defined as a time ordered sequence of alerts that belong to 
the same cluster. 

For example, after alert clustering, we have a series of alerts, Ai, A^, . . . , 
An in one cluster that have the same attributes along the time axis, and we use 
hyper alert A to represent this sequence of alerts. 

Alert Prioritization 

The next phase of alert processing is to prioritize each hyper alert based on 
its relevance to the mission goals. The objective is that, with the alert priority 
rank, security analyst can select important alerts as the target alerts for further 
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correlation and analysis. Specifically, the priority score of an alert is computed 
based on the relevance of the alert to the configuration of the protected networks 
and hosts as well as the severity of the corresponding attack assessed by the 
security analyst. Porras et al. proposed a more comprehensive mechanism of 
incident/alert rank computation model in a ''mission-impact-based" correlation 
engine, named M-Correlator [26]. Because we focus on alert correlation and 
scenario analysis instead of alert priority ranking, and alert prioritization is just 
an intermediate step to facilitate further alert analysis, we adapted the priority 
computation model of M-Correlator with a simplified design. 

Figure 4,1, Alert Priority Computation Model 

Figure 4.1 shows our priority computation model that is constructed based 
on Bayesian networks [25]. We use Bayesian inference to obtain a belief over 
states (hypotheses) of interests. A Bayesian network is usually represented 
as a directed acyclic graph (DAG) where each node represents a variable, and 
the directed edges represent the causal or dependent relationships among the 
variables. A conditional probability table (CPT) [25] is associated with each 
child node. It encodes the prior knowledge between the child node and its parent 
node. Specifically, an element of the CPT at a child node is defined by CPTij = 
P{child.state = j\parent^state = i) [25]. The belief in hypotheses of the 
root is related to the belief propagation from its child nodes, and ultimately the 
evidence at the leaf nodes. 

Specifically, in our priority computation model, the root represents the prior­
ity with two hypothesis states, i.e., "high" and "low". Each leaf node has three 
states. For node "Interest", its three states are "low", "medium" and "high". 
For other nodes, the three states are "matched", "unmatched" and "unknown". 
The computation result is a value in [0,1] where 1 is the highest priority score. 

We denote e^ as the k^^ leaf node and Hi as the i^^ hypothesis of the root 
node. Given the evidence from the leaf nodes, assuming conditional indepen­
dence with respect to each Hi, the belief in hypothesis at the root is: P{Hi \ 
e\e\..., e^) = ^P{Hi) n£ . i P{e^\E,\ where 7 = lP(e\e\ . . . , e^)]-' 
and 7 can be computed using the constraint J2i P{Hi\e^, e^, . . . , e^) = 1. 
For example, for the hyper alert of FTP Globbing Buffer Overflow attack, we 
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get evidence [high, matched, matched, unknown, unknown] from the corre­
sponding leaf nodes, i.e.. Interest, OS, Services/Ports, Applications and User, 
respectively. As Figure 4.1 shows, the root node represents the priority of hy­
per alert. Assume that we have the prior probabilities for the hypotheses of the 
root, i.e., P(Priority = high) = 0.8 and P(Priority = low) = 0.2, and 
the following conditional probabilities as defined in the CPT at each leaf node, 
P(Interest = high \ Priority = high) = 0.70, P(Interest = high \ Priority = low) 
= 0.10, P(OS = matched \ Priority = high) = 0,75, P(OS = matched \ Priority 
= low) = 0.20, P(Services = matched \ Priority = high) = 0.70, P(Services = 
matched \ Priority = low) = 0.30, P(Applications = unknown \ Priority = high) 
= 0.15, P(Applications = unknown \ Priority = low) = 0.15, P(User = unknown 
I Priority = high) = 0.10, P(User = unkown \ Priority = low) = 0.10, we then 
can get 7 = 226.3468, therefore, P(Priority = high \ Interest = matched, OS 
= matched, Service = matched. Applications = matched, User = unknown) = 
0.9959. We regard this probability as the priority score of the alert. The current 
CPTs are predefined based on our experience and domain knowledge. It is our 
future work to develop an adaptive priority computation model so that the CPTs 
can be adaptive and updated according to specific mission goals. 

To calculate the priority of each hyper alert, we compare the dependencies 
of the corresponding attack represented by the hyper alert against the configu­
rations of target networks and hosts. We have a knowledge base in which each 
hyper alert has been associated with a few fields that indicate its attacking OS, 
services/ports and applications. For the alert output from a host-based IDS, 
we will further check if the target user exists in the host configuration. The 
purpose of relevance check is that we can downgrade the importance of some 
alerts that are unrelated to the protected domains. For example, an attacker may 
launch an individual buffer overflow attack against a service blindly, without 
knowing if the service exists. It is quite possible that a signature-based IDS 
outputs the alert once the packet contents match the detection rules even though 
such service does not exist on the protected host. The relevance check on the 
alerts aims to downgrade the impact of such kind of alerts on further correlation 
analysis. The interest of the attack is assigned by the security analyst based 
on the nature of the attack and missions of the target hosts and services in the 
protected domain. 

Alert Time Series Formulation 
After the above processes, we formulate each hyper alert into a univariate 

time series. Specifically, we set up a series of time slots with equal time interval, 
denoted as T, along the time axis. Given a time range H, we can have Â  = H/T 
time slots. Recall that each hyper alert A represents a sequence of alerts in the 
same cluster in which all alerts have the same attributes except timestamp, i.e., 



Statistical Causality Analysis oflNFOSEC Alert Data 109 

A = [^1, yl25 • • • 5 ^n] . where Ai represents an alert in the cluster. We denote 
a{k), where /c = 0 , 1 , . . . , AT — 1, as the corresponding time series variable of 
hyper alerts. An element of the time series a (A:), denoted as a ,̂ is the number of 
alerts that fall in the i^^ time slot. Therefore, each element of a hyper alert time 
series variable represents the number of alert instances within the corresponding 
time slot. We currently do not use categorical variables such as port accessed 
and pattern of TCP flags as time series variables in our approach. 

GCT Alert Correlation 
The next phase of alert processing is to apply GCT for pair-wise alert corre­

lation. Based on alert priority value and mission goals, the security analyst can 
specify a hyper alert as a target (e.g., alert MstreamJDDOS against a database 
server) with which other alerts are correlated. The GCT algorithm is applied to 
the corresponding alert time series. Specifically, for a target hyper alert Y whose 
corresponding univariate time series is y{k), and another hyper alert X whose 
univariate time series is x{k), we compute GCT{x{k)^ vi^)) to correlate these 
two alerts. For the target alert F , we compute such pair-wise correlation with 
all the other alerts. As described in Section 2.0, the GCT index (GCI) g returned 
by the GCT function represents the evidence strength if X is causally related 
to Y. We record the alerts whose GCI values have passed the F-distribution 
test as candidates of causal alerts, and rank order the candidate alerts according 
to their GCI values. We then select the top m candidate alerts and regard them 
as being causally related to alert Y. These candidate relationships can be fur­
ther inspected by other techniques or security analyst based on expertise and 
domain knowledge. The corresponding attack scenario is constructed based on 
the correlation results. 

In alert correlation, identifying and removing background alerts is an impor­
tant step. We use Ljung-Box [20] test to identify the background alerts. The 
assumption is that background alerts have characteristic of randomness. The 
Ljung'Box algorithm tests for such randomness via autocorrelation plots. The 
Null Hypothesis is that the data is random. The test value is compared with 
critical values to determine if we reject or accept the Null Hypothesis. 

However, in order to correctly remove the background alerts, expertise is 
still needed to verify that a hyper alert can be regarded as a background alert. 
In addition to expertise, we can also use other techniques, e.g., probabilistic 
reasoning, for further inspection and verification. This is part of our future 
work. 

4. EXPERIMENTS 
To evaluate the effectiveness and validity of our alert correlation mechanisms, 

we applied our algorithms to the datasets of the Grand Challenge Problem 
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(GCP) version 3.1 provided by DARPA's Cyber Panel program [6, 13], the 
2000 DARPA Intrusion Detection Scenario SPecific datasets (LLDOS 1.0 and 
LLDOS 2.0.2) [21] and datasets of the DEFCON 9 Capture The Flag (CTF) [9]. 
In this section, we describe our experiments with an emphasis on the GCP. 

The Grand Challenge Problem (GCP) 
The main motivation to use the GCP datasets is that the GCP has developed 

multiple innovative attack scenarios to specifically evaluate alert correlation 
techniques. In addition to the complicated attack scenarios, the GCP datasets 
also include many background alerts. This makes alert correlation and scenario 
construction more challenging. Other datasets, e.g., DEF CON 8 Capture The 
Flag (CTF) [8], have relatively simple scenarios [22]. In the GCP, multiple 
heterogeneous security systems, e.g., network-based IDSs, host-based IDSs, 
firewalls, and network management systems, are deployed in several network 
enclaves. 

GCP alerts are in IDMEF (XML) format. We implemented our alert pro­
cessing system in Java. It can consume XML format alerts directly. 

As described in Section 3, we first fuse and cluster raw alerts into more 
aggregated and hyper alerts. In scenario I, there are a little more than 25,000 
low-level raw alerts output by heterogeneous security devices in all enclaves. 
After alert fusion and clustering, we have around 2,300 hyper alerts. In scenario 
II, there are around 22,500 raw alerts that result in 1,800 hyper alerts. 

The GCP definition includes complete information about the configuration 
of the protected networks and hosts including services, operating systems, user 
accounts, etc. Therefore, we can establish a configuration database accordingly. 
Information of mission goals enables us to identify the servers of interest and 
assign interest score for corresponding alerts targeting at the important hosts. 
The alert priority is calculated based on our model described in Section 3.0. 

In formulating hyper alert time series, as described in Section 3, we set the 
time slot to 60 seconds. In the GCP, the whole time range is 5 days. Therefore, 
each hyper alert time series x{k) has a size of 7,200, i.e., k=0, 1, 2,..., 7,199. 

In GCT alert correlation, the first step is to identify and remove the back­
ground alerts. As described in Section 3.0, we apply the Ljung-Box statistical 
test to all hyper alerts. We select the significance level a = 0.05. However, 
in order to correctly remove the background alerts, expertise is still needed to 
verify that a hyper alert can be regarded as background alert. In the GCP, by us­
ing this mechanism, we can identify background alerts such as "HTTP.Cookie" 
and "HTTPJPosts". The next step is to select the alerts with high priority values 
as the target alerts. In this step, we set the threshold /? = 0.6. Alerts with pri­
ority scores above (5 are regarded as important alerts and are selected as target 
alerts. We then apply the GCT to correlate each target alert with other alerts 
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from which the background alerts identified by the Ljung-Box test are already 
excluded. 

For performance evaluation, we define two measures: 

true causality rate 
^ of correct causal alerts 

total # of causal relationships 

and 

false causal rate = 
# of incorrect causal alerts 

total # of causal alerts 

Here, causal alerts refer to the causal alert candidates output by the GCT (i.e., 
passing the F-test) w.r.t. the target alerts. In experiments of the GCP and the 
2000 DARPA Intrusion Detection Scenarios, we refer to the documents with 
the ground truth to determine the causal relationships among the alerts. 

Table 4. L Alert Correlation by the GCT on the GCP Scenario I. Target Alert: Loki 

Alerti 
HTTPJava 

DB.IllegalFileAccess 
DBJ^ewClient 

DB-NewClient.Target 
DBJTP.Globbing.Attack 

HTTPJ^ctiveX 

Target Alert 
Loki 
Loki 
Loki 
Loki 
Loki 
Loki 

GCT Index 
22.25 
n.8i 
1L12 
10.84 
10.84 
10.68 

Table 4.2. Alert Correlation by the GCT on the GCP Scenario I: Target Alert: DB.NewClient 

Alerti 
Loki 

Plan JsfewCl lent 
Planioki 

HTTPJava 
DBJ^ewClient-Target 

DBJTP.Globbing-Attack 
HTTPJKctiveX 

DBJUegalFileAccess 

Target Alert 
DBJ^ewClient 
DB_NewClient 
DBJ^ewClient 
DB^ewClient 
DB.J^ewClient 
DBJ^ewClient 
DB^ewClient 
DB^ewClient 

GCT Index 
115.56 
14.50 
13.06 
12.84 
12.84 
12.84 
12.84 
10.76 

In the GCP Scenario I, there are multiple network enclaves in which attacks 
are conducted separately. The attack scenario in each network enclave is almost 
the same. We selected a network enclave as an example to show the GCT 
correlation results. 

In this network enclave, there are a total of 370 hyper alerts. Applying the 
Ljung-Box test on the hyper alerts, we identify 255 hyper alerts as background 
alerts. According to the alert priority values calculated based on the mission-
goals and relevance to the protected networks and hosts, there are 15 hyper alerts 
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Table 4.3. Alert Correlation by the GCT on the GCP Scenario I: Target Alert: 
DBJllegalFileAccess 

Alerti 
HTTPJava 

DBJSfewClient 
Loki 

Planioki 
HTTP-ActiveX 
Plan_NewClient 

Target Alert 
DBJllegalFileAccess 
DBJllegalFileAccess 
DBJllegalFileAccess 
DBJllegalFileAccess 
DBJllegalFileAccess 
DBJllegalFileAccess 

GCT Index 
22.23 
14.87 
11.24 
11.13 
10.71 
9.08 

DB_IllegalFileAccess Plan_Loki 

r > 
LOKl 

. ̂  

DB_NewClient_Target 

x-
^ \. 

r ^ 
DB_New<^aeni 
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L J 

Plan_NewCIient 
L J 

Figure 4.2. The GCP Scenario I: Correlation Graph on Database Server 

whose priority values are above the threshold /3 = 0.6. Therefore, we have 15 
hyper alerts as the target alerts, which are correlated with other alerts excluding 
the identified background alerts. As an example, we select three alerts that are 
related to the Database Server as the target alerts, i.e., Loki, DBJSfewClient and 
DBJllegalFileAccess. Alert Loki indicates that there is a stealthy data trans­
fer via a covert channel. Alert NewClient means that a host on the network 
initiates a connection to a remote service that is suspicious and uncharacter­
istic. Therefore, alert DBJJewClient denotes the connection activity from the 
Database Server to an external suspicious site. Alert DBJllegalFileAccess oc­
curs when there is a file access (read or write) on the Database Server that 
violates the access policy. DB and Plan represent Database Server and Plan 
Server respectively. Table 4.1 shows the causal alert candidates correlated 
with target alert Loki. Table 4.2 shows the alert candidates that are causally 
related to target alert DBJJewClient. Table 4.3 shows the causal alerts re­
lated to target alcrtDBJllegalFileAccess. Alert DBJFTP.GlobbingAttack indi­
cates an FTP Globbing buffer overflow attack on the Database Server. Alert 
DBJSfewClient.Target denotes an unusual connection activity from a host to the 
Database Server. Among the candidate alerts which have passed the F-test, we 
select the top 6 alerts according to their GCI values. 

Figure 4.2 shows the correlation graph based on the correlation results of 
alerts Loki, DBJsfewClient and DBJllegalFileAccess. Here, some expert knowl-
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edge is needed to further inspect the causal alert candidates resulted from 
GCT correlation in order to construct the correlation graph. In this case, we 
do not include alerts such as HTTP Java and HTTP ActiveX in the scenario 
construction because they are not likely to be correct causal alerts. In the 
correlation graph, the directed edges represent the causal relationships and 
the arrows show the causality directions. For example. Table 4.1 shows that 
DBJ^TPXjlobbingAttack is a causal alert candidate with regard to alert Loki. 
Such causal relationship is shown by a directed edge from 
DBJ^TPJJlobbingAttack to Loki in Figure 4.2. A bi-directional edge indi­
cates a mutual causal relationship between two alerts. 

Figure 4,2 shows that there are multiple types of relationships among the 
alerts. First, there is a straightforward causal relationship that is obvious be­
cause of the nature of corresponding attacks. In Figure 4.2, we can see that alert 
DBJFTPXjlobbingAttack is causally related to alerts Loki and DBJVewClient, 
so is alert DBJ^ewClientJarget. Such causality indicates that the corresponding 
activities represented by alert DBJFTP.Globbling Attack and alert 
DBJ^ewClientJCarget cause the activities indicated by alert DBJSlewClient and 
U)ki. The fact spreadsheet in the GCP document also supports the validity of 
such causality. The ground truth shows that the attacker first gets root access 
to the Database Server using the FTP Globbling buffer overflow attack, then 
transports the malicious agent to the Database Server. The activity of agent 
transfer is detected by an IDS that outputs alert DBJSfewClientSTarget, The 
buffer overflow attack and initial malicious agent transfer are followed by a se­
ries of forthcoming autonomous attacks from/against the Database Server. Such 
causal relationship is obvious and can also be discovered by other correlation 
techniques because once the attacker obtained the root access to the victim using 
the buffer overflow attack, he/she can easily launch other attacks from/against 
the target. Therefore, a simple rule is to correlate the buffer overflow attack 
with other following attacks at the same target. 

Some indirect relationships among alerts can also be discovered by the GCT 
correlation. As shown in Figure 4.2, we can see that alerts PlanXoki and 
Plan NewClient all have causal relationship with alerts DBJllegalFileAccess 
(triggered by activities of illegal access to files at the Database Server) and 
DB NewClient (triggered by activities of connecting to a suspicious site). It is 
hard to correlate them together via traditional correlation techniques because 
they do not have a known relationship with the target alert DBJVewClient. 
From the ground truth in the GCP document, we can see that the attacker first 
compromises the Plan Server and then uses that host to break into the Database 
Server. Alert PlanJVewClient indicates that the attacker downloads malicious 
agent from the extemal site to the PlanJServer, Alert PlanXoki indicates the 
attacker uploads sensitive information from the PlanJServer to the extemal site. 
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The malicious code is later transferred to the Database Server after a buffer 
overflow attack against the Database Server originated from the Plan Server. 

Figure 4.2 also shows a pattern of loop relationships among alerts. We can see 
that alerts DBJllegalFileAccess, Loki and DBJSfewClient have mutual causal 
relationships with each other. Such pattern indicates that the occurrences of 
these three alerts are tightly coupled, i.e., whenever we see one alert, we expect 
to see another one forthcoming. The fact spreadsheet validates our results. The 
malicious agent autonomously gets access to the sensitive files and collects data 
(alert DBJllegalFileAccess), uploads the stolen data to an external site (alert 
Loki), then downloads new agent software (alert DB-NewClient) and installs it 
(alert DBJllegalFileAccess) on the Database Server, and then begins another 
round of the same attack sequence. GCT correlation results show a loop pattern 
of causal relationship among the corresponding alerts because these activities 
occur together. 

When we correlate each target alert with other alerts using the GCT, we have 
some false causal alert candidates. For example, HTTP Java, HTTP ActiveX in 
Table 4.1. Overall, in this experiment, the true causality rate is 95.06% (77/81) 
and the false causality rate is 12.6% (10/87) in this network enclave. 

Table 4.4. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: 
Plan.Service-Status 

1 Alerti 
PlanJIS-Generic-BufferOverFlow 

Plan^egistry_Modified 
IIS.Unicode.Attack 

HTTPJava 
HTTP.Shells 

HTTP-ActiveX 

Target Alert 
Plan.Service.Status 
Plan.Service.Status 
Plan.Service.Status 
Plan.Service-Status 
Plan.Service.Status 
Plan.Service.Status 

GCT Index 
20.21 
20.18 
18.98 
17.35 
16.28 
1.90 

Table 4.5. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan.Host.Status 

Alerti 
HTTPJava 

PlanJIS-GenericBufferOverflow 
Plan-Registry JVlodified 
CGI.NulLByte-Attack 

Port-Scan 
HTTP-RobotsTxt 

Target Alert 
Plan-Host-Status 
Plan.Host-Status 
PlanJlost-Status 
Plan-Host-Status 
Plan-Host-Status 
Plan-Host-Status 

GCT Index 
7.73 
7.70 
7.63 
7.56 
3.26 
1.67 

We also use the same network enclave as an example to show our results in the 
GCP Scenario II. In this network enclave, there are a total of 387 hyper alerts. 
Applying the Ljung-Box test to the hyper alerts, we identify 273 hyper alerts 
as the background alerts. In calculating the priority of hyper alerts, there are 9 
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Figure 4.3, The GCP Scenario II: Correlation Graph of Plan Server 

hyper alerts whose priority values are above the threshold /? = 0.6. Therefore, 
we have 9 hyper alerts as the target alerts, which are correlated with other alerts 
excluding the identified background alerts. As before, based on the mission 
goals and alert priority, for example, we select two alerts, Plan,Service.Status 
and PlanJIostJStatus, as the targets, then apply the GCT to correlate other alerts 
with them. Table 4.4 and Table 4.5 show the corresponding GCT results. We 
list the top 6 candidate alerts that have passed the F-test in the tables. The alerts 
PlanHostStatus and PlanService.Status are issued by a network management 
system deployed on the network. The true causality rate is 93.15% (68/73) and 
the false causality rate is 13.92% (11/79). 

After finding the candidate alerts, we construct a corresponding correlation 
graph as shown in Figure 4.3. This figure shows that alerts IIS .Buffer.Overflow 
and PlanJRegistryModified are causally related to alerts Plan.Service.Status 
and PlanJHfostJStatus. The GCP document verifies such relationship. The at­
tacker launches IIS Buffer Overflow attack against the Plan Server in order to 
transfer and install the malicious executable code on it. The Plan Server's 
registry file is modified (alert Plan JRegistry Modified) and the service is down 
(PlanJService.Status) during the daemon installation. Alert PlanJHost.Status 
indicates the ''down" or "up" states of the Plan Server. The states are affected 
by the activities of the malicious agent installed on the Plan Server. There­
fore, the ground truth described in the GCP document also supports the causal 
relationships among the corresponding alerts. These relationships are repre­
sented by directed edges pointing to Plan.HostStatus from IIS JBuffer.Overflow, 
Plan JiegistryModified and PlanService.Status in Figure 4.3. 

However, the correlation result in the GCP Scenario II is not comprehensive 
enough to cover the complete attack scenarios. By comparing the alert streams 
with the GCP document, we notice that many malicious activities in the GCP 
Scenario II are not detected by the IDSs. Therefore, there are some missing 
intrusion alerts. In our approach, we depend on alert data for correlation and 
scenario analysis. When there is a lack of alerts corresponding to the intermedi­
ate attack steps, we cannot construct the complete attack scenario. In practice, 
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IDSs or other security mechanisms can miss some attack activities. We will 
study how to deal with the "missing" attack steps in alert analysis and scenario 
construction. 

2000 DARPA Intrusion Detection Scenarios 

In order to validate our approach using more case studies and compare with 
the results of other approaches (e.g., [23]), we also applied our algorithms to 
the 2000 DARPA Intrusion Detection Scenario datasets of LLDOS 1.0 and 
LLDOS 2.02. Compared with GCP, the attack scenarios in LLDOS 1.0 and 
LLDOS 2.02 are simpler. In both scenarios, the attacker performs a series of 
attacks and eventually launches a DDoS attack. In this section, we report our 
experimental results. 

LLDOS l.O. In LLDOS 1.0, the attack series include IP scan, port scan, 
sadmind buffer overflow attack, DDoS daemon installation and DDoS attack, 
The network traffic is collected from the DMZ and from the inside part of the 
evaluation network, denoted as 'inside network" [21]. We use Snort [27], a 
popular IDS, to detect intrusions in the network traffic of the ''inside network" 
and correlate the Snort alerts. 

Snort outputs around 1,200 raw alerts. Alert fusion and clustering result in 30 
hyper alerts of which 12 hyper alerts are regarded as target alerts for further anal­
ysis. For convenience, we denote the following: subnet! : 172.16.115.0/24, 
subnet! : 172.16.113.0/24, subnets : 172.16.112.0/24, hostA 
172.16.115.20, host^ : 172.16.112.10, host.C : 172.16.112.50, hostJ) 
131.84.1.31, hostJE : 172.16.115.87, hostJ^ : 172.16.113.50, host.G 
172.16.113.105, hostJI : 172.16.113.148, hostJ : 172.168.112.10, host J 
172.168.112.105, hostJ:: 172.168.112.194. 

As described in Section 3, we go through the steps of alert correlation and 
apply OCT to the alerts. 

We first select alert Mstream attack that corresponds to the Mstream DDoS at­
tack as the target alert, and apply GCT to correlate it with other alerts. Based on 
the correlation results, we select a causal alert as the next correlation target alert. 
For example, after each GCT correlation, we select the causal alert that is related 
to hostJB (selecting hostA or host.C produces similar causal relationships that 
make up the attack paths) as the target alert for the next GCT correlation. Ta­
ble 4.6 to Table 4.10 show the corresponding GCT correlation results with regard 
to the selected target alerts, i.e., DDoS2.ombieHostJB, rshsootJIostJB, sad-
mindJBuffer^OverflowJIostJB and rpc.portmap^sadmindJiostJB. We construct 
the attack scenario graph based on the GCT correlation results and alert analysis. 

Figure 4.4 shows the DDoS attack scenario discovered in the "inside net­
work" of LLDOS 1.0. The true causality rate is 96.81% and the false causality 
rate is 3.95%. In this experiment. Snort does not output alerts for the attacker's 
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Table 4.6, DDoS Attack: Target Alert: ms stream attack 

Alerti 
DDoS^ombieJlostJ^ 
DDoS-ZombieJiost-B 
DDoS_ZombieJlost.C 

Target Alert 
Mstream_attack 
Mstrearri-attack 
Mstream-attack 

GCT Index 
200.55 
198.67 
193.51 

Table 4.7. DDoS Attack: Target Alert: DDoS.Zombie.Host.B 

Alerti 
rsh-rootJlost j \ - S re 
rsh-rootJiost.B.Src 
rsh.rootJHost.C-S re 

rshj-oot.Hostj\.Target 
rsh.rootJIost.B.Target 
rsh.rootJHost.C.Target 

Target Alert 
DDoS.ZombieTIost.B 
DDoS.ZombieJlost.B 
DDoSJZombieJlost.B 
DDoS^ombieJiost.B 
DDoS.ZombieJlost.B 
DDoS.ZombieJIost.B 

GCT Index 
308.32 
298.67 
296.12 
289.07 
285.32 
283.45 

Table 4.8. DDoS Attack: Target Alert: rsh.rootJiost.B 

Alerti 
rsh.Host-B.Src 

sadmind.BufferOverflow.Host.B 
sadmind.BufferOverflow.Host.C 
sadmind-BufferOverflow-Host_A 

rshj-ootJHost-A.Target 

Target Alert 
rshj'oot.Host.B.Target 
rshj-oot-Host-B.Target 
rsh.root.Host.B.Target 
rsh-root-Host.B-Target 
rshj*oot.Host.B.Target 

GCT Index 
189.32 
182.37 
179.54 
176.21 
150.32 

activities of installing the DDoS software on the hosts. Alerts 
rsh.rootJiostAJSrc, rsh.rootJiostjBSrc, rsh.rootJiost.CSrc, 
rsh.rootJIostA.Target, rsh.rootJiost B.Target and rsh.rootJIost.C.Target are 
corresponding to the attacker's activities of transferring DDoS software to the 
hosts. Our correlation mechanism can correctly correlate them with the alerts 
DDoS Zombie that represent the the detection of the attacker controlling the 
slave hosts to launch the DDoS attack. Figure 4.4 shows that our correlation 
mechanism can correctly correlate attack alerts and construct the DDoS scenario 
that is the same as the results of [23]. 

LLDOS 2.0.2. In LLDOS 2.0.2, the scenario is more complicated than that 
of LLDOS 1.0. The attacker probes for host information using DNS HINFO 
instead of the IP Sweep and rpcport scan. In addition, the attacker compromises 
one host first from which he/she continues to compromise other hosts. In 
LLDOS 1.0, the attacker attacks each host individually. 

We use Snort to detect the intrusions in the "inside network" traffic and 
analyze the output alerts. Snort outputs 870 raw alerts. We aggregate raw 
alerts and get 26 hyper alerts. We identify 8 hyper alerts as target alerts. For 
convenience, we denote Host A : 172.16.115.20, Host-B : 172.16.112.50, 
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Table 4.9. DDoS Attack: Target Alert: sadmind.Buffer.OverflowJIost-B 

Alerti 
sadmind-BufferOverflow_Host-A 

rpc-portmap-sadmind.Host-G 
rpc-portmap_sadmind-Host_C 
rpc«portmap-sadmind-Host.B 
rpc_portmap-sadmind-HostJ\ 
rpc-portmap-sadmind-HostJE 

Target Alert 
sadmind-BufferOverflow.Host_B 
sadmind_BufferOverflow_Host-B 
sadmind-BufferOverflow-Host_B 
sadmind-BufferOverflow_Host_B 
sadmind-BufferOverflow_Host-B 
sadmind-BufferOverflow_Host-B 

GCT Index 
230.32 
212.37 
209.25 
201.12 
198.65 
176.83 

Table 4.10. DDoS Attack: Target Alert: rpc_portmap_sadmind-Host-B 

Alerti 
1 ipScan.Subnet3 

rpc-portmap-sadmind_Host-A 
rpc-portmap-sadmind_HostJF 

ipScan_Subnet2 
ipScan_Subnetl 

rpc_portmap-sadmind-HostJE 

Target Alert 
rpc_portmap-sadmind-Host3 
rpc-portmap_sadmind-Host-B 
rpc_portmap_sadmind-Host-B 
rpc_portmap_sadmind-Host-B 
rpc_portmap_sadmind_Host-B 
rpc_portmap-sadmind-Host-B 

GCT Index 
218.32 
192.37 
176.65 
156.15 
141.78 
132.39 1 
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Figure 4.4. LLDOS 1.0: DDoS Attack Scenario in the "inside network" 

HOSLC : 172.16.117.132, HostX> : 172.16.115.87, HostJ!: 172.16.115.44, 
HostJ^ : 172.16.113.207, HOSLG : 131.84.1.31. 

Table 4.11. DDoS Attack: Target Alert: Mstream.attackJIost-G 

Alerti 
DDoS^ombie.Host.B 

Target Alert 
Mstream.attack.Host-G 

GCT Index 
387.19 

We first select alert MstrearriMttackJIost.G as the target alert for correla­
tion. Table 4.11 shows the GCT correlation results. From the result, we con-



Statistical Causality Analysis of INFOSEC Alert Data 119 

Table 4.12. DDoS Attack: Target Alert: DDoS.Zombie.Host.B 

Alerti 
sadmind-BufferOverflowJIost_B 

web-Cgi.redirectJlost-D 
ftp-PassOverflow-Host-B 
web.cgi-redirectJiost-C 
web.cgi.redirectJiost-E 

Target Alert 
DDoS^ombie.Host.B 
DDoS^ombie.Host.B 
DDoS^ombie.Host-B 
DDoSJZombie_Host.B 
DDoS^ombie.Host.B 

GCT Index 
272.31 
265.04 
265.04 
251.57 
230.19 

Table 4.13. DDoS Attack: Target Alert: sadmind-BufferOverflow.Host.B 

Alerti 
ftp-PassOverflowJiost-A 

webxgiJisjfpcount-Host_F 
web-Cgi-finger_Host-C 

Target Alert 
sadmind_BufferOverflow«Host«B 
sadmind-BufferOverflow_Host-B 
sadmind-BufferOverflowJH[ost_B 

GCT Index 
225.30 
217.19 
187.19 

Table 4.14. DDoS Attack: Target Alert: ftpJPassOverflowJiost.B 

Alerti 
sadmind-BufferOverflow_Host-B 

ftpJPassOverflowJiost_A 
web_cgi-finger-Host-C 

Target Alert 
ftpJPassOverflowJHost-B 
ftpJPassOverflowJHost-B 
ftp_PassOverflow_Host_B 

GCT Index 
265.31 
253.42 
213.19 

tinue to choose alert DDoSJZombieJiost^ as the correlation target. Table 4.12 
shows the correlation results. Snort outputs some false positive alerts related to 
Web CGI, such as alert web.cgi.redirect, web-CgiJis.fpcount and webxgi-finger. 
These alerts are unrelated to the DDoS attack scenario. Further inspecting the 
alert information can easily filter out these alerts. The inspection and analysis is 
based on expert knowledge. Therefore, in Table 4.12, we only have interests in 
alerts sadmind-BujferOverflow-HostJB and ftp J'assOverflow-HostJS and select 
them as the target alert for correlation. The results are shown in Table 4.13 and 
Table 4.14. Table 4.15 shows the GCT correlation results with regard to alert 
ftp-PassOverflowJiostA. 

Figure 4.5 shows the attack scenario in the "inside network". The true causal­
ity rate is 97.34% and false causality rate is 4.89%. As Snort does not output 
alerts corresponding to the attacker's activity of using DNS HINFO to probe 
the host, we cannot retrieve the first step in the DDoS scenario, i.e., the stage of 
probe is missed. We use the dash-line to represent the missing stage. The LL-
DOS 2.0.2 document shows that attacker first compromises Host A from which 
he/she continues to compromise Host J using sadmind buffer overflow attack, 
and then uses ftp to transfer the DDoS software to HostJB. We can see such 
sequence of steps in Figure 4.5. In the figure, alert ftp J'ass.OverflowJiost-B 
corresponds to the activity of DDoS software transfer. Figure 4.5 shows that 
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Table 4.15. DDoS Attack: Target Alert: ftpJassOverflowJHostJ^ 

Alerti 
sadmind..BufferOverflowJH[ostJ\ 

web_cgiJis>fpcount_Host_F 

Target Alert 
ftp_PassOverflow-Host_A 
ftp-PassOverflow_Host_A 

GCT Index 
481.01 
387.51 
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V J 

Figure 4.5. LLDOS 2.0.2: DDoS Attack Scenario in the "inside network" 

we can construct the DDoS attack scenario correctly based on GCT alert cor­
relation. 

DEF CON 9 Capture The Flag 
As another case study, we applied our algorithms on the DEF CON 9 Capture 

The Flag (CTF) datasets. We use Snort to analyze the network traffic and output 
alerts for analysis. The DEF CON 9 CTF datasets are collected on 7 subnets. 
However, some datasets in subnet EthO are corrupted. Therefore, we do not 
include them in our analysis. Because there is no information available about 
the network topology and host configuration, we cannot fully apply our model 
of alert priority computation on the datasets. Therefore, we select the target 
alerts for correlation based on domain knowledge. 

As an example, we report results of alert analysis for subnet 4. Snort outputs 
more than 378,000 raw alerts. Scanning related alerts account for 91% of the 
total alerts. Alert ICMP Redirect Host accounts for about 3% of the total and 
alert MISC Tiny Fragments accounts for 5.9% of the total. Other alerts include 
Buffer Overflow, DDOS, DOS, DNS, TFTP, SNMP and Web-related attacks. 

Applying our alert fusion and clustering algorithms, we can reduce the re­
dundancy of low-level alerts dramatically, in particular, scanning alerts. The 
number of concrete high-level hyper alerts is about 1,300. We apply the Ljung-
Box test with the significance level a = 0.05 to all hyper alerts, and identify 754 
hyper alerts as background alerts. For convenience, we denote the following: 
HostA : 10.255.100.250, HostJB : 10.255.30.201, Host.C : 10.255.30.202, 
HostX> : 10.255. 40.237. 



Statistical Causality Analysis of INFOSEC Alert Data 121 

We first select the alert DDOS Shaft Zombie targeting at Host A, and apply 
the GCT to correlate it with other alerts. Based on the correlation results, we 
select a causal alert as the next correlation target alert. For example, after 
each GCT correlation, we select the causal alert that is oriented from host.C 
as the target alert for the next GCT correlation. Table 4.16 through Table 4.18 
show the corresponding GCT correlation results with regard to the selected 
target alerts, i.e., DDoSJ^ombieJiostA, FTP.Command.OverflowJtiost.CSrc, 
and alert FTP.CWD.OverflowJIost.CSrc. We construct the attack scenario 
graph based on GCT correlation results and alert analysis. 

Table 4.16. DefCon 9: Target Alert: DDOS.Shaft-Zombie-Host-A 

1 Alerti 
1 FTP.Command-Overflow_Host-B.Src 

FTP-User-Overflow-Host.B-Src 
FTP-Command-OverflowJHost.CSrc 

WEB-CGI.ScriptAliasj\ccess 
TFT.GetPasswd-Host-B-Src 

FTP-Aix-Overflow-Host-B-Src 
EXPERIMENTAL JvlISCJ^FS.Access 

FTP.CWD.OverflowJlost.D.Src 
WEB-CGLWrap.Access 

FTP.Command-OverflowJlostJD.Src 
FTP.CWD.OverflowJlost.C.Src 

FTP.OpenBSDx86.0verflowJlostJD-Src 
WEB-CGI-WebDistJ^ccess 

Target Alert 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 
DDOS-ShaftJZombie 
DDOS-Shaft-Zombie 
DDOS-ShaftJZombie 
DDOS.Shaft.Zombie 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 
DDOS-Shaft-Zombie 

GCT Index 
13.43 
12.98 
11.43 
11.12 
10.88 
10.83 
10.70 
10.68 
10.54 
10.35 
9.87 
7.86 
7.54 

Table 4.17. DefCon 9: Target Alert: FTP-Command-Overflow-Host-C-Src 

Alerti 
Scan-NMAP-TCP 

ICMPJ'ing-NMAP 
WEB-MISC-Perl-Command 

Xmas-Scan 
RPC-Portmap-Request 

FIN-Scan 
NULL-Scan 

Target Alert 
FTP-Command-Overflow-Host-C-Src 
FTP-Command-Overflow-Host-C-Src 
FTP.Command-Overflow-Host-C-Src 
FTP.Command-Overflow-Host-C-Src 
FTP.Command.OverflowJiost-C-Src 
FTP.Command.OverflowJIost-C-Src 
FTP-Command-Overflow-Host-C-Src 

GCT Index 
11.27 
10.93 
10.75 
10.23 
10.17 
10.13 
10.11 

Figure 4.6 shows the attack scenario targeting Host A according to the net­
work activities in subnet 4. We can see that the attackers first launch a series 
of port scanning, e.g., NMAP and RPCJPortmap. Then multiple FTP Buffer 
Overflow attacks are launched against the target in order to get root access. The 
attackers also launch some Web-related attacks against the target. There are 
also some other attack scenarios that our algorithms are able to find; many of 
them are port scanning followed by Buffer Overflow attacks. 
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Table 4.18. DefCon 9: Target Alert: FTP.CWD.Overflow.Host.C.Src 

Alerti 
Scan.NMAPJ^ULL 
ICMPJ>ingJvIMAP 

WEB-MISCJ»erLCommand 
Xmas.Scan 

SYN FIN.Scan 
NULL.Scan 

Target Alert 
FTP.CWD.Overflow.Host-C.Src 
FTP.CWD.Overflow.Host.C.Src 
FTP.CWD.Overflow.Host.C.Src 

FTP.Command.OverflowJlost.C.Src 
FTP.CWD.Overflow.Host.C.Src 
FTP.CWD.Overflow.Host.C.Src 

OCT Index 
12.72 
12.12 
11.87 
11.63 
11.27 
10.92 
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Figure 4.6, DefCon 9: A scenario example of victim Host A 

Discussion 

In our experiments, the results from the GCP and the 2000 DARPA Intrusion 
Detection Scenarios show that our approach can correlate alerts that have sta­
tistical causal relationships. However, as the GCP results show, we have false 
causal alert candidates resulted from GCT correlation that can result in false 
scenarios. One reason is that a large amount of background alerts can increase 
the false correlations. For example, we have a relatively high false causality 
rate in the GCP because the GCP has a lot of background alerts. Another rea­
son is that, in our experiments, we do not have and use any training data sets. 
Therefore, it is different from traditional anomaly detection in which training 
data is used to construct the baseline that can reduce the false positive rate. In 
the DEF CON 9 dataset, our approach also finds some reasonable scenarios. 
Because of the nature of the DEF CON 9 dataset, we cannot comprehensively 
evaluate the success rate of our alert correlation method. 

The key strength of our approach is that it can discover new alert correlations. 
Another advantage of our approach is that we do not require a priori knowledge 
about attack behaviors and how attacks are related when finding candidate alert 
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correlations. In addition, our approach can also reduce the workload of security 
analysts in that they can focus on the causal alert candidates output by the GCT 
for further analysis. They do not have to assess all alerts and investigate all 
possible correlations. This is especially helpful when an attack is in progress 
and the security analysts need to figure out the attack scenarios in a timely 
fashion. 

The time series used in our approach is based on the alert count instead of 
other categorical variables such as port access and pattern of TCP flag. The 
intuition is that if two attacks are related or have causal relationships, their 
occurrences should be tightly correlated because the causal attack triggers the 
resulting attack. Some experimental work and theoretical analysis have been 
presented in [1], [3], [2]. However, it is important to consider categorical 
variables when constructing attack scenarios. We will address this issue in our 
future work. 

One challenge to our approach is background alert identification. Using the 
Ljung-Box test cannot cover all the background alerts. The limit of our approach 
is that we still need expert knowledge to further inspect the causal alert candi­
dates resulted from GCT alert correlation when constructing attack scenarios. 
Human intervention has limits in automating attack scenario constructions. In 
future work, we will develop new correlation algorithms, in particular, proba­
bilistic reasoning, and will integrate other existing correlation algorithms, e.g., 
prerequisite-consequence approach, for alert correlation in order to reduce the 
false correlation rate and improve the accuracy of scenario analysis. 

5. RELATED WORK 
Recently, there have been several proposals on alert correlation and attack 

scenario analysis. 
Porras et al. design a ''mission-impact-based" correlation system, named M-

Correlator [26]. The main idea is to evaluate alerts based on security interests 
and attack relevance to the protected networks and hosts. Related alerts are 
aggregated and clustered into a consolidated incident stream. The final result 
of the M-Correlator is a list of rank ordered security incidents based on the 
relevance and priority scores, which can be further analyzed by the security 
analyst. This approach focuses on the incident ranking instead of attack scenario 
analysis. The security analyst needs to perform further correlation analysis. 

Valdes and Skinner [29] develop a probabilistic-based alert correlation mech­
anism. The approach uses similarities of alert attributes for correlation. Mea­
sures are defined to evaluate the degree of similarity between two alerts. Alert 
aggregation and scenario analysis are conducted by toughening or relaxing the 
similarity requirement in some attribute fields. However, it is difficult for this 
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approach to correlate alerts that do not have obvious (or predefined) similarities 
in their attributes. 

In the approach proposed by Debar and Wespi [7], alert clustering is ap­
plied for scenario construction. Two reasoning techniques are used to specify 
alert relationships. Backward-reasoning looks for duplicates of an alert, and 
forward-reasoning determines if there are consequences of an alert. These two 
types of relationships between alerts are predefined in a configuration file. The 
main limitation of this approach is that it relies on the predefined duplicate and 
consequence relationships between alerts. 

Goldman et al. [10] build a correlation system that produces a correlation 
graph, which indicates the security events that aim to compromise the same 
security goal, with IDS alerts as the supporting evidence of the security events. 
The reasoning process is based on the predefined goal-events associations. 
Therefore, this approach cannot discover attack scenarios if the attack strat­
egy or objective is not known. 

Some other researchers have proposed the framework of alert correlation and 
scenario analysis based on the pre-condition and post-condition of individual 
alerts [4], [5], [23]. The assumption is that when an attacker launches a scenario, 
prior attack steps are preparing for later ones, and therefore, the consequences of 
earlier attacks have a strong relationship with the prerequisites of later attacks, 
The correlation engine searches for alert pairs that have a consequences and 
prerequisites match and builds a correlation graph with such pairs. There are 
several limitations with this approach. First, a new attack may not be paired 
with any other attack because its prerequisites and consequences are not yet 
defined. Second, even for known attacks, it is infeasible to predefine all possible 
prerequisites and consequences. In fact, some relationships cannot be expressed 
naturally in rigid terms. 

Our approach differs from prior work in that it focuses on discovering new 
and unknown attack strategies. Instead of depending on the prior knowledge of 
attack strategies or pre-defined alert pre/post-conditions, we correlate the alerts 
and construct attack scenarios based on statistical and temporal relationships 
among alerts. In this respect, our approach is analogous to anomaly detection 
techniques. 

We also notice that alert correlation has been a research topic in network 
management for decades. There are several well-known approaches such as 
case-based reasoning system [19], code-book [18], and model-based reasoning 
systems [16, 24]. In network management system (NMS), event correlation 
focuses on alarms resulted from network faults, which often have fixed patterns. 
Whereas in security, the alerts are more diverse and unpredictable because the 
attackers are intelligent and can use flexible strategies. We nevertheless can 
borrow ideas in NMS event correlation for INFOSEC data analysis. 
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6. CONCLUSION AND FUTURE WORK 
In this paper, we presented an approach for correlating INFOSEC alerts and 

constructing attack scenarios. We developed a mechanism that aggregates and 
clusters raw alerts into high level hyper-alerts. Alert priority is calculated and 
ranked. The priority computation is conducted based on the relevance of the 
alert to the protected networks and systems. Alert correlation is conducted based 
on the Granger Causality Test, a time series-based causal analysis algorithm. 
Attack scenarios are analyzed by constructing a correlation graph based on the 
OCT results and on alert inspection. Our initial results have demonstrated the 
potential of our method in alert correlation and scenario analysis. Our approach 
can discover new attack relationships as long as the alerts of the attacks have 
statistical correlation. Our approach is complementary to other correlation 
approaches that depend on hard-coded prior knowledge for pattern matching. 

We will continue to study statistical-based approaches for alert correlation, 
and develop algorithms to detect background alerts, develop techniques to in­
tegrate categorical variables such as pattems of TCP flags, and study how to 
reduce false causality rate. We will also develop other correlation algorithms, 
in particular, probabilistic reasoning approaches, to integrate multi-algorithms 
for alert correlation and scenario analysis. We will also study how to handle 
missing alerts of attack steps in scenario analysis. One approach may be to 
insert some hypothesis alerts and look for evidence to either support or degrade 
the hypothesis from other sensor systems. We will validate our correlation 
algorithms on alert streams collected in the real world. 
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UNDERSTANDING NETWORK SECURITY 
DATA: USING AGGREGATION, ANOMALY 
DETECTION, AND CLUSTER ANALYSIS FOR 
SUMMARIZATION 

Dave DeBarr 
The MITRE Corporation 

Abstract: This chapter discusses the use of off-line analysis techniques to help network 
security analysts at the ACME Corporation review network alert data 
efficiently. Aggregation is used to summarize network events by source 
Internet Protocol (IP) address and period of activity. These aggregate records 
are referred to as meta-session records. Anomaly detection is then used to 
identify obvious network probes using aggregate features of the meta-session 
records. Cluster analysis is used for further exploration of interesting groups 
of meta-session records. 

Keywords: Intrusion Detection, Aggregation, Anomaly Detection, Cluster Analysis, Data 
Mining 

1. INTRODUCTION 

Intrusion detection analysts at the ACME Corporation^ spend much of 
their time reviewing network security data. They analyze alerts from 
Network-based Intrusion Detection Systems (NIDS) in order to determine an 
appropriate response. Possible ''actions" include: ignoring the alert, 
checking the target server to ensure appropriate security patches have been 
applied, adding/modifying firewall rules, or removing a compromised host 
from the network (for further investigation/clean-up). 

Not their real name. 
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Unfortunately, the network sensors generate an enormous amount of 
data. For example, over the course of a week, the NIDS sensors generated 
over 35,000 alerts. To investigate these alarms, the analysts usually look at 
other traffic from the same source IP address around the same time period. 
Pre-aggregating this contextual information in summary form is a useful 
time-saving step for the analysts. 

There have been many projects involving the use of data mining for 
intrusion detection. Typically, these projects focus on mining either network 
packet data or individual audit records in order to make inferences. This 
chapter focuses on the use of meta-session records instead of individual 
event records. These aggregate records summarize network events by source 
IP address and period of activity, thus reducing the amount of data to be 
reviewed and providing contextual information for individual alerts. We 
also demonstrate the use of anomaly detection to identify "obvious" (though 
often otherwise undiscovered) probes, and the use of cluster analysis to 
explore groups of similar meta-session records. 

2. THE ACME NETWORK 

Figure 5-1 depicts the general layout of the ACME Corporate network. 
The network is divided into three zones. The "Intemet" zone is extemal 

to the ACME Corporation. The ''De-Militarized" Zone (DMZ) contains 
A C M E ' S public servers; supporting protocols such as Domain Name 
Services (DNS), the Simple Mail Transfer Protocol (SMTP), the Hyper Text 
Transfer Protocol (HTTP), and the File Transfer Protocol (FTP). The 
"intranet" zone contains ACME's private servers and workstations. 

There are three major types of network-based sensors: NIDS, firewalls, 
and event loggers. The NIDS sensors monitor network packet traffic, 
employing user-defined signatures to generate alerts. For example, an HTTP 
request containing the string "/root.exe" generates a "CodeRed root.exe" 
alert. The alerts are considered to be high-priority events because they are 
typically generated by malicious activity. Although the extemal NIDS may 
also generate alerts, these extemal alerts are used only for context 
information. Often, the firewalls will block the malicious activity. 

The firewalls employ user-defined rules to determine if network data 
should be passed, dropped, or rejected; but only drops or rejects generate 
event records. A "Drop" message indicates that data has been discarded 
without notifying the sender, while a ''Reject" message indicates that data 
has been discarded and the sender has been notified explicitly. Because the 
firewall event data rarely requires action on the part of the network security 
analyst, these are considered to be low priority events. 
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Figure 5-1. The ACME Corporate Network 

The event loggers are used to identify User Datagram Protocol (UDP) 
exchanges and Transmission Control Protocol (TCP) connections seen 
"inside" the ACME Corporate network. A "TCP attempt" message indicates 
the event logger has seen TCP activity, while a "UDP attempt" message 
indicates the event logger has seen UDP activity. These loggers provide 
useful context information. For example, a connection from a host that 
generated alerts from the external NIDS, or drops/rejects from the firewall, 
may warrant further investigation. 

The event records from each sensor are collected in a centralized 
database. Each event record contains 16 elements: 
1. Sensor Location: "Intranet", "DMZ", or "External" 
2. Sensor Type: "NIDS", "firewall", or "logger" 
3. Priority: " 1 " for high-priority alert, "2" for low-priority alert, "3" for 

firewall drops/rejects, "4" for event logger records 
4. Event Type: descriptive label for the event; e.g. "Drop", "Reject", "TCP 

attempt", "UDP attempt", "WEB-IIS CodeRed v2 root.exe access", etc. 
5. Event Start Date and Time: year, month, day, hour, minute, and second 

for the first packet of the event 
6. Duration: number of seconds between the first and last packets of the 

event 
7. Source IP Address 
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8. Source IP Address Type: "E" for external, "R" for reserved (e.g. 1.1.1.1), 
"P" for private (e.g. 10.0.0.1), "M" for multicast, "I" for intranet, or "D" 
for DMZ 

9. Source IP Address Subtype: "N" for ACME network addresses, "B" for 
ACME broadcast addresses, "O" otherwise. 

10. Destination IP Address 
11. Destination IP Address Type: "E", "R", "P", "M", "I", or "D" (see 

"Source IP Address Type" for meanings) 
12. Destination IP Address Subtype: "N", "B", or "O" (see "Source IP 

Address Subtype" for meanings) 
13. Protocol: "I" for Internet Control Message Protocol (ICMP), "T" for 

TCP, "U" for UDP, or "O" for other 
14. Source Port or ICMP Type: an integer representing the source port for 

TCP or UDP protocol events, or an integer representing the message type 
for ICMP packets (e.g. ICMP type 3 messages indicate data has been 
prohibited from reaching an intended destination) 

15. Destination Port or ICMP Code: an integer representing the destination 
port for TCP or UDP protocol events, or an integer representing the 
message code for ICMP packets (e.g. ICMP type 3 messages with code 
13 indicates that communication has been administratively prohibited) 

16. Common Destination Port Flag: indicates the destination port is 
considered to be common (e.g. TCP ports 21, 25, 53, 80, etc; or UDP 
ports 53, 111, 161, 162, etc.)' 
A subset of the attributes for some sample events is shown in Table 5-1. 

These events are shown in the order they were recorded by the sensors. 

Table 5-1. 
Sensor 
DMZ 
Firewall 
External 
NIDS 
DMZ 
NIDS 
DMZ 
NIDS 

Abbreviated Sample of Network 
Priority 
3 

2 

1 

1 

Event 
Drop 

WEB-IIS cmdexe 
access 
WEB-IIS cmd.exe 
access 
WEB-IIS ISAPI .ida 
attempt 

Security Event Data 
Protocol 
UDP 

TCP 

TCP 

TCP 

Source 
External 
192.0.2.176 
External 
192.0.2.176 
External 
192.0.2.176 
External 
192.0.2.176 

Destination 
DMZ 
192.168.242.175:500 
DMZ 
192.168.242.175:80 
DMZ 
192.168.242.175:80 
DMZ 
192.168.242.175:80 

The firewall event is considered low priority, because the firewall 
actually blocked access to UDP port 500; but the alerts from the DMZ NIDS 
are a possible cause for concern. An external host was able to send likely 
malicious HTTP requests to a server on the DMZ, Fortunately, this 
particular server is not vulnerable to this particular exploit; but it's useful to 

The SANS 'Top 20" Vulnerabilities list was used to identify "common" ports 
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identify other activity from the same host, surrounding the time of the alert. 
This is where aggregation helps. 

3. AGGREGATION 

Event records are aggregated by source IP address and period of activity 
for two major reasons: 
1. to provide contextual information for alerts to be reviewed 
2. to reduce the number of records to be reviewed 

A 30 minute time-out period is used to aggregate events from the same 
source IP address. Using the sample data from Table 5-1: if the next event 
occurs 31 minutes after the fourth event, the next event would generate a 
new meta-session record. Because the aggregation engine is designed to 
operate on a stream of event data, a 60 minute timeout is used to generate 
intermediate output for long-running periods of activity (thus freeing up 
memory used to maintain state for the meta-session). Each meta-session 
record includes the following elements: 
1. Source IP Address (including Type and Subtype information) 
2. Time Range 
3. Destination IP Address Range 
4. Destination IP Address Count 
5. Maximum Number of Common Ports per Destination Address 
6. Count of Event Types 
7. Priority of Highest Priority Event 
8. Perimeter Crossing Count: for example, the number of events from an 

extemal source seen on the DMZ or intranet 
9. Event List: a list containing up to 5 distinct event types, sorted by priority 

Table 5-2 shows the meta-session record corresponding to the events 
shown in Table 5-1. The maximum priority for the events was one (Max 
Pri). Two of the events from the extemal IP address were recorded on the 
DMZ (Crossing Count). There was only one destination address (Dst Addr 
Count), but two "common" ports were targeted (Max Ports). The three event 
types are listed in the far right-hand column, with the firewall message also 
indicating the destination port. 

Table 5-2. Abbreviated Example of a Meta-Session Record 
Source 

External 
192.0.2.176 

Max 
Pri 

1 

Crossing Dst Max 
Count Addr Ports 

Count 
2 1 2 

Event 
Types 

3 

Event List 

WEB-IIS cmd.exe access 
WEB-IIS ISAPI .ida attempt 
Drop (udp:500) 
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By aggregating the event records into meta-session records, we were able 
to aggregate 7,560,570 event records generated over the course of a week 
into 914,241 meta-session records, a reduction of more than 87%^ with the 
added benefit of providing instant context for those alerts that need to be 
reviewed. Less than 10% of the meta-session records covered an hour of 
activity, and only 35 of the meta-session records contained more than 5 types 
of events. Using anomaly detection for the aggregate features allows for 
easy detection of intrusive probes that might otherwise be missed by an 
analyst or the network sensors. 

4. ANOMALY DETECTION 

Anomaly detection involves identifying unusual values, but the keys to 
using anomaly detection effectively revolve around monitoring relevant 
variables and setting appropriate detection thresholds. As Stefan Axelsson 
points out in his survey of intrusion detection systems, "The problems with 
[anomaly detection] rest in the fact that it does not necessarily detect 
undesirable behaviour, and that the false alarm rates can be high." 

In order to identify network probes, three variables can be monitored 
independently: 
1. Destination IP Address Count: an unusually large destination address 

count is likely to indicate the meta-session contains host scanning 
behavior; i.e. the source host is looking for active hosts connected to the 
destination network 

2. Maximum Number of Common Ports per Destination Address: an 
unusually large port count is likely to indicate the meta-session contains 
port scanning behavior; i.e. the source is looking for active services 
running on a particular host 

3. Count of Event Types: an unusually large count of event types is likely to 
indicate the meta-session contains vulnerability scanning behavior; i.e. 
the source is testing for susceptibility to a variety of known exploits 
In order to identify "normal" values for the "Destination IP Address 

Count" and the "Maximum Number of Common Ports per Destination 
Address", we restricted our profiling efforts to meta-session records that 
contained no firewall drops/rejects or NIDS alerts. In order to identify 
"normal" values for the "Count of Event Types", we included the NIDS 

^ Although the techniques discussed in this paper can be appHed to events where the source IP 
address is an ACME host, all results reported in this chapter pertain to events where the 
source IP address belongs to an external host (for privacy reasons). 
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alerts as well (allowing us to quickly identify those meta-sessions involving 
more focused attacks). 

The histogram in Figure 5-2 illustrates the distribution of destination IP 
address counts for a week's worth of these meta-session records. The most 
noticeable feature of this graph is the presence of multiple peaks, indicating 
a mixture of distinctive behaviors within the observed data. The majority of 
these meta-sessions have very few destination IP addresses. In fact, over 
99% of these meta-sessions have less than 10 destination IP addresses. 

. 1 . 

1 29 61 93 130 171 212 263 

Dst IP Count 

Figure 5-2, Distribution of Destination IP Address Count Values 

A model-based clustering algorithm, known as MCLUST, was used to 
generate a mixture model for this data. The initial model was built using a 
random sample of two-sevenths of the meta-session records from the first 
week; and the Bayesian Information Criterion (BIC) measure was used to 
determine the number of components in the data. Using the sample data 
provided and a fixed-width variance for each component (like the K-means 
clustering algorithm), two components were identified: one group of meta-
sessions with mean value 1.13 and the other group with mean value 248.40. 

By determining the mean and standard deviation of the log likelihood of 
the data for each of the next four weeks of data, we were able to generate a 
test for continued efficacy of this model. Any future log-likelihood values 
falling at least three standard deviations below the mean log-likelihood value 
would indicate the model needs to be rebuilt. In our example, the cut-off 
threshold is -73,634 (keep in mind that we're talking about the log-
likelihood of observing tens of thousands of values). 
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A sample from each of the two groups from the week of training data was 
reviewed to determine if they contained host scans. As you might suspect, 
the group with the smaller number of destination IP addresses per meta-
session did not appear to contain any host scans, while the group with the 
larger number of destination IP addresses per meta-session appeared to 
contain only host scans! To identify host scans, we want to flag values that 
would not be likely to be considered similar to the values found in our 
"normal" group (the one without host scans). Because the maximum 
possible value for a member of group one is 124, we chose 124 as our 
threshold value; i.e. meta-sessions with more than 124 destination addresses 
are labeled as suspected host scanning episodes. 

As mentioned earlier, the 101 meta-session records belonging to the 
group with the larger mean appeared to have been generated by host scans 
that did not trip any rules on either a firewall or a NIDS! These scanning 
episodes were directed against 3 subnets within the DMZ. They included 44 
scans for UDP port 38293 (Norton Anti-Virus), 20 scans for TCP port 1433 
(Microsoft SQL Server), and 14 scans for TCP port 21 (FTP). Although 
these particular scans do not appear to have resulted in successful exploits, it 
might be prudent to add firewall rules to restrict requests to valid servers 
only. 

To estimate performance of our host scan detection test, we selected a 
random sample of data from the entire population of meta-session records 
for a sixth week of data (remember, we used 1 week of data for training and 
4 weeks of data for validation). The results are shown in Table 5-3. 

Table 5-3. Host Scan Test Results for a 

Actuals Unknown 
Not Host Scan 
Host Scan 

Random Sample of Meta-Sessions 
Predictions 

Not Host Scan 
5 

91 
3 

Host Scan 
0 
0 
1 

The estimated detection rate for the test is 25% (95% confidence interval: 
1%-81%), while the estimated false alarm rate is 0% (95% confidence 
interval: 0%-98%). Unfortunately, there were not enough host scans present 
in the sample to get smaller confidence intervals around the estimated 
detection and false alarms rates; but there were enough samples to provide a 
better estimate of the base rate for host scans. The estimated base rate for 
host scans is 4% (95% confidence interval: 1%-10%). 

The 124 address threshold seems a bit high, and it will obviously miss 
some host scans; but there's almost always a trade-off between the detection 
rate and the false alarm rate. For our purposes, we have chosen to 
emphasize minimizing the false alarm rate. In the future, if firewalls are able 
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to provide an automated response to temporarily block the sources of 
suspected host scans, we believe this will also require an emphasis on 
minimizing the false alarm rate. 

The 3 host scans that our test misclassified appeared to be the result of 
worm activity involving attempted connections to apparently randomly 
selected IP addresses. These meta-sessions involved attempted connections 
to only one or two hosts, but other meta-session records indicated sporadic 
efforts to contact different addresses within the ACME network. The 
"unknown" values appear to be the result of back scatter or chaff, a 
consequence of a third party's use of spoofed addresses. To get a better 
estimate of the false alarm rate (a smaller confidence interval), we reviewed 
a random sample of 30 of the 624 suspected scans from this same week of 
test data. 

Good news: all 30 of the suspected host scans appear to be host scans. 
This gives us an estimated false alarm rate of 0%, with a 95% confidence 
interval ranging between 0 and 12%. As a note of interest, 4 of these 30 
scans all targeted the same TCP port in lANA's unassigned range; and all 4 
of these scans made it past the firewall. This might be indicative of a new 
trojan port that requires a new firewall rule. 

Unlike the number of destination addresses, the distribution of values for 
the maximum number of common ports per destination address appeared to 
have only one component. Nevertheless, we employed a similar strategy for 
building a model that can be tested for changes in the future. The change 
detection threshold for this model was also established as a log-likelihood 
value that falls three standard deviations below the mean for the next four 
weeks of data (-21,050). The values for the maximum number of common 
ports appear to have a tighter distribution than the values for the number of 
destination addresses. The mean value for the two-sevenths random sample 
from the first week of data was 0.68. Because we're only monitoring ports 
with common vulnerabilities, some meta-sessions actually have a value of 
zero for the maximum number of common ports per destination address. 

To identify a threshold value for detecting port scans, we used a heuristic 
based on the survival function of the exponential probability distribution. 
We took the mean value of the test sample, plugged it into the following 
equation, and solved for X. 

E x p ( - X / B ) = 1/N 

where 
• B is the mean value for the ''normal" (training) sample 
• N is the number of meta-session records in our training sample 

Meta-sessions targeting more than 6 common ports for any destination 
address were labeled as port scans, but there appeared to be very few port 
scans in our data. In fact, there were no port scans found in the earlier 
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sample of 100 meta-session records used for testing; so our estimated base 
rate for port scans is 0%, with a 95% confidence interval between 0 and 4%. 

The seven meta-sessions in the test data that were labeled as port 
scanning episodes appear to have been labeled correctly, so our estimated 
false alarm rate is again 0%, but our 95% confidence interval is between 0 
and 41%! This broad confidence interval is one of the pitfalls of using real-
world data to estimate performance, but it does preclude the difficulties of 
attempting to "manufacture" representative test data. The only note of 
interest for the port scan test data was the presence of two hosts from the 
same source network targeting ports on the same destination address. 

Like the values for the maximum number of common ports per 
destination address, the values for the number of event types also had a 
unimodal distribution. The mean of the two-sevenths sample from the first 
week of data was 1.12, and the change detection threshold for the resulting 
model was a log-likelihood of -22,076. To identify a threshold value to 
detect vulnerability scans, we used the same heuristic based on the survival 
function of the exponential probability distribution (solving the equality 
mentioned earlier for X). Meta-sessions with more than 10 event types were 
identified as vulnerabihty scans. 

Vulnerability scans appeared to be very scarce in the test data. There 
were no vulnerability scans in the earlier sample of 100 test records. In fact, 
only one meta-session was labeled as a vulnerability scan in the entire test 
set. This record was indeed a vulnerability scan. The source appeared to be 
trying to identify the type of platform for the destination host, and then the 
source launched a series of exploit attempts against the secure shell port. 

For all three types of anomaly detection tests, we tended to error on the 
side of caution by emphasizing the minimization of false alarms; but the 
heuristics could easily be adjusted to maximize the detection rate. The labels 
are not mutually exclusive (for example, an attacker could conduct a host 
scan, followed by a port scan and a vulnerability scan in the same meta-
session); but the flagged records can be easily prioritized by reviewing 
suspected vulnerability scans, followed by port scans, then host scans. 
Within these groupings, the individual meta-sessions can be ordered by the 
maximum number of events per host; i.e. giving priority to meta-sessions 
that involved a scan followed by focus on a particular host. 

5. CLUSTER ANALYSIS 

While unusual observations may be indicative of activity that requires 
our attention, the opposite is often true as well. Very common activities 
typically do not require intervention on the part of the network security 
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analyst. Grouping meta-sessions can be useful for analyzing data in bulk. 
For example, one week of data contained a total of 1,731 meta-sessions 
involving only "ICMP Destination Unreachable (Communication 
Administratively Prohibited)" messages. In order to review these meta-
sessions, it's useful to group together meta-sessions with similar 
characteristics. 

We used the Partitioning Around Medoids (PAM) algorithm to 
summarize groups of meta-sessions with similar characteristics. Because 
PAM uses medoids rather than means to represent each group of 
observations, it is more robust than the K-means clustering algorithm. 
Medoids are records whose average dissimilarity to all other records in the 
group is minimal. A medoid can be thought of as a prototype for the group it 
represents. 

The average silhouette value was used to identify the optimal number of 
clusters for summarizing a set of meta-session records. The silhouette value 
is near one for a record that fits well with its cluster, and near negative one 
for a record that does not fit well with its assigned cluster. 

To cluster meta-session records, we use the continuous attributes of the 
meta-session record (eliminating variables with no variance and the variate 
with the smallest variance for each pair of correlated variables). For the 
"ICMP Destination Unreachable", we used the following attributes to build 
the model: 
• number of events observed on the Intranet 
• number of events observed on the DMZ 
• number of seconds between the first and last events of the meta-session 
• number of destination IP addresses 

To measure the dissimilarity between any two meta-session records, we 
used the Euclidean distance for vectors containing normalized values for the 
attributes mentioned above. The optimal model for the "ICMP Destination 
Unreachable" meta-sessions had 6 partitions, with the average silhouette 
value for this model being 0.71. The medoids for this model are listed in 
Table 5-4. 

Table 5-4. Prototypes for the "ICMP Destination Unreachable" Meta-Session Groups 
Group Member Intranet DMZ Time Range Destination 

Count Records Records Count 
1 
2 
3 
4 
5 
6 

1,288 
131 
9 
14 
4 
285 

0 
0 
0 
1 
3 
0 

1 
3 
16 
0 
0 
14 

1 
1,282 
1,411 
1 
1 
21 

1 
2 
14 
1 
3 
1 
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The largest group, group one, consists of single 'ICMP Destination 
Unreachable" replies directed toward DMZ hosts, while the smallest group, 
group five, consists of multiple "ICMP Destination Unreachable" messages 
directed toward intranet hosts (a relatively rare occurrence). 

A principal components projection of the meta-session records is shown 
in Figure 5-3. The groups are shown by elliptical rings. Although much of 
the variance of the values is lost when projecting from the initial set of four 
variables down to two variables for plotting, a diagram such as this makes it 
easy to visualize outliers. Group 5 appears off to itself in the upper right-
hand comer, because it's unusual for intranet hosts to receive "ICMP 
Destination Unreachable" replies. 

clusplot(pam(x = data, k = 6, stand = TRUE)) 

Component 1 
These two components explain 64.28 % of the point variability. 

Figure 5-3. Plot of Cluster Analysis Results 

In this particular instance, the 1,731 meta-session records can be 
effectively summarized by a list of 6 prototypes, allowing the analyst to 
focus attention on groups of interest. 

Cluster analysis can also be used to group together meta-session records 
with event lists that are similar, but not exactly the same. Over the course of 
a week, there were only 26 distinct event lists that appeared in 168 or more 
meta-sessions; however, there were 4,830 distinct event Hsts that appeared in 
less than 168 meta-sessions. For example, there was only one meta-session 
with the following single-item event list: 
• WEB-CGI /cgi-bin/ access 
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To find similar meta-sessions, we grouped the infî equent events lists by 
again using the PAM algorithm. This time, however, we measured the 
distance between two meta-sessions by using the Jaccard dissimilarity 
coefficient for the tokens in the event lists. For example, the dissimilarity 
value between the following single-item event lists would be 0.50, because 
they only share two of the four distinct tokens. 
• WEB-CGI /cgi-bin/ access 
• WEB-CGI calendar access 

The 4,830 distinct event lists formed a total of 47 groups in the optimal 
model, where the average silhouette value was 0.36 (not perfect, but still 
useful for summarization purposes). The group containing the "WEB-CGI 
/cgi-bin/ access" event is listed in Table 5-5. 

Table 5-5. Sample Grouping of Meta-Session Records with Infrequent Event Lists 
Event List Id 

1 

2 

3 

4 

5 

6 

7 

8 

Highest 
Priority Event 

1 

2 

2 

2 

2 

2 

2 

2 

Number of 
Meta-Sessions 

1 

1 

1 

1 

1 

1 

1 

1 

Event[l] 

WEB-CGI 
/cgi-bin/ access 
WEB-CGI 
calendar access 
WEB-CGI 
calendar access 
WEB-CGI 
calendar access 
WEB-CGI 
calendar access 
WEB-CGI phf 
access 
WEB-CGI 
register, cgi access 
WEB-CGI swc 
access 

Event[2] 

WEB-CGI 
register, cgi access 
WEB-MISC 
intranet access 
TCP Attempt 
(tcp:53) 

The prototype of this group is event list number 2. The prototype event 
list and the highest priority for the list can be used to represent each group of 
meta-sessions. Again, this summarized view allows both a reduction in data 
and an increase in understanding. Comparing the group in Table 5-5 to the 
group in Table 5-6, it is easy to see there are indeed significant differences 
between the two groups. The first row in Table 5-6 is the prototype for this 
small group. 
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Table 5-6. Contrast Grouping of Meta-Session Records with Infrequent Event Lists 
Event List Id Highest Number of Event[l] Event[2] Event[3] 

Priority Meta-Sessions 
Event 

1 1 1 NNTP 
AUTHINFO 
USER 
overflow 
attempt 

P2P 
GNUTella 
GET 
(top: 119/ 

NNTP 
AUTHINFO 
USER 
overflow 
attempt 

P2P 
GNUTella 
GET 
(top: 119) 

TCP attempt 
(tcp:119) 

6. CONCLUSIONS 

This chapter describes the use of aggregation for data reduction, anomaly 
detection for probe identification, and cluster analysis for summarization. 
The techniques demonstrated are independent of the specific sensors used to 
generate the network security data. The only requirements for the data 
included the presence of IP address and port information, along with 
distinctive labels for alerts generated by the NIDS. 

By using aggregation, we are able to replace many individual event 
records with a single aggregate record. For example, consider the "script 
kiddie" who simply tries to launch an exploit against every possible address 
in your network. The flow of individual alerts to the console could be 
overwhelming. A single meta-session record can be used to replace these 
alerts, and anomaly detection can be used to flag the meta-session as a host 
scanning episode. 

A simple form of anomaly detection can be used to discover probes that 
may not generate alerts. For instance, a single week of data contained over a 
100 host scans that were missed by both the firewalls and the NIDS. By 
monitoring relevant variables, with the desired emphasis on minimizing false 
alarms, it's possible to use anomaly detection effectively for identifying 
probes. 

Cluster analysis is useful for grouping together similar records for 
review. By providing effective summaries, it allows an analyst to focus 
attention on only those groups requiring further investigation. 

Although the work described here illustrates a potentially useful 
approach to anomaly detection, further work is needed to improve the 

This is actually a false alarm, the result of a signature searching for the string "GET". 
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detection rate. One possible approach might involve building a probe 
classification model, using multiple features from the meta-session records 
simultaneously. Active learning could be used to minimize the amount of 
labeled data required to perform the classification task. 
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EARLY DETECTION OF ACTIVE INTERNET 
WORMS 

Vincent H. Berk, George V. Cybenko, and Robert S. Gray 
Institute for Security Technology Studies, Thayer School of Engineering, Dartmouth College 

Abstract: An active Internet worm is malicious software that autonomously searches for 
and infects vulnerable hosts, copying itself from one host to another and spread­
ing through the susceptible population. Most recent worms find vulnerable hosts 
by generating random IP addresses and then probing those addresses to see which 
are running the desired vulnerable services. Detection of such worms is a manual 
process in which security analysts must observe and analyze unusual network or 
host activity, and the worm might not be positively identified until it already has 
spread to most of the Internet. In this chapter, we present an automated system that 
can identify active scanning worms soon after they begin to spread, a necessary 
precursor to halting or slowing the spread of the worm. Our implemented system 
collects ICMP Destination Unreachable messages from instrumented routers, 
identifies message patterns that indicate malicious scanning activity, and then 
identifies scan patterns that indicate a propagating worm. We examine an epi­
demic model for worm propagation, describe our ICMP-based detection system, 
and present simulation results that illustrate its detection capabilities. 

Keywords: Security, Worms, Propagation Models, Detection, Active Response 

1. INTRODUCTION 
An active Internet worm is malicious software (or malware) that autonomously 

spreads from host to host, actively searching for vulnerable, uninfected systems. 
The first such worm was the 1988 Intemet worm, which spread through vulner­
able Sun 3 and VAX systems starting on November 2, 1988. [17], This worm 
exploited flaws in the sendmail and f ingerd code of that time, and through 
the rsh service and a password-cracking library, also exploited poor password 
policies. The worm collected the names of target hosts by scanning files, such 
as . rhos t s and .forward, on the local machine, and then attempted to in­
fect those hosts through the finger, sendmail, and password-guessing exploits. 
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Although the exact number of infected machines is unclear, the worm infected 
enough machines to disrupt normal Intemet activity for several days due to high 
network traffic and CPU loads, 

Recent examples of active worms include Code Red v2, which exploited 
a flaw in Microsoft's Intemet Information Services and infected 360,000 ma­
chines [12], and Sapphire/Slammer, which exploited a flaw in Microsoft's SQL 
Server and infected 75,000 machines [11]. Code Red, Sapphire/Slammer and 
most other recent active worms find vulnerable machines by generating random 
(or pseudo-random) IP addresses and then probing to see if the desired vulner­
able service is running at those addresses. Compared to the 1988 Intemet, the 
modem Intemet has so many hosts that random probing is an effective way to 
find vulnerable machines. The 1988 worm would have needed years (or even 
centuries) to find even one existing machine if it had used random probing. 

In addition to using random probing, most recent worms probe as quickly 
as possible, so that the worm can spread to most vulnerable machines before 
system administrators have time to shut down infected machines and repair 
the exploited security hole. In fact, since current response is entirely man­
ual, a worm only has to spread faster than human response time to succeed. 
Sapphire/Slammer, the fastest spreading worm to date, far exceeded human 
response time by infecting most vulnerable machines within five minutes of 
its launch [11]. Clearly, if the Intemet community wants to halt the spread of 
a worm, rather than simply cleaning up afterward, some form of automated 
detection and response is needed. Here, we will focus on the problem of detec­
tion, and present an automated system that can identify active scanning worms 
soon after they begin to spread. Worm authors, when faced with such a detec­
tion system, might switch from address scanning to stealthier techniques for 
identifying potential targets, including the older, but effective, techniques of 
the 1988 worm. For this reason, we also will give a brief overview of potential 
techniques for detecting slow-moving or stealthy worms. 

In the rest of this chapter, we present background on Intemet worms and a 
model for their propagation, describe the architecture of our prototype worm-
detection system, DIB:S/TRAFEN, and examine simulation results that illus­
trate the system's detection performance. Finally, we examine future directions 
for both worm authors and worm defenders. 

2. WOR]MS AND THEIR PROPAGATION 

The first step in detecting an active worm is to understand how active worms 
propagate, and to develop a general propagation model that can be used as 
the starting point for detection algorithms. First, we compare active worms 
with other types of malware, and then we present an epidemic model for worm 
propagation. 
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Worms and Viruses 
Over the last several years, there has been frequent discussion of the differ­

ence between viruses and worms. In the early days after the 1988 Internet worm, 
Eichin et al. [7] referred to this new event as an 'Intemet virus'', stating that it 
bore no resemblance to the biological equivalent of a worm. Today, however, 
most experts refer to it as the ''Morris worm", indicating that biological equiv­
alence no longer dictates the terminology. Figure 6.1 is an inheritance graph 
showing current, commonly accepted relationships in terminology. Viruses and 
worms are both part of the larger category of malicious code. A related member 
of the malicious-code group is rootkits and backdoors, pieces of software often 
installed on compromised systems by hackers to enable them to easily regain 
control of the machine in the future. Rootkits are associated with the so-called 
''auto-rooters", pieces of software that offer a nice GUI to the hacker, making 
computer intrusion child's play. A disturbing detail is that many of these tools 
can perform multiple attacks (exploits) with various target selection strategies, 
eliminating the need for any understanding from the hacker. The tools often 
are easier to use than most security products. 

Another related member of the malicious-code family is spy ware, software 
that ships and installs with bona fide programs and relays information from the 
user's computer back to a data center without the user's explicit consent. This 
implies that the user often is not aware that spy ware programs are present on the 
system, increasing the risk that private, or even privileged, information might 
be stolen. Spyware is gaining more attention lately, largely because software 
packages are increasing in size and complexity, making detection of spyware 
much more difficult. In addition, spyware programs tend to remain on the 
system even when the program to which it was originally attached is removed. 

Where other malicious code is intended for controlled use, viruses and worms 
are designed to propagate without control. This makes them very dangerous, 
since there are no bounds on their spread, and their workings are fully decen-

MAUCIOUS CODE 

SPYWARE I ROOTKITS/ 
BACKDOORS 

AUTONOMOUS \ 

AUTO-ROOTERS 

VIRUSES WORMS 

Figure 6.1. A partial hierarchy of malicious code (or malware). 
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tralized. Where rootkits and backdoors provide the hacker with full control of 
a system, worms and viruses need to be fully autonomous, following the same 
algorithm over and over again for each newly infected system. There is no 
reason, however, why the two cannot be combined, creating a massively (self-) 
propagating piece of malware that leaves backdoors for the hacker to enter all 
infected systems at will. Regarding terminology, worms and viruses can be 
viewed as separate types of autonomous malware (as we prefer and depict in 
Figure 6.1), or viruses can be viewed as a broad category of which worms are a 
special case. Whether worms are their own category or a subcategory has little 
effect on the discussion of their properties, so we leave it to the reader to form 
their own opinion. 

The difference between worms and viruses lies in their method of propa­
gation. In short, viruses require carriers, where worms facilitate their own 
propagation. Worms often use an attack strategy that actively selects targets 
and opens connections to those targets. The worm then launches an exploit, 
and, if successful, propagates by copying its code to the new system and then 
running that code. The new system now is infected and will behave the same as 
the system that infected it, resulting in two copies of the worm, both looking for 
new systems to infect. This spread continues until most vulnerable systems are 
infected, or until a built-in timer stops the propagation and switches the worm to 
another mode, such as a massive Distributed Denial of Service (DDOS) attack 
using all the infected systems as drones. 

In contrast to worms, viruses need a carrier to propagate. Traditionally, 
viruses bind to executable files, the system boot sector, or both. This ensures 
that the virus is loaded into memory at boot time, or whenever a program is 
loaded. Once active in memory, the virus binds to the operating system and tries 
to infect the boot sector and every program that is run. This will guarantee its 
spread, since infected executables that are run on clean systems will infect the 
boot-sector of that system, leading to subsequent infection of that system's other 
programs as well. This technique requires executable files to be shared between 
computers, imposing a natural limit on how fast the virus can spread. Recently, 
however, viruses have been designed to piggy-back on bona fide communication 
mechanisms such as email. Email viruses often rely on the recipient to open 
the email and run the attached viral executable, which, in turn, will attempt to 
send itself to all e-mail address in the user's address book. This is the reason 
that such viruses often come from your best friend. Virus writers use many 
techniques to hide the actual virus from the user, such as embedding the viral 
code inside a Screensaver or game. A more sophisticated approach is to include 
a macro in the e-mail that will run the viral code as soon as the e-mail is opened 
(without the user having to open the viral attachment itself). This approach, 
however, requires an email client that understands and automatically interprets 
and runs such macros. Email viruses, with or without automatic execution of 
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the viral attachment, show propagation patterns very similar to those of active 
worms. 

Worm Spread 
The propagation pattem and autonomous behavior that classifies worms leads 

to a clearly identifiable three-step algorithm: (1) target selection, (2) infection 
attempt, and (3) code propagation (when the infection attempt succeeds). In­
tuitively, the faster a worm can identify and infect new vulnerable targets, the 
faster it can propagate. This is important, since historically it seems that slow 
and "silent" worms do significantly worse than fast and 'loud" worms, in terms 
of the peak number of infected systems. The major reason for the success of 
fast worms is the minimal response time that they provide to take appropriate 
countermeasures. Successful response mainly depends on human factors, since 
it usually involves system administrators learning about new worm events, and 
then identifying and patching or removing any vulnerable systems in their net­
works. Given the limits of human response time, the initial propagation of a 
new worm can proceed unobstmcted, giving fast worms the chance to reach 
a "critical mass", namely, infect enough systems to create and sustain an epi­
demic. In the next section, we will back these intuitive explanations with some 
basic epidemiology. 

The target-selection algorithm is crucial to the success of a worm, and worm 
authors have shown stunning creativity in this part. Proposed or observed 
approaches include (1) random (directed or hitlist), (2) sniffing, and (3) name 
(email addresses, system files, DNS). In addition, many worms have combined 
these three techniques with varying results. The most common, and easily 
implemented, algorithm is random generation of target IP addresses. This 
method has gained popularity on the IPv4 Intemet, since the IPv4 Intemet is 
densely populated. Selecting a random IP address has a high chance (between 
5% to 15%) of hitting an existing machine. A larger address space, like IPv6, 
would mitigate this problem since it would take years to even find a populated 
IP address by random scanning. 

To improve the chance of finding vulnerable machines, many worm authors 
employ techniques in which they direct the random target selection. By pre­
ferring address ranges that are densely populated or address ranges that are 
suspected to contain a large number of vulnerable machines, the worm can 
propagate significantly faster. As an example of the latter case, the vulnera­
bility that the worm exploits might be typical of home computers. The worm 
author would attempt to identify up front which target ranges hold the most 
home computers (dial-up and cable-modem ISPs) and then program the worm 
to prefer targets in those address ranges. Alternatively, the worm can be pro­
grammed to select targets only from a list of known targets. This approach 
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usually is called "hitlist propagation", and is most effectively used as an ini­
tial propagation method before defaulting to random propagation [18]. Such a 
hitlist would contain IP addresses that are known to be vulnerable systems, and 
thus would need to be constructed before the worm was released. Construction 
of hitlists can be done slowly over the course of months by randomly scanning 
the Internet. To avoid attacking the same system multiple times during propa­
gation, the list can be split in half every time a worm instance propagates. One 
half is kept by the infecting system, while the other half is given to the newly 
infected system. Hitlists are an effective way of establishing a critical mass of 
infected systems. 

Scanning activity can be difficult to hide, since intrusion-detection and traffic-
monitoring systems can notice the pattem of one machine actively connecting 
to many other machines. A technique that has been frequently discussed, al­
though not used in implemented worms yet, is passively sniffing the network 
(or inspecting application-level traffic) to identify reachable IP addresses that 
likely are running a service that the worm can exploit. As an example, a con­
tagion worm might have two exploits, one for Web clients and one for Web 
servers. [18]. A copy of the worm on a Web server attempts to infect any Web 
client that requests a page, while a copy of the worm on a Web client attempts to 
infect any Web server to which the client connects. Fortunately, this approach 
is applicable only for some services, since the worm must see enough traffic to 
build up a reasonably sized set of potential targets. For example, if the worm 
only had an exploit for Web servers and was passively sniffing the network to 
identify other Web servers, it might see little or no traffic for any Web server 
other than the one already infected, particularly given the prevalence of switched 
Ethemet. On the other hand, a worm exploiting a vulnerability in email servers 
will have a better chance of succeeding, since email servers contact each other 
to exchange email. As long as users on the local network make moderate to 
heavy use of email, the worm will be able to identify a significant number of 
email servers that it can attempt to infect. As an added bonus for the worm 
author, such an email worm would be equally successful in densely or sparsely 
populated address spaces. 

When the address space is only sparsely populated, random scanning (even 
to construct a hitlist) can be an impossible task, and thus other methods need 
to be employed. In addition to the passive network sniffing discussed above, a 
worm can use DNS names rather than IP addresses to identify systems. When 
a top-level domain name is acquired, DNS servers often will reveal the names 
of the associated mail exchange server and Web server. Even if these names 
are not obtainable directly from the DNS system, the worm author can make 
an educated guess as to what the names of existing systems would be. Imag­
ine that the worm acquired the domain exampledomain,com, A logical nam­
ing scheme would suggest that www,exampledomain,com would be the Web 
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server and mail exampledomain, com would be the mailserver. A list of other 
names would include wwwl, ns, nsl, dns, dnsl, nameserver, ftp, smtp, pop3 
or skywalker. Names from Greek mythology also are very popular. The worm 
author's creativity can be endless, and techniques that have been used for many 
years in password crackers also can be used to construct hostnames. If a site 
has a hostname sparc09, for example, it is worth trying sparcOl, sparc02, ... 
sparc99 as well. Additionally, hostnames can be gleaned from many other 
sources. The 1988 worm [7] used the .rhosts file to obtain hostnames of other 
systems in the network. Similarly, most operating systems maintain small name 
databases as a backup for when the DNS system fails. Other sources can be 
email addresses, which have the basic structure username@domainname, and 
provide domain names for the process above. Obtaining the addresses or names 
of potential targets from information stored on the currently infected machine 
often is called topological scanning. [18] Although most worms today use some 
form of random target selection, the introduction of IPv6 means that it is no 
longer the guaranteed fastest way to propagate. Future worms most likely will 
employ combinations of the above techniques to facilitate their propagation. 
In addition, viruses that use normal network traffic as a carrier will become 
increasingly popular, since they do not need to select their own targets. 

After a target is selected, the worm will attempt to infect it. If successful, 
the worm will run a copy of itself on the newly compromised system. The two 
general approaches to code propagation are the use of a central repository or 
the use of cloning. Although a central repository allows more control (since 
it is contacted at every propagation), it is also at risk of counter attack, effec­
tively stopping worm propagation. Therefore, most worms are simply cloned 
when propagated. Evolutions of the central-repository technique, however, or 
programming worm copies to create their own peer-to-peer network for com­
mand distribution, will provide significant control capabilities for hard-to-stop 
worms [18]. 

Epidemics 

To get a feel for the factors that govern worm (as well as virus) propagation, 
most researchers take to the classic epidemiological equations. These models 
describe biological epidemics quite well, and have proven to be very applicable 
to their cyber equivalents. We will introduce these models here and refer to 
further reading for a more in-depth coverage of the topic. 

In its most basic form, the behavior of a single host is described by the 
SIR (Susceptible-Infective-Recovered) model as shown in Figure 6.2. For a 
given worm, the 5-state (susceptible) indicates the host is vulnerable to that 
worm. The /-state (infective) indicates that the host is infected and spreading 
the worm. The i?-state (recovered/removed) means that the host is not (or no 



154 Chapter 6 

longer) of interest to the epidemic. The reasons for being in the i?-state may 
vary, most often the host simply was not vulnerable to the worm in the first 
place, or the host was patched (whether infected or not). Altematively, the 
host might be disconnected from the network, either to prevent infection or 
further propagation. For any worm, only a marginal portion of all the hosts 
are vulnerable, i.e., in the group of susceptibles S. The majority of Internet-
connected hosts will be in the i?-group, and not be involved in the spread of the 
epidemic. The transitions between the states are given below, keeping in mind 
that the transitions apply to the state of a host for one particular infection only: 

S -^ I (infection) 
I —> R (patching or disconnection) 

And furthermore: 

S —̂  R (uninfected system patched) 
I -^ S (infection removed, but system not patched) 
R —> S (susceptible system reconnected to the network) 
R —> I (infected system reconnected to the network) 

The first two transitions are the most common case, and account for the 
majority of the total number of state transitions made during an epidemic. They 
model the infection of vulnerable systems (S—>I transition), and the patching or 
removal of infected systems (S—>R transition). Many systems generally are not 
vulnerable to a certain worm attack, and such systems do not change state and 
largely remain in their i?-group. The classic epidemic equations from Kermack 
and McKendrick focus on these two transitions (see Daley and Gani [6]) for 
modeling the spread of an infection in continuous time. The population Â  
is constructed from the three groups S, / , and R, which change over time 
as defined by s{t), i(t), and r{t), where ô is the time at which the infection 
begins. Note that N = s(t) + i{t) + r{t), meaning that the population size is 
assumed constant, which is acceptable considering that we defined R to contain 
disconnected, not just patched, systems. The population changes over time can 
be defined as 

Figure 6.2. The SIR (Susceptibles-Infectives-Recovered) model is probably the most popular 
way of identifying the groups in an epidemic, and its transitions form the basis for a broad range 
of mathematical models. 
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(a) ^ - --(3si (b) -^^=Psi^ 7z (c) ^ = 7^ (6.1) 

The parameter /3 models the transition S^I and 7 models the transition I-^R. 
Intuitively, p is the likelihood of one particular infected system contacting (and 
infecting) one particular susceptible system in dt time. Likewise, 7 is the 
likelihood that one particular infected system is patched or disconnected in dt 
time. Putting a number to these factors is not easy since it is different for each 
worm. The general principals discussed in the previous section, however, lead 
to some guidelines. First, the rate at which a worm can infect new systems is 
limited by the rate at which it can contact other systems (which determines /?). 
This rate is either limited by parallelism or by bandwidth, whichever reaches its 
limit first, and these factors are determined by the capabilities of the infected host 
and the target-selection algorithm of the worm. The most effective propagation 
would be when the worm uses up all the bandwidth that the host has to offer, 
thus, the closer a worm can approach this limit, the better its chances are for 
fast propagation. There are several factors involved that make this easier or 
harder. The first factor is the protocol that the worm uses to propagate. When 
the worm uses a fire and forget protocol (like UDP), it most easily can use all of 
the bandwidth since it never has to wait for a retum packet. When a connection-
oriented protocol (such as TCP) is used, however, the worm will need to wait 
for an acknowledgment from the target host before it can send the attack data. 
The choice is not always up to the worm author since most services (and hence 
most vulnerabilities) are built using connection-oriented protocols. 

The latency between initiation and acknowledgment, however, can be filled 
with connection requests to other potential targets when the worm interleaves 
them properly. With appropriate programming, which may include the worm 
generating its own connection requests and bypassing the operating system's 
network stack, the worm can hide most of the latency associated with connection-
oriented protocols. For example, one thread in the worm would craft requests 
packets, transmit those packets, and log the outstanding connection in a table, 
while a second thread constantly would check (sniff) for retum packets and 
attempt to match them with the entries in the table. Every several seconds the 
worm traverses the entire table to fault connection requests that have not had 
a response within a worm-defined timeout period. By making this table suffi­
ciently large, the worm should be able to fill the available bandwidth without 
needing to run thousands of concurrent copies of itself on the infected host. 
Although such an approach makes the worm more complex and more difficult 
to implement correctly, the added burden might be well worth the increased 
propagation speed. 
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Given this discussion, the average time that each connection takes can be 
calculated as 

T = r X tiatency + (1 " ^) X Uimeout (6.2) 

where r is the reachability based on the target-selection algorithm. A perfect 
hitlist would give r = 1, and random target selection on the current Internet 
would give r « 0.1. 

When a worm does use a hitlist for initial propagation, the worm would have 
two different values for (3, one value for the hitlist part of the propagation, and 
a second smaller value for the remaining (random) part of the propagation. In 
addition, IQ (the initial number of infected systems) for the second part would 
be the number of infected systems after the hitlist propagation is complete. For 
completely random target selection, /? can be defined as 

13= ^ x - (6.3) 

where N is the size of the address space (2^^ in case of IPv4) and a is the number 
of concurrent scanning threads. In the case of a worm that implemented a fully 
parallel scan through the construction of its own request packets, a might be 
defined quite high (even if the worm itself only used the two threads described 
above). In the equations, dt is the same as the unit of r, meaning that if r is 
calculated in seconds, dt in Equations 6.1 also is in seconds. For a perfect hitlist 
(where every IP address is indeed a susceptible host), we instead could define 
/?as: 

P=^><- (6.4) 
OQ T 

where SQ is the number of systems that are initially susceptible (assuming 
that the hitlist holds all susceptible systems). The second factor - essentially 
calculates the average number of successful connections a single infected host 
can complete in dt time (not all of those are necessarily susceptibles). When 
network bandwidth is the limiting factor, rather than worm parallelism, the 
second factor can be replaced with a division of the available network bandwidth 
by the size of the infection packetstream. 

The 7 parameter (the I-^R transition) can be harder to model since it mostly 
depends on actions of the system administrator. (See Figure 6.3.) It will take 
security personnel some time to discover a newly launched worm, and then 
they will need to analyze the worm and possibly write a patch. System admin­
istrators then must leam about, download, and install the new patch. Another 
option for system administrators is the disconnection of infected machines from 
the network. Both processes, patching and disconnection, are hard to model, 
and likely are not governed by a fixed rate. Note that in the Kermack and 
McKendrick model, the transition is dependent only on the current size of the 
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Figure 6.3. Spread of Code Red v2 versus the epidemic equations for different values of 7. 
The vertical axis represents the total number of infected systems at any given time, and the 
horizontal axis is the time in hours. Parameter /3 was calculated based on Equations 6.2 and 6.3 
and the characteristics of Code Red v2 on a per-second basis: Code Red v2 used 100 concurrent 
scanning threads (a = 100), with an average reachability of r = 3^ and a default timeout on no 
response of 21 seconds (based on the default Windows NT timeout, exponential back-off with 
3 retries after 3, 6, and 12 seconds). This gives (6.2) r = 3^ x 1 + (1 - 3^) x 21 = 19. The 
address space was IPv4, and thus N = 2^^ gives (6.3) 13 ^ ,^ x ^ = l.2?> x 10"^. Notice 
how the total number of systems infected (surface area under the graphs) decreases with higher 
values for 7. Code Red v2 data was collected at TRIUMF Canada (http://www.triumf.ca), which 
generously made the data available to us for this research. 

group of infected systems, which could be too simple a dependency to model 
the behavior of security personnel and system administrators. 

Additional Transitions. The other transitions in the SIR model are interesting 
for further study. The S-^R transition models uninfected systems that are 
vulnerable to the worm under consideration, but get patched or disconnected 
before they are infected. Although this process might be underway before the 
worm is launched (i.e., a patch for the worm's exploit is available a priori), 
only its effect on the worm should be modeled. Patching that occurs before the 
worm is released simply decreases 5o. Below is an extended set of differential 
equations taking into account all six transitions from the graph: 
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(6.5) 

(6.6) 

(6.7) 
ai; 

The S—>R transition is governed by the parameter 77 and is taken to be de­
pendent on the size of the group of infectives over time. This is parallel to 
the I-^R transition, and indicates that administrators will patch uninfected sys­
tems, as well as infected ones, with greater urge as the worm propagates. It 
can be argued, however, that it should be multiplied by the size of the group of 
susceptibles as well, since the chance that administrators patch or disconnect 
uninfected systems decreases as there are fewer systems uninfected. The I—>S 
transition (represented by 6) also is taken to increase and decrease as the group 
of infected systems grows and shrinks. This means that the larger the group of 
infected systems, the greater the number of systems that will be cleaned, but not 
patched. A good example of this was the propagation of the Code Red v2 worm. 
Although Code Red v2 could be removed from a system by rebooting, the sys­
tem would be susceptible to re-infection after the reboot. The R—>S transition 
{C, in the equations) is most likely due to uninfected, yet susceptible, systems 
being taken off-line and then reconnected to the network later. The R—>I tran­
sition (modeled by e) will be small, representing the infected systems that are 
taken off-line and later reconnected, allowing them to continue spreading the 
infection. One final note on these four transitions is their relative insignificance 
compared to (3 and 7. Even for very small values of 9, e and C the equations 
can be unrealistically imbalanced. The interested reader is encouraged to try 
different values for all parameters and see how the epidemic curve behaves. 

3. RESPONSE 

The best way to respond to an epidemic is to prevent it in the first place. His­
tory has shown, however, that there have always been unpatched vulnerabilities. 
Moreover, with software getting more and more complex, it is unlikely that this 
will change. Software vendors put significant effort into distributing patches to 
mend security holes in their software, but not nearly enough users install such 
patches promptly. Often people are not aware of security updates, and many 
others get tired of the continuous stream of updates, inadvertently leading to 
disregard. Patching does decrease the size of the pool of susceptibles, however, 
effectively limiting the damage any worm can do. The most obvious solution 
would seem to be automated patching services, although the necessary basis of 
trust is lacking. Few security experts would trust another piece of software to 
secure the system, arguing that such a service would itself be a target for attack, 
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The scenario is clear; once the security service is compromised, specifically the 
central server from where the patches actually come, the attackers can distribute 
a patch that installs a vulnerability that later can be exploited in a massive worm 
attack. It would even be possible to distribute the initial copies of the worm 
though such a service and use it as the initial group of infectives, creating a very 
broad critical mass. Needless to say, such a situation would be devastating. 

Thus, although automated patching does have its place, automated response 
after the worm is launched must be a critical part of an effective defense. When 
we consider the epidemic equations, the two parameters that govem the majority 
of all transitions are (5 and 7. An epidemic can be reduced by either lowering 
(3 or increasing 7. Figure 6.3 shows how increasing the value of 7 reduces 
the number of hosts affected by the epidemic (surface area under the graph). 
We now will discuss several ways of influencing these parameters as a form of 
active response to worms. 

Increasing 7. A common way of avoiding communication with infected 
systems is the "blacklist*'. This is a technique often used within the security 
community to filter out IP addresses that have shown aggressive behavior in 
the recent past. A similar technique could be used to collect IP addresses of 
systems that are known infectives. This list would grow as the worms propa­
gate. Routers and firewalls across the world would have to implement filtering 
rules to disallow traffic from any of these IP addresses. This effectively cuts 
infected systems off the network by blocking them from communicating, there­
fore increasing 7. The R-group will increase, and there will be relatively more 
disconnected, infected systems than normal. Problems with this approach are 
the implementation requirements. Moore et al. [13] conclude that practically 
all of the Intemet's major connections need to employ blacklist filters for this 
technique to be effective. In addition, the list of blocked IP addresses needs 
to be continually updated and, as the list grows, it will incur a significant load 
on all the participating routers and firewalls. Additionally, a fast and accurate 
detection system needs to be in place to determine which systems should be 
added to the blacklist. Another common problem that this technique poses is 
the ability for attackers to perform a DOS attack on arbitrary hosts or networks. 
Attackers can spoof malicious traffic, making it seem like it came from a par­
ticular network, and get the worm response system to blacklist or filter out all 
traffic from that network, effectively disconnecting it from the Intemet. 

Reducing (5, Since (5 govems the growth of the worm, worm authors will try 
to maximize (5 to speed up the propagation, the security community, in turn, 
must try to minimize it. A technique that has been discussed by Williamson [19] 
is to reduce the number of new connections that a host may initiate per times-
lice. A connection is counted as new when it connects to an IP address that it 
was not communicating with in the recent past. Known IP addresses (i.e., those 
with which a machine communications often, such as mail or DNS servers) are 
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stored in a list of a given size and will never incur a delay. For the unknown IP 
addresses, however, the connection limit is imposed incrementally. A worm, 
which created a list of hundreds of IP addresses to contact, would incur a de­
lay between itself and the previous connection request. The connection limit 
is suggested at five new connections per second, which is the effective scan­
ning speed of the Code Red v2 worm, meaning that only the fastest of worms 
will be hindered.^ An additional argument for implementing this method is 
the minimal overhead it puts on the system, while putting a direct limit to /?. 
Some server systems, however, would suffer badly from this method, since they 
usually have more active outbound connections. Consider, for example, DNS 
or email servers, both of which will connect to many other systems based on 
the name queries or email messages sent by the users. A similar difficulty is 
encountered on multi-user systems, where multiple users are logged on at the 
same time. This technique works better on ''static" servers like webservers that 
mainly listen for incoming connections. Additionally, it may be possible for a 
worm to circumvent the rate-limiting mechanisms by crafting packets instead 
of traversing the TCP/IP stack. 

A second technique is "traffic content filtering". It is based on the idea 
that routers and/or firewalls will test all traffic flowing through against a set of 
known, viral signatures. When a malicious signature is detected, the packet is 
dropped, effectively limiting the propagation of malicious code and decreasing 
/?. The technique, however, requires very elaborate signatures and matching on 
port/protocol combinations, since the sheer volume of traffic traveling through 
large routers creates a fair possibility that smaller signatures would be matched 
in regular, bona fide traffic. As Moore et al. discuss [13], for application during 
a new worm event, this approach requires the signature to be generated as early 
as possible. Signature-capable routers would need to be in widespread use, as 
well as a mechanism to quickly and securely distribute new signatures. Once 
again, this defense system allows for a DOS attack when an attacker is able to 
insert a falsified signature that would block all traffic for a particular service. 
In addition, this system would put a tremendous overhead on critical network 
routers on the Intemet, since signature matching (especially when the pool of 
signatures is large) is very processor intensive. Combined with the need to 
re-assemble each fragmented packet, to avoid overlooking fragmented attacks, 
this cure might be difficult to deploy widely. 

Conclusion. The general mantra for this section is the need for very early 
detection of new worm events. Whatever the response will be, it will never 
be useful if the alert and classification come too late. Considering that the 
Sapphire/Slammer worm [11, 1] propagated in just several minutes, it is clearly 
not humanly possible to generate the alerts. Although automated alert and 
response systems would be up to the task, they are at the risk of becoming 
the target themselves, potentially being more dangerous than any regular worm 
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could ever be. It seems, therefore, that there will always remain a delicate 
balance between human interaction and machine automation. We can envision 
a system in which the monitoring and detection is done automatically, such that 
alerts and signatures are generated for a human first responder to assess. Next 
the human responder can decide which (if any at all) of the active response 
mechanisms to activate, allowing an appropriate response to the event. 

4. EARLY DETECTION OF SCANNING WORMS 

Our prototype system for detecting scanning worms collects ICMP Desti­
nation Unreachable (or ICMP-T3) messages from instrumented routers, aggre­
gates these messages to identify scanning activity, and then looks for pattems 
of scanning activity that indicate a propagating worm. The system, whose ar­
chitecture is shown in Figure 6.4, has two major components, the Dartmouth 
ICMP BCC: System or DIB:S, which aggregates the ICMP-T3 messages into 
scans alerts, and our Tracking and Fusion Engine or TRAFEN, which identifies 
propagating worms based on their scanning activity. TRAFEN, which uses a 
Multiple Hypothesis Tracking [16] (MHT) framework, assigns likelihoods to 
sets of alerts or observations that appear to be correlated, thus forming tracks of 
related observations. By defining the likelihood functions so that observations 
are highly correlated only if they appear to represent worm activity, TRAFEN 
can quickly and accurately detect a scanning worm. In this section, we present 
background on ICMP-T3 messages, describe the DIB:S and TRAFEN compo­
nents, and examine the detection capabilities of the prototype system. 

ICMP-T3 Messages and Instrumented Routers 

When a source machine attempts to contact a nonexistent or unreachable 
machine, an Intemet router, somewhere between the source machine and the 
target network, will determine that the packets can go no farther. This router, 
if configured to do so, will send an ICMP-T3 message to the source machine. 
Scanning worms, through the process of probing randomly selected IP ad­
dresses, will attempt to contact many unreachable or nonexistent machines, 
such as machines protected by a firewall or addresses from an unassigned part 
of the Intemet. If this scanning activity produces enough ICMP-T3 messages, 
we can infer the presence of a propagating worm through its unique scanning 
pattem, specifically, the growth in scanning activity as the worm infects more 
and more machines. 

Table 6.1 shows the responses we received when we probed selected address 
ranges on the Intemet. The data, which was obtained for a separate project, is 
skewed slightly, since we scanned only populated address ranges. Many address 
ranges simply are unassigned, and contain no reachable machines at all. The 
two most significant numbers are the high response rates (25% average) and the 
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Figure 6,4. The combined DIBS:S and TRAFEN system. ICMP Unreachable messages with 
the same source or destination address are sent to the same analysis station. 

Requests 
No response 
Echo replies 
ICMP-T3 
Other 

PING 
24.[0-128]/16 

1628977 
1258388 
244445 
77361 
48783 

100% 
77.3% 
15.0% 
4.7% 
3.0% 

PING 
[209-211].[32-64]/16 
6487973 
4911425 
636135 
398841 
550472 

100% 
75.7% 
9.8% 
6.0% 
8.5% 

TCP/80 
[209-211].[32-64]/16 
1171298 100% 
800636 68.4% 
37707 3.2% 
104555 8.9% 
228400 19.5% 

Table 6.1. Responses to random probing on the Internet - ICMP echo request on the 24.0/16 -
24.128/16 networks. ICMP echo and TCP port 80 request on the 209.32-64/16 - 211.32-64/16 
networks 

numbers of ICMP-T3 messages retumed (6.2% average). The latter number, 
although seemingly low, means that a significant fraction of scan attempts will 
produce an ICMP-T3 message at some router. Thus, if we can collect and 
analyze ICMP-T3 messages from multiple, distributed routers, we will have 
enough messages to detect a worm's unique scanning activity. 

Due to privacy concerns, we have chosen not to sniff for ICMP-T3 messages, 
but instead to ask network providers and other organizations to forward the 
ICMP-T3 messages from their routers to our analysis systems. These forwarded 
messages are essentially a Blind Carbon Copy (BCC) of the original ICMP-
T3 message, which is a legitimate action since the generating router was a 
participant in the original conversation. Although site policy may require that 
no response be sent to the source machine, the router can remain silent to 
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the outside world while still sending the ICMP-T3 messages to the analysis 
systems. In particular, there was no response to 75% of our probes, but many 
of these probes may have gone through routers that were instructed to silently 
ignore unsolicited traffic. These routers could easily forward ICMP-T3s to the 
analysis systems, while still dropping the original packet without a response 
to the sender. ^ This approach allows broader coverage, while still respecting 
the security policies of individual organizations. We currently provide router 
patches for the LINUX kemel to provide the ICMP-T3 forwarding ability. 

ICMP-T3 messages come in several different flavors, [14] two of which are of 
particular interest for detecting scanning activity: Network Unreachable (Code 
0) and Host Unreachable (Code 1). A router generates a Network Unreachable 
message when a desired network cannot be reached. This might happen when a 
packet is sent to an IP address that resides in an unassigned portion of the Intemet 
address space. Far more commonly, a router generates a Host Unreachable 
message when a router cannot find the addressed host in its network. This 
might happen when the packet could be routed to the correct network, but the 
router responsible for that network could not locate a machine in its network 
that bears the requested IP address. 

The feature that makes analyzing ICMP-T3 messages useful is their message 
body. When a router builds a Destination Unreachable message, it includes the 
IP header, and at least the first eight bytes of the body of the original message 
(i.e., the message that provoked the ICMP-T3 response) as the pay load of the 
ICMP-T3 message. For TCP and UDP, this includes the source and destination 
port numbers. Scanning systems thus will reveal both their IP address and their 
target port. 

DIB:S 

The primary task of DIB: S is to collect ICMP-T3 data and identify blooms of 
scanning activity. The instrumented routers, described in the previous section, 
send carbon copies of their ICMP-T3 messages to one or more collectors, which, 
in tum, will forward the messages to one or more analyzers. Each analyzer is 
assigned an IP address range within which it will look for scanning activity, 
and more analyzers can be spawned dynamically as needed (with appropriate 
updates to the assigned address ranges). When an ICMP-T3 message arrives at 
a collector, the collector extracts the embedded content, sends one copy of the 
message to the analyzer associated with the embedded source IP address, and 
sends another copy to the analyzer associated with the embedded destination 
IP address. Depending on the number of analyzers and the particular source 
and destination IP addresses, the two copies might go to the same analyzer, in 
which case only one copy is actually sent. An analyzer will see all information 
about a specific range of IP addresses, regardless of the routers from which the 
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information came. Organizing the analysis by source and destination address, 
rather than the generating router, is critical, since randomly scanning worms 
will hit many different networks, and the resulting ICMP-T3 messages will 
come from many different routers. Thus, the scanning activity is much more 
visible when viewed across routers, rather than at a single router. 

The analyzers keep a history of the ICMP-T3 messages received for a par­
ticular IP address over the last Ai seconds. DIB:S will generate alerts in six 
cases. Only two are relevant to worm detection - in the last Ai seconds, on 
the same port p and using the same protocol P, one host has contacted N dif­
ferent IP addresses (Case 1), or one host has been contacted by N different 
IP addresses (Case 2). These are classical scanning patterns, both observed 
during worm propagation, although Case 2 also can indicate a failed server for 
which requests keep arriving. The other four cases, which involve one machine 
contacting another single machine N times or on N different ports, generally 
are not observed during worm propagation, but instead during service failure 
or manual attacks. The DIB:S alerts contain the case number, the embedded 
source and destination IP address, the protocol, and, if available, the source and 
destination port numbers. Analyzers will not issue the same alert twice within 
Ai seconds, If one IP address is scanning two different ports, however, DIB:S 
will issue two separate alerts. 

The proper values for the parameters N and Ai depend on the number of 
participating routers, but several general things can be said. A lower value of A'̂  
increases the chances of false positives, and any value below N = A makes the 
system unusable. Although higher values will lead to more accurate detection, 
the moment of detection will be later, possibly too late. Experimentation has 
shown that 5 < A/" < 15 gives the best results. Similarly, smaller values for 
At will give a very inaccurate view of events, since alerts on fast scanning 
IP addresses will be frequently re-issued, and slower-scanning worms will not 
be detected at all. Higher values of At, however, put a serious performance 
penalty on the analysis system since each packet has to be remembered for 
a longer time. Proper values during experimentation were determined to be 
300 < At < 14400. We will consider these two parameters in more detail in 
a later section. 

TRAFEN 
TRAFEN (TRacking And Fusion ENgine) was not implemented specifically 

for the detection of active worms, but instead is a prototype process query sys­
tem [3]. A process query system (PQS) is a software system that allows users to 
interact with multiple data sources in new and powerful ways. In a traditional 
DBS, users express queries as constraints on the field values of records stored 
in a database or arriving from a sensor network, as allowed by SQL and its 
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variants for streaming data. In contrast, a PQS allows users to d^fmo. processes, 
and to make queries against databases and real-time sensor feeds by submitting 
those process definitions. The PQS parses the process description and performs 
sequences of queries against the available data sources, searching for evidence 
that instances of the specified process or processes exist. Depending on the 
capabilities of the PQS and the problem domain, the process description might 
be specified as a rulebase, a Kalman filter [4], a Hidden Markov Model [15], 
or any of a number of other representations. A major innovation of the PQS 
concept is the virtual process-description machine that it presents to the pro­
grammer, Such a system abstracts away the details of observation collection, 
management, and aggregation, and allows the developer to focus on the task of 
defining and implementing an appropriate process description. 

TRAFEN parses the process model, subscribes to the required event streams 
dynamically, and then uses traditional tracking algorithms to match incoming 
events with the process model, most commonly using an implementation of 
Reid's multiple hypothesis tracking (MHT) algorithm [16]. Reid's algorithm 
keeps multiple hypotheses, where each hypothesis is a set of tracks of related 
events. Each event is represented only once in each hypothesis, and each hy­
pothesis aims to represent an accurate view of the world. Each new incoming 
event (in our case the DIB.S alerts) is added to every track in every hypothe­
sis, thus creating an exponential number of new hypotheses. Next, the process 
query is used to assign a likelihood, representing the accuracy of the track under 
the current process model, to all the tracks in all the hypotheses. The likeli­
hood of each hypothesis then is calculated as the combined likelihood of its 
tracks. Finally, the hypotheses are ranked by likelihood, and only the topmost 
hypotheses are kept, with the rest pruned to keep the exponential growth under 
control. 

To apply TRAFEN to a particular problem domain, the developer must define 
an XML message format for the observations, and must provide (1) a definition 
of "process state", and (2) a function that measures the likelihood that particular 
observations are correlated (i.e., the likelihood that an observation is related to a 
previously established track). For our active-worm detection, the observations 
are the scan alerts from the DIB.S analyzers, and for simplicity, the proba­
bility assigned to a track is the probability that the track represents a worm. 
TRAFEN subscribes to the DIB:S Alert stream and picks out the Case 1 and 
Case 2 alerts (since those are the most relevant for worm detection). TRAFEN 
passes the filtered observations to a dynamically loaded, simplified version of 
Reid's Multiple Hypothesis Tracking algorithm [16]. The tracking algorithm, 
if it is receiving the first observation ever, will create a one-observation track 
with a very low probability. The low probability reflects the fact that a single 
observation of scanning activity does not by itself indicate a worm. For subse­
quent observations, the MHT algorithm iterates through each active hypothesis 
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and each track inside the hypotheses. For each track, it calculates the likelihood 
that the observation is related to a track, or, in other words, that a scan represents 
a continuation of the worm scanning activity represented in the track. 

The likelihood calculation, then, is the heart of the MHT algorithm, and in our 
current implementation, is essentially rule-based. After initial experiments, we 
arrived at three straightforward rules. Rule 1: If a machine scans the same port, 
using the same protocol, as the machines already in a particular track, the type 
match is high (0.9); otherwise the type match is low (0.1). This rule captures the 
fact that an active worm typically scans for and exploits one particular vulnerable 
service, although the rule could be extended easily to take into account those 
worms that scan two or more related service ports. Rule 2: If a machine 
performs a scan only a short period of time after a previous series of scans, the 
time match should be higher than if the scans occur farther apart, which captures 
the fact that an active worm must scan continuously if it wants to propagate 
quickly. We assign a time match of 1.0 if the new scan occurs 10 seconds or 
less after a previous scan, a time match of 0.0 if a new scan occurs 300 seconds 
or more after a previous scan, and a time match scaled linearly between 0 and 
1 if the scan is between 10 and 300 seconds after the previous scan. Although 
the exact thresholds have little effect on tracking performance, these thresholds 
are best for fast-moving worms. Rule 3: Finally, if the type match is low, the 
overall likelihood that the new scan is related to the tracked scans is set low, 
again 0.1. Two scans on different destination ports likely do not represent the 
same active worm, no matter how closely together those two scans occur in 
time. If the type match is high, the overall likelihood is set between 0.675 and 
0.925, scaled linearly according to the time match. Again, the exact values of 
0.675 and 0.925 do not have a significant effect on tracking performance, as 
long as the high end of the range is greater than our worm detection threshold 
in later sections. Since the probability of an initial single-observation track is 
set to a low value, and since the track likelihood is a moving average of these 
individual likelihoods, the rules ensure that it takes several observations for the 
track probability to increase significantly, reflecting the fact that only a series 
of scans can indicate a worm. 

Overall, the TRAFEN framework allowed us to produce a working worm 
detector (given the DIB:S input) in only a few hours, and provides the flexibility 
to extend the tracking system later through more complex models. Next, we will 
examine the detection performance of the current ruleset, and discuss extensions 
to the current DIB:S/TRAFEN system. 

Simulating Worms 
DIB:S and TRAFEN currently are deployed at Dartmouth College, with in­

strumented Dartmouth routers sending their ICMP-T3 messages to our DIB:S 
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installation. This initial local deployment is not enough to analyze the detec­
tion performance of the system, however, and we turn to simulated worms for 
that purpose. We developed two different worm simulations, one small-scale 
and one large-scale. The small-scale simulation allows us to run hundreds of 
worms through the DIB:S/TRAFEN system in rapid succession, allowing us 
to explore the parameter space and fine-tune the system for specific environ­
ments. The large-scale simulation is essentially the same, but it simulates a 
worm propagating over the entire Internet, allowing system evaluation under 
more realistic conditions. The volume of ICMP-T3 messages generated in 
the large-scale simulation can be massive, and take significantly longer to run 
through the DIB:S/TRAFEN system. The large-scale simulation verifies the 
results obtained with the small-scale simulation, however. 

Small-Scale Worm Simulation Our small-scale worm simulator is designed 
to run worms on address spaces of one million addresses or less. The number 
of reachable hosts and the number of susceptible hosts is configurable, and each 
susceptible host is simulated individually. We assume that each reachable sys­
tem is reachable from all connected hosts, using a given latency distribution, 
and we do not explicitly simulate routers. Instead, the generation of ICMP-
T3 messages is done based on address ranges. For example, when the router 
coverage is set to 10%, ICMP-T3 messages are generated for a fixed 10% of 
the addresses (and only for those addresses within the 10% that do not corre­
spond to a reachable host). For a random address probe, the simulation first 
checks whether the address is associated with a vulnerable host, then whether 
it is associated with a reachable host, and finally, if not reachable, whether the 
address is covered by an instrumented router. When the probe hits a vulnera­
ble host, the worm propagates to that host, and the newly infected host starts 
scanning as well. In our experiments, typical network parameters are a space 
of 10^ - 10^ addresses of which 5-15% are reachable and 100-1000 hosts are 
vulnerable. The only worm-specific parameter is the worm's scan rate, and the 
worm selects random target addresses uniformly distributed through the address 
space, with the random seed for each worm instance derived from the current 
(simulated) time and the address of the infected machine. 

Large-Scale Worm Simulation The large-scale worm simulator, developed by 
fellow ISTS Researchers Michael Liljenstam, Yougu Yuan, BJ Premore, and 
David Nicol [10], aims to be an accurate representation of the current Internet. 
The address space contains 2^^ addresses and is subdivided into Autonomous 
Systems between which simulated BGP-routers route traffic. The simulation 
is divided into two tiers, the macroscopic level and the microscopic (or net­
work) level. The BGP-routers are simulated at the macroscopic level, where 
a stochastic version of the epidemic model is used to model the total flow of 
infection packets between autonomous systems. At this level, only the size of 
the flow and the source of the flow (a distribution of autonomous systems) is 
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simulated. Then, for several representative (1-128) autonomous systems, the 
actual networks and the infected, susceptible, and reachable hosts are simulated 
at the microscopic or packet level. The ICMP-T3 messages are generated at the 
border of participating autonomous systems, under the assumption that those 
autonomous systems are connected by a single gateway. The actual IP addresses 
of the infected systems are used to ensure accurate simulation of the expected 
traffic. The ICMP-T3 forwarding routers only look at arriving scan packets, 
sending ICMP-T3 messages to a real DIB:S/TRAFEN system when a scan hits 
an IP address that was not represented by an actual host. The generation of 
ICMP-T3 messages is rate limited at 3 per second per router. 

Detection Capabilities 

Small-Scale Worm Simulation, Figure 6.5 shows the detection performance 
of DIB:S and TRAFEN for a simulated Sapphire/Slammer worm. The y-axis is 
the percentage of vulnerable machines that are infected at the time of worm de­
tection, and the x-axis is the router coverage. Each line in the graph corresponds 
to a different network size. For each network size, 75% of the addresses were 
unreachable, 25% of the addresses were reachable, and 0.1% of the addresses 
were reachable and vulnerable. For example, for a network size of 500,000 
unique addresses, 375,000 addresses are unreachable, 125,000 are reachable, 
and 500 are vulnerable. The reachable 25% corresponds to our observed data 
from the scans of selected populated address ranges, while the vulnerable 0.1 %, 
although large, corresponds to a vulnerability in Web, mail, database, or other 
widely installed software. Each data point in the graphs is an average across 
ten simulated worms, and each simulated worm probed 100 target addresses 
per infected machine per second, slightly lower than, but consistent with, the 
average Sapphire/Slammer scan rate. DIB:S had to receive N = 5 ICMP-T3 
messages for the same IP address before issuing a scan alert to TRAFEN, and 
DIB:S maintained a history window of A^ = 300 seconds. Each simulation 
run continued until the worm infected all vulnerable machines, and TRAFEN 
was assumed to have detected the worm as soon as the probability of a track 
containing the relevant scanning activity went above a likelihood threshold of 
0.9, a constant value used in all experiments. 

As seen in Figure 6.5, the detection performance improves significantly as 
the router coverage increases from 1% to 2%, but then levels off at different, 
roughly constant, values for the different network sizes. For a network size of 
500,000, for example, the infection percentage starts at a peak of 5% when the 
router coverage is 0.5, but drops quickly to around 2% as the coverage increases. 
The straightforward reason is that, for router coverages of 2% and higher, DIB:S 
receives enough ICMP-T3 messages to reliably detect the scanning activity of 
the first few infected machines. Thus, at these higher coverages, the detection 
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Figure 6.5. Detection performance with the small-scale simulation. The x-axis is the router 
coverage, and the y-axis is the percentage of vulnerable machines already infected at the time 
that an active worm is detected. 

always will take place within a fixed number of infected machines, no matter 
whether the coverage is 2% or 10%. For router coverages below 2%, however, 
DIB:S will not receive enough ICMP-T3 messages to reliably detect all scanning 
activity, and correspondingly more machines will be infected before DIB:S can 
conclude that a worm is present. The critical message of this graph is that 
router coverage of 2% provides just as good detection performance as higher 
coverages, meaning that we need only a modest number of instrumented routers, 
and that we need only transmit and process a manageable volume of ICMP-T3 
messages. 

In addition, the detection performance improves as the network size in­
creases. The explanation is simply that DIB:S detection performance is de­
pendent not so much on the percentage of machines infected so far, but on the 
absolute number of infected machines and the amount of scanning activity that 
the worm generated while infecting those machines. Overall, in terms of our 
ability to detect the worm early and eventually protect the largest percentage 
of vulnerable, but not yet infected, machines, we can keep the router coverage 
fixed, and still do better and better as the network size increases. Alternatively, 
for a larger network, we can achieve the same detection performance with a 
smaller router coverage. 

Large-Scale Simulation. The large-scale simulation allows us to explore 
these network-size results further. The large-scale simulation used 2"̂ ^ ad­
dresses, and instrumented routers were placed at the border of class-B sized 
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networks. Each of those class-B networks were assumed to have 50% unused 
address space, and each router was rate limited at 3 ICMP-T3 messages per sec­
ond. Two worms were simulated for router coverages varying from 1 class-B 
participating router up to 64 class-B participating routers, The first worm, a sim­
ulated version of Code Red v2, scanned at a rate of 5.65 scans per second with 
a population of 380,000 susceptible hosts, and the second worm, a simulated 
version of Sapphire/Slammer scanned at a rate of 4000 scans per second with 
a population of 120,000 susceptible hosts. The DIB:S parameters were N = 5 
and At = 7200 for the Code Red v2 worm, and iV = 5 and At = 3600 for the 
Slammer/Sapphire worm. The higher values of Ai are necessary since the num­
ber of instrumented routers is small compared to the size of the address space. 
Although the number of incoming ICMP-T3s was very large, the chances that 
one infected system hits the small group of participating routers several times 
is minimal. Therefore, accurate detection over time requires larger values for 
At. The lower At value for Sapphire/Slammer allowed faster simulation runs, 
but did not affect detection performance. Finally, for simulation convenience, 
the recovery parameter 7 was set to 0. 

Figure 6.6 shows the resulting detection performance as a function of router 
coverage. For 2 class-B instrumented routers (which corresponds to a 0.003% 
router coverage). Code Red detection occurs at 0.2% infection of the suscep­
tible population, dropping to 0.03% for 16 class-B networks. For 4 class-B 
networks. Slammer detection occurs at 0.01% infection of the susceptible pop­
ulation, dropping to 0.005% for 16 class-B networks. The drastic increase in 
detection performance compared to Code Red v2 is due to the vastly increased 
scanning speed of the Sapphire/Slammer worm, and the smaller number of sus-
ceptibles (i.e., more scans were necessary to find one vulnerable system). An 
important note, however, is that TRAFEN failed to detect the Slammer worm 
with a coverage of 1 or 2 class-B networks, since at these coverages, even 
the overwhelming scanning activity of Slammer did not cause those routers to 
generate enough ICMP-T3 messages (due to the ICMP-T3 rate limiting). 

The simulations for the Code Red v2 worm were run again with a simulated 
background noise of 1.41 coincidental random probes on the worm's target 
port per class-B network per second, which corresponds to the background 
noise observed at the start of the real Code Red v2 worm infection. In other 
words, participating routers would see, on average, 1.41 unrelated scan packets 
per second, and thus might generate ICMP-T3s that have no connection with 
the propagating worm. The results, also shown in Figure 6.6, show that this 
modest noise level does not affect detection performance. Similar noise results 
have been obtained for Slammer/Sapphire, although not yet with the large-scale 
simulation. 

N and At. There are many parameters within the DIB:S and TRAFEN 
systems that affect detection performance. Two of the most important are 
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Figure 6,6, Detection performance for the Internet-scale simulated Code Red v2 and Sap­
phire/Slammer worms. 
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Figure 6.7. Detection performance for different values of Â , the number of ICMP-T3 messages 
required for the generation of a scan alert. 

Â , the number of ICMP-T3 messages per generated DIB:S alert, and At, the 
size in seconds of the DIB:S history window. Figure 6.7 shows the detection 
performance for a small-scale Sapphire/Slammer simulation as a function of A ,̂ 
while Figure 6.8 shows the detection performance as a function of At. For both 
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Figure 6,8, Detection performance for different values of At, the length, in seconds, of the 
history window over which ICMP-T3 messages are aggregated. 

graphs, the network size is 500,000, and the number of vulnerable machines is 
500. When N is varied, A^ is held fixed at 300 seconds, and when At is varied, 
N is held fixed at five ICMP-T3 messages per alert. In Figure 6.7, we see that 
detection performance decreases as A'̂  increases, particularly when the router 
coverage is only 1%. At lower coverages and higher values of A ,̂ DIB:S might 
not see enough ICMP-T3 messages to actually generate an alert, and scanning 
activity will go unreported. In Figure 6.8, we see that detection performance 
is very poor for the lowest values of At, and then after an initial improvement 
decreases steadily as At increases. The very poor performance is due to the 
fact that when the history window is too small, ICMP-T3 messages will age out 
before enough messages are received to produce an alert. The steady decrease 
in performance after the initial improvement is arguably illusory, since when At 
is small, DIB:S will generate multiple scan alerts for the same source address, 
whereas when At is large, DIB.S will generate only one scan alert per source 
address (during the worm's initial propagation). Although the multiple alerts 
per source address drive the track probability in TRAFEN above the detection 
threshold quite quickly, multiple scans from the same source address are not, 
in fact, a reliable indicator of worm activity. They could merely indicate an 
intense, but manual, scanning effort. In the current system, therefore. At must 
be kept high enough to avoid ''duplicate" alerts within too short a time period. 
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Future Extensions 
The current ruleset is simple enough that it can lead to false positives. Al­

though our experiments have shown that random scanning noise does not affect 
detection performance, not all scanning noise is random. For example, attack­
ers constantly scan TCP port 80 looking for vulnerable Web servers. If many of 
these scans coincidentally occur within seconds of each other, TRAFEN incor­
rectly will detect a worm that exploits Web servers. The goal of an improved 
TRAFEN ruleset is to quickly detect an exponential increase in scanning ac­
tivity (i.e., detect the worm) without incorrectly classifying non-exponential 
behavior as exponential (i.e., avoid false positives). We must detect the worm 
even if it is spreading slowly, and we must separate simultaneous exponential 
and non-exponential processes in case a worm and a human attacker coinciden­
tally are targeting the same port at the same time. There are several modeling 
techniques that can be used to detect a wide range of worms while still min­
imizing false positives, but we are particularly interested in Hidden Markov 
Models [15], which (loosely speaking) allow a system to infer the state of an 
unobservable generation process through statistical properties of the observed 
effects of that process. Hidden Markov or other models could be defined for 
the scanning activity associated with worms, machine failures, and the simul­
taneous, but unrelated, activity of individual attackers. The MHT algorithm 
then could hypothesize about the type (worm, host failure, coincidental) of the 
observed scanning activity, rather than just the likelihood that the scanning ac­
tivity represents a worm. Additionally, these new models can be applied at 
different time scales, allowing detection of worms spreading at arbitrary rates, 
thus removing the time dependency which currently makes DIB:S/TRAFEN 
most effective only for fast spreading worms. 

Simultaneously, we are working to deploy additional instrumented routers 
within the networks of selected partners. As seen with the large-scale simu­
lation results, a coverage of 4 to 16 class-B networks is enough for accurate 
detection. Achieving such coverage may be administratively difficult, but is 
entirely achievable with the cooperation of only a few medium- to large-sized 
organizations. Altematively, large portions of the Internet address space are 
unassigned. If these unassigned address ranges were routed to a system that 
provided no response to the sender, but merely forwarded appropriate alerts to 
DIB:S/TRAFEN, we would gain significant data with minimal risk o f noise". 
Unassigned address ranges never should be contacted in normal Internet com­
munication. 

In terms of scalability, if DIB:S is installed at a single, central location, the 
network bandwidth will limit the number of incoming ICMP-T3 messages. This 
limit is not as serious as it might appear, however. Even with 64K instrumented 
routers covering 4 Class-A networks, for example, the routers would generate 
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only approximately 200 Mbps of ICMP-T3 messages (at a three per second 
ICMP-T3 rate limit). In addition, if 200 Mbps is too much network traffic 
for a single collector site for some reason, DIB:S can be distributed almost to 
an arbitrary degree. Instrumented routers can send their ICMP-T3 messages to 
''nearby" collectors, and the analyzers, each of which is in charge of a particular 
address range, can be distributed throughout the Intemet. 

ICMP-T3 messages are not the only data source that can provide indica­
tions of worm activity. Although ICMP messages are particularly attractive 
since they indicate scanning activity that spans multiple independent networks, 
scan reports and other information from firewalls, intrusion-detection systems 
and even host-based sensors also can be fed into the DIB:S/TRAFEN system, 
serving as a useful complement to the ICMP-T3 data. The ICMP-T3 mes­
sages can provide useful additional information themselves, since passive OS 
fingerprinting^ would allow DIB:S to infer the type of the operating system that 
is performing the scan, adding to the hypothesis-generation ability of TRAFEN. 
Two scans originating from a Linux and Windows machine respectively, for ex­
ample, most likely do not belong to the same worm. 

Finally, regardless of how effective an early waming system is, there is no 
use in detecting a worm unless something can be done. This can be as little 
as informing system administrators or as much as having a framework in place 
that will automatically reconfigure firewalls, and IDS systems as the epidemic 
is occurring. Automated response will be a critical topic of future work, both 
for our group and many others. Even so, early waming is always worthwhile. 

5. FUTURE 

Computers increasingly are taking on the role of home appliances, integrat­
ing such services as game and DVD playing, digital television recording and 
playback, Intemet-based telephony, and traditional personal and home-office 
computing. In addition, software from a small number of companies is finding 
its way into more and more products, increasing the likelihood that a software 
vulnerability will affect a large number of systems. Finally, broadband Intemet 
now is commonplace in many homes, increasing the number of connected sys­
tems. With more connected computer systems, often with higher bandwidth, 
and with more widely deployed software, worm and virus authors will continue 
to have an ideal environment for their malicious code. There will remain a 
desperate need for diversity in software and operating systems, decreasing the 
likelihood of massively homogeneous vulnerabilities. 

The increase in connectivity also has prompted a shortage in available IP 
address space. Although this shortage mostly has been mended with Network 
Address Translation (NAT), eventually a more stmctural solution will be needed. 
Increasing the address space will bring with it the nice property that random 
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scanning for vulnerable IP addresses will become nearly impossible, requiring 
a significant change in the way authors write their worms. As an example, 
consider IPv6, which offers 128 bits of address space versus the 32 bits available 
in IPv4, and Code Red v2, which we analyzed for IPv4 in Figure 6.3. We 
limit ourselves to propagation within a single IPv6 site, which has 2̂ "̂  possible 
IP addresses. We assume 2^^ responding machines, of which 1/100^^ are 
vulnerable. We pick 7 = 0, so that there is no recovery or removal and the worm 
is free propagate. This makes r{t) a constant, leading to s{t) + i{t) = M being 
a constant as well, and effectively rewrites the epidemic-model equations [6]: 

dz 
— = Psi = (5{M - i)i (6.8) 

This also is known as the logistic growth equation, and it represents a worst-
case epidemic in which there are no recoveries or disconnects, and each infective 
stays infective forever. Propagation speed will be higher than in a realistic 
scenario, but the equation allows us to define the absolute limit on propagation 
speed. Citing Daley and Gani [6] once more for the integral over (0,^), we 
have 

m = - ^ ^ l ^ ^ ^ - ^ M T (6.9) zo + (M - io)e-^^* 

We can use this formula to find out how fast a worm would spread in the 
fastest scenario, given ideal connectivity and no countermeasures. To do so, 
we set 

i(Te) = eM (6.10) 

where e is the fraction of susceptibles infected (for example we could define 
TEND by taking e = 0.95). Replacing the left-hand side of Equation 6.10 
with Equation 6.9, and performing straightforward algebraic manipulation -
i.e., moving terms to isolate e and then inverting, simplifying, and taking the 
natural log of both sides - we have 

r , = ^ x l n ( f ( ^ ) (6.10 

Looking at Equations 6.8 and 6.11, we note two important properties. First, 
realizing that 0{p) > 0{M) and that 0{M) ?a 0{i), it is clear that the 
propagation time will be mostly dependent on 0. Second, the relationship 
between propagation time and /? is a linear one. If (3 is doubled, ^ , which is 
the propagation speed, also doubles. If the speed is doubled, the time it will 
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take for all hosts to be infected will be halved. The linear relationship with /3, 
as well as M, also can be clearly seen from Equation 6.11. Now we can fill 
in the numbers for Code Red v2 in IPv4 space, assuming the initial number of 
infected hosts is 10, and we are looking for how long it takes to infect 95% of 
all susceptible hosts. Remembering that /? = 1.23 x 10~^ (see the caption of 
Figure 6.3), we have a time in seconds of 

1 , /0.95X (360000-10) 

1.23 X 10-9 X 360000 V 10 x (1 - 0.95) 

which is 30220/3600 = 8.4 hours, a good approximation of what we can read 
from Figure 6.3 and thus verifying our equations. Now we fill in the numbers 
for the Code Red v2 worm propagating within one IPv6 site. First, we calcu­
late r: r=: 2^^ 12^^ = 2"^^ ^ 10"^^. We obtain r by filling in Equation 6.2: 
r = 10-1^ X 1 + (1 - 10-^^r) X 21 ?̂  21. Finally, we obtain /? by filling in 
equation 6.3: P= ^ x ^ ^ 2.5814 x 10"^^ With M = 2^Vl00 « 655, 
the time to reach 95% propagation is: 

1 , /0.95X (655-10) 
2.5814 X 10-19 X 655 V 10 x (1 - 0.95) 

which gives 4.2057 x 10^^, or over 1.3 billion years, and confirms the intuition 
that an enlarged address space will pose a significant challenge to randomly 
propagating worms. 

This undoubtedly will lead to new and improved target selection techniques, 
most of which were already discussed in the Worms and Viruses section. We will 
mention two of them again, however, and suggest probable detection strategies. 
To acquire IP addresses of hosts running a vulnerable service the worm could 
sniff the network wire for traffic from that service. Mail and DNS servers 
will be most vulnerable to this approach, since they constantly communicate 
between peers. One possible way of detecting such a worm is by inserting bogus 
communication into the network. By spoofing non-existent IP addresses and 
so making fake queries to all the services in the network, sniffing worms can 
be provoked to connect to these non-existent machines. The challenge would 
be to make the fake communication look as real as possible, ensuring that the 
worm could not distinguish between real and false events. Worms attempting 
to connect to the non-existent addresses would provoke ICMP-T3 messages, 
which could be fed into the DIB:S/TRAFEN system. 

The DIB:S/TRAFEN system also can be used in the case of DNS explo­
ration. As noted before, worms can gain hostnames by probing DNS servers 
and potentially trying whole ranges of possibly related hostnames (recall the 
example with sparcOl, sparc02, ... sparc99), DIB:S could be configured to re­
ceive notification of all failed DNS queries, as a blind carbon copy from name 
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servers. The analogy is simple: one IP address attempted to contact many host-
names on many different networks (and failed). This would be a clear bloom, 
and TRAFEN soon would detect the worm when multiple hosts show the same 
behavior. It will be difficult to infer what service the worm was exploiting, how­
ever, unless the DNS server occasionally responded with bogus IP addresses, 
provoking ICMP-T3 generation. 

Finally, worms will begin to use some of the same polymorphism techniques 
as the most advanced viruses, such as encrypting and permuting basic code 
blocks on each propagation, making signature-based detection more difficult. 
Thus, inferring the existence of worms through their secondary network traffic 
(such as ICMP-T3 messages), rather than using signatures, always will be an 
important detection strategy, even fox previously seen worms. 

6. RELATED WORK 

In 1991, Jeffrey Kephart and Steve White already were working on analytical 
models of computer viruses and the epidemics they cause [9]. The SIS model 
that they described still makes sense in the active-worm arena, and can be 
expanded easily to include I-R and R-S transitions. Other researchers, such as 
Moore, Shannon, Voelker and Savage [13] and Zou, Gong and Towsley [21], 
start from the same equations of Kermack and McKendrick [6] as we do, and 
arrive at related, but distinct, worm-propagation models. These models differ 
in how and if they include certain transitions and worm characteristics, but 
are able to make similar predictions about how long it will take a worm to 
spread through the Internet. In all of these models, the parameters goveming 
the transitions are still basic. The formula we use for /?, for example, does not 
take into account the dynamics of a saturated network, which was the primary 
limiting factor on the Sapphire/Slammer worm. It remains to be seen if there 
is a proper way to model the effect of Internet topology. 

Systems such as NetBait [5] and Kerf [2] allow system administrators to 
pose complex queries against distributed attack data. These systems, however, 
cannot detect previously unseen attacks (for which no signatures are available), 
and do not support real-time detection. On the other hand, Zou, Gao, Gong, and 
Towsley have developed an approach based on Kalman filters for automatically 
detecting worms based on their scanning activity. [20]. This work places ingress 
and egress scan monitors at key network points, and collects the resulting scan 
alerts. A Kalman filter, which has the advantage of being robust to missing 
scan data, is applied to the scan alerts (for a particular port) to see if the pattem 
of scanning activity matches their SIR-based model of worm propagation. For 
an address space with 2^^ addresses (i.e., the Internet), monitoring coverage of 
2^^/2^^, and 500,000 vulnerable machines, their system can detect a simulated 
Code Red worm, and predict its overall infection rate, as soon as the worm 
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infects approximately 5% of the vulnerable machines. From the standpoint 
of our work, the Kalman filter has several attractive features compared to our 
current ruleset, and could be a plug-in replacement for that ruleset within the 
TRAFEN framework. 

Both signature-based and anomaly-based [8] intrusion-detection systems can 
detect worm scans and probes. These systems, however, see only the network 
traffic that reaches a particular network boundary, and thus might not recognize 
a scan or probe as evidence of a propagating worm. Some systems collect 
and analyze data from distributed intrusion-detection sensors, and can provide 
more insight into worm activity than stand-alone systems. Scans still might 
be overlooked, however, if they hit any individual network only a few times. 
By collecting ICMP-T3 messages from a broadly deployed set of instrumented 
routers, DIB:S can detect a scan even if that scan never hits an individual 
network more than once. On the other hand, distributed intrusion-detection 
systems could provide additional data for TRAFEN. 

7. CONCLUSION 

Most current worms identify vulnerable machines through random probing 
of the address space, as the Internet becomes more and more densely populated 
with machines, such worms will be able to spread faster and faster. Fortunately, 
it is possible to quickly detect such worms by looking for unusual pattems 
in different kinds of network traffic. In this chapter, we explored the use of 
ICMP-T3 messages for worm detection. When a connection request is made to 
an IP address that is not populated by an actual system, routers along the path 
may retum ICMP Destination Unreachable messages (ICMP-T3). The system 
we developed, DIB:S/TRAFEN, collects ICMP-T3 messages forwarded from 
participating routers, and looks for the distinct, bloom-like connection pattem 
that worm-infected hosts exhibit while they are randomly scanning for targets. 
Using both small-scale and large-scale simulated worms, we demonstrated that 
our system is capable of detecting propagating worms early in their lifetime. 
In particular, the large-scale simulation indicates that a router coverage of 16 
class-B networks is enough to detect worms that spread at Code Red v2 and 
Sapphire/Slammer rates before 0.03% of the vulnerable machines are infected. 
These results, particularly since they involve a router coverage that would be 
achievable in the real Intemet, are extremely promising. When DIB: S/TRAFEN 
is fully deployed on the real Intemet, it will be able to detect active worms early 
enough to take meaningful defensive action. 

Detection is only half of the solution, however, and significant additional 
research is needed to develop active-response systems that can slow or stop the 
spread of a detected worm. In addition, we can expect worm authors to write 
more worms that use altematives to random probing, requiring the inclusion of 
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new data sources into the DIB:S/TRAFEN system, or requiring entirely new 
detection approaches (such as "tricking" a worm into attempting to infect a 
dummy server or client). Finally, it is important to note that diversity in op­
erating systems and server software, as well as appropriate maintenance and 
patching procedures, mitigates the total damage that any individual worm can 
do. 
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Notes 
1. This number is easily calculated, see the subscript of Figure 6.3, as well as observed from the actual 

worm in our test environment. 
2. RFC 1812 section 5.2.7.1 states that routers should be able to generate ICMP-T3s, not that they 

should generate them. 
3. Michael Zalewski wrote some of the first passive-fingerprinting code, which is available at http : 

/ /www. steams.org/pOf /. 
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SENSOR FAMILIES FOR INTRUSION 
DETECTION INFRASTRUCTURES 

Richard A. Kemmerer and Giovanni Vigna 
Reliable Software Group, Department of Computer Science, University of California Santa 
Barbara 

Abstract: Intrusion detection relies on the information provided by a number of sensors 
deployed throughout a protected network. Sensors operate on different event 
streams, such as network packets and application logs, and provide information 
at different abstraction levels, such as low-level warnings and correlated alerts. 
In addition, sensors range from lightweight probes and simple log parsers to 
complex software artifacts that perform sophisticated analysis. Therefore, de­
ploying, configuring, and managing, a large number of heterogeneous sensors is 
a complex, expensive, and error-prone activity. 

Unfortunately, existing systems fail to manage the complexity that is inherent 
in today's intrusion detection infrastructures. These systems suffer from two 
main limitations: they are developed ad hoc for certain types of domains and/or 
environments, and they are difficult to configure, extend, and control remotely. 

To address the complexity of intrusion detection infrastructures, we devel­
oped a framework, called STAT, that overcomes the limitations of current ap­
proaches. Instead of providing yet another system tailored to some domain-
specific requirements, STAT provides a software framework for the development 
of new intrusion detection functionality in a modular fashion. 

According to the STAT framework, intrusion detection sensors are built by 
dynamically composing domain-specific components with a domain-independent 
runtime. The resulting intrusion detection sensors represent a software family. 
Each sensor has the ability to reconfigure its behavior dynamically. The recon­
figuration functionality is supported by a component model and by a control 
infrastructure, called MetaSTAT. The final product of the STAT framework is a 
highly-configurable, well-integrated intrusion detection infrastructure. 

Keywords: Security, Intrusion Detection, Intrusion Detection Infrastructures, Intrusion De­
tection Frameworks, Software Engineering, STAT. 
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1. INTRODUCTION 
In recent years, networks have evolved from a mere means of communi­

cation to a ubiquitous computational infrastructure. Networks have become 
larger, faster, and highly dynamic. In particular, the Intemet, the world-wide 
TCP/IP network, has become a mission-critical infrastructure for govemments, 
companies, financial institutions, and millions of everyday users. 

The surveillance and security monitoring of the network infrastructure is 
mostly performed using Intrusion Detection Systems (IDSs). These systems 
analyze information about the activities performed in computer systems and 
networks, looking for evidence of malicious behavior. Attacks against a sys­
tem manifest themselves in terms of events. These events can be of a different 
nature and level of granularity. For example, they may be represented by net­
work packets, operating system calls, audit records produced by the operating 
system auditing facilities, or log messages produced by applications. The goal 
of intrusion detection systems is to analyze one or more event streams and 
identify manifestations of attacks. 

Event streams are used by intrusion detection systems in two different ways, 
according to two different paradigms: anomaly detection and misuse detection, 
In anomaly detection systems [14, 17, 7, 34], historical data about a system's 
activity and specifications of the intended behavior of users and applications 
are used to build a profile of the ''normal" operation of the system. Then, 
the intrusion detection system tries to identify patterns of activity that devi­
ate from the defined profile. Misuse detection systems take a complementary 
approach [21, 23, 28, 20, 13]. Misuse detection systems are equipped with a 
number of attack descriptions (or "signatures") that are matched against the 
stream of audit data looking for evidence that the modeled attack is occurring. 
Misuse and anomaly detection both have advantages and disadvantages. Mis­
use detection systems can perform focused analysis of the audit data and they 
usually produce only a few false positives, but they can detect only those at­
tacks that have been modeled. Anomaly detection systems have the advantage 
of being able to detect previously unknown attacks. This advantage is paid for 
in terms of the large number of false positives and the difficulty of training a 
system with respect to a very dynamic environment. 

The intrusion detection community has developed a number of different 
tools that perform intrusion detection in particular domains (e.g., hosts or net­
works), in specific environments (e.g., Windows NT or Solaris), and at differ­
ent levels of abstraction (e.g., kernel-level tools and alert correlation systems). 
These tools suffer from two main limitations: they are developed ad hoc for 
certain types of domains and/or environments, and they are difficult to config­
ure, extend, and control remotely. 
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In the specific case of signature-based intrusion detection systems, the sen­
sors are equipped with a number of attack models that are matched against a 
stream of incoming events. The attack models are described using an ad hoc, 
domain-specific language (e.g., NFR's N-code [27]). Therefore, performing 
intrusion detection in a new environment requires the development of both a 
new system and a new attack modeling language. As intrusion detection is 
applied to new and previously unforeseen domains, this approach results in 
increased development effort. 

Today's networks are not only heterogeneous; they are also dynamic. There­
fore, intmsion detection systems need to support mechanisms to dynamically 
change their configuration as the security state of the protected system evolves. 
The configuration and management of a large number of sensors raises multi­
ple issues. 

One issue is the static configuration of the data sources used for analysis. 
The ad hoc nature of existing IDSs does not allow one to dynamically configure 
a running sensor so that new event streams can be used as input for the security 
analysis. This is a limitation because new attacks may have manifestations in 
event streams that are not currently analyzed by a specific IDS. Being bound 
statically to a single source of events may result in limited effectiveness. 

A second issue is the static configuration of the attack models used for anal­
ysis. Most existing intrusion detection systems (e.g., [28]) are initialized with 
a set of signatures at startup time. Updating the signature set requires stopping 
the IDS, adding new signatures, and then restarting execution. Some of these 
systems provide a way to enable/disable some of the available signatures, but 
few systems allow for the dynamic inclusion of new signatures at execution 
time. 

A third issue is the relatively static configuration of responses in existing 
intrusion detection systems. In most cases it is possible to choose only from a 
specific subset of possible responses. In addition, to our knowledge, none of 
the systems allows one to associate a response with intermediate steps of an 
attack. This is a severe limitation, especially in the case of distributed attacks 
carried out over a long time span. 

Finally, managing a large number of sensors requires an effective control 
infrastructure. Most systems provide some sort of management console that 
allows the Security Administrator to remotely tune the configuration of spe­
cific sensors. This reconfiguration procedure is mostly performed manually 
and at a very low level. This task is particularly error-prone, especially if the 
intrusion detection sensors are deployed across a very heterogeneous environ­
ment and with very different configurations. The challenge is to determine if 
the current configuration of one or more sensors is valid or if a reconfiguration 
is meaningful. 
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This chapter describes a framework for the development of intrusion de­
tection systems, called STAT, and a sensor control infrastructure, called Meta-
STAT, which have been developed to address the issues above and to overcome 
the limitations of existing approaches. 

The STAT framework includes a domain-independent attack modeling lan­
guage and a domain-independent event analysis engine. The framework can 
be extended in a well-defined way to match new domains, new event sources, 
and new responses. The framework has been used by the authors to develop 
a number of different intrusion detection systems, from a network-based in­
trusion detection system, to host-based and application-based systems, to alert 
correlators. 

The resulting set of intrusion detection systems can be seen, in Software En­
gineering terms, as a software family. Members of the family share a number 
of features, including dynamic reconfigurability and a fine-grained control over 
a wide range of characteristics [33]. The STAT framework is the only known 
framework-based approach to the development of intrusion detection systems. 
Our experience with the framework shows that by following this approach it 
is possible to develop intrusion detection systems with reduced development 
effort, with respect to an ad hoc approach. In addition, the approach is advanta­
geous in terms of the increased reuse that results from using an object-oriented 
framework and a component-based approach. 

The configuration of sensors in the STAT family can be controlled at a very 
fine grain using the MetaSTAT infrastructure. MetaSTAT provides the basic 
mechanisms to reconfigure, at run-time, which input event streams are ana­
lyzed by each sensor, which scenarios have to be used for the analysis, and 
what types of responses must be carried out for each stage of the detection 
process. In addition, MetaSTAT supports the explicit modeling of the depen­
dencies among the modules composing a sensor so that it is possible to auto­
matically identify the steps that are necessary to perform a reconfiguration of 
the deployed sensing infrastructure. 

The result of applying the STAT/MetaSTAT approach is a "web of sensors", 
composed of distributed components integrated by means of a communica­
tion and control infrastructure. The task of the web of sensors is to provide 
fine-grained surveillance inside the protected network. The web of sensors im­
plements local surveillance against both outside attacks and local misuse by 
insiders in a way that is complementary to the mainstream approach where a 
single point of access (e.g., a gateway) is monitored for possible malicious ac­
tivity. Multiple webs of sensors can be organized either hierarchically or in a 
peer-to-peer fashion to achieve scalability and to be able to exert control over 
a large-scale infrastructure from a single control location. 

This chapter is structured as follows. Section 2 introduces the STAT frame­
work. Section 3 presents a family of intrusion detection systems developed 
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using the framework. Section 4 describes the MetaSTAT control infrastruc­
ture, shared by all the IDSs in the family. Section 5 presents relevant related 
work. Finally, Section 6 draws some conclusions. 

2. THE STAT FRAMEWORK 
The State Transition Analysis Technique [10] is a methodology to describe 

computer penetrations as attack scenarios. Each attack scenario is represented 
as a sequence of transitions that characterize the evolution of the security state 
of a system. In an attack scenario states represent snapshots of a system's 
security-relevant properties and resources. A description of an attack has an 
"initial" starting state and at least one "compromised" ending state. States are 
characterized by means of assertions, which are predicates on some aspects of 
the security state of the system. For example, in an attack scenario describing 
an attempt to violate the security of an operating system, assertions would state 
properties such as file ownership, user identification, or user authorization. 
Transitions between states are annotated with signature actions that represent 
the key actions that if omitted from the execution of an attack scenario would 
prevent the attack from completing successfully. For example, in an attack 
scenario describing a network port scanning attempt, a typical signature action 
would include the TCP segments used to test the TCP ports of a host. 

The characterization of attack scenarios in terms of states and transitions 
allows for an intuitive graphic representation by means of state transition dia­
grams. Figure 7.1 shows a state transition diagram for a pedagogical example 
of a STATL attack scenario specification. The attack scenario detects a Tro­
jan horse attack, where an apparently benign program (e.g., an MPS player) 
is first downloaded by a user (first transition), and then installed and executed 
(second transition). The Trojan horse program contains "hidden" functionality 
(the warriors hidden in the Trojan horse) that allows the creator of the program 
to take control of the user's account. When executed, the Trojan horse opens a 
network connection back to an attacker controlled host that is outside the local 
network, and it waits for commands to be executed (third transition). When 
the scenario reaches the final state (represented as a double circle) the attack 
is considered completed. Note that even though this scenario is fairly repre­
sentative of this type of attack, it is not to be considered a complete, detailed 
specification. 

In the early 1990s, the State Transition Analysis Technique was applied to 
host-based intrusion detection, and a system, called USTAT [8, 9, 25], was de­
veloped. USTAT used state transition representations as the basis for rules to 
interpret changes in a computer system's state and to detect intrusions in real­
time. The changes in the computer system's state were monitored by lever­
aging the auditing facilities provided by security-enhanced operating systems, 
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global Network myNetwork; -*— Scenario global variable 

^ Scenario local variables 
IPAddress source 
IPAddress target r / ^ Transition action Transition assertion 

VTD trojanPID; ^ \ / 

[NetUpload u] I u.source.lsOutsldeO [HostBxec e] i e.host » target fcfe [QpenConnection o ] : o.source ••> target &fc 
e . f i l e " f i l e o.processiD » troja&PID 

, , _ _ ^ Transition 
target • u . target ;^ H hi Ir {trojanPID » e.processiD;} (victim • o . target;} 

f i l e - u . f i l e , ) Final state 
Initial state ^ —--.^^^^ ^ •—,,^^^^ ^ •—-——....^^^ y 

/ > ( ^ Nonconsuming transition ^ s / " ' ^ ^ < ^ ^ ^ / ^ ^^" " ' ^ ^ . ' ^ ^ \ 
I \ I \ ^^^^ assertion f \ Consuming transition r \ 
V A Unwinding transition \ J / \ J \ J 

"~~-- : - - - - ' ' ' r i l e . e x i s t s ( f i l e ) (log("Possible trojan Hŝ Hs attacking %a', 

[Delete d] i d . f i l e - - f i l e State code block ''•'''*'f i le .name() , target . name ( ) , victim.nameO ;> 

Figure 7.1. A sample state transition diagram of an attack scenario. The attack is a very sim­
plified version of a Trojan horse installation attack. The first transition is fired when the upload 
of a file from a host outside the local network is detected. The second transition fires when 
the same file is executed. The final transition fires when the program being executed opens a 
network connection to another host. 

such as Sun Microsystems' Solaris equipped with the Basic Security Mod­
ule (BSM) [30]. The first implementation of USTAT clearly demonstrated the 
value of the STAT approach, but USTAT was developed in an ad hoc way and 
several characteristics of the first USTAT prototype were difficult to modify or 
to extend to match new environments (e.g., Windows NT/2000). 

During the 90s, the focus of intrusion detection shifted from the host and 
its operating system to the network and the protocols used to exchange data. 
Therefore, the natural evolution of state transition analysis was its direct appli­
cation to networks. The NetSTAT intrusion detection system was the result of 
this evolution [32]. NetSTAT was aimed at real-time state-transition analysis 
of network data. The NetSTAT system proved that the STAT approach could 
be extended to new domains. However, NetSTAT was also developed ad hoc, 
by building a completely new IDS that would fit the new domain. 

In 1998, both NetSTAT and USTAT were used to participate in a DARPA-
sponsored intrusion detection evaluation effort. The evaluation exercises in­
cluded off-line analysis of audit logs and traffic dumps provided by the MIT 
Lincoln Laboratory [19] and the installation of the systems in a large testbed at 
the Air Force Research Laboratory (AFRL) [3, 4]. Intrusion detection systems 
from a number of universities, research centers, and companies were tested 
with respect to different classes of attacks, including port scans, remote com­
promise, local privilege escalation, and denial-of-service attacks. A detailed 
description of the attacks used in the MIT Lincoln Laboratory evaluation can 
be found in [16]. In both efforts the STAT-based systems performed very well 
and their combined results scored at the highest level in the evaluations. 

Participating in this event gave strong positive feedback on the research that 
had been performed so far, and it also gave new insights into the STAT ap­
proach. In particular, running NetSTAT and USTAT at the same time revealed 
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a number of similarities in the way attack scenarios were represented and in 
the runtime architecture of the systems. A closer analysis of the mechanisms 
used by the STAT-based systems to match attack scenarios against a stream of 
events suggested that the STAT-based IDSs could be redesigned as a family of 
systems that leverages an object-oriented framework. 

The approach taken was to factor-out the mechanisms and techniques used 
by the intrusion detection analysis and to design an extension process that 
would support the development of intrusion detection systems for many dif­
ferent target environments. The result of this redesign was the STAT Frame­
work. The STAT Framework consists of a domain-independent language, cal­
led STATL, and a runtime for the language, called the STAT Core. These el­
ements can be extended following a well-defined process to match a specific 
target domain. Section 2.1 presents STATL, Section 2.2 describes the STAT 
Core, and Section 2.3 describes the framework extension process. 

2.1 STATL 
A STATL specification is the description of a complete attack scenario. The 

attack is modeled as a sequence of steps that bring a system from an initial 
safe state to a final compromised state. This modeling approach is supported 
by a state/transition-based language. One of the advantages of this approach 
is that state/transition specifications can be represented graphically by means 
of state transition diagrams (STDs). Therefore, even though STATL is pri­
marily a text-based language, the STATL development environment includes 
a graphic editor that allows one to directly visualize the STD representing an 
attack scenario. 

2.1.1 STATL Overview. The STATL language provides constructs to 
represent an attack as a composition of states and transitions. States are used to 
characterize different snapshots of a system during the evolution of an attack. 
Obviously, it is not feasible to represent the complete state of a system (e.g., 
volatile memory, file system); therefore, a STATL scenario uses variables to 
record just those parts of the system state needed to define an attack signature 
(e.g., the value of a counter or the ownership of a file). A transition has an 
associated action that is a specification of the event that can cause the scenario 
to move to a new state. For example, an action can be the opening of a TCP 
connection or the execution of an application. The space of possible relevant 
actions is constrained by a transition assertion, which is a filter condition on 
events that could possibly match the action. For example, an assertion can 
require that a TCP connection is opened with a specific destination port or that 
an application being executed should be part of a predefined set of security-
critical applications. 
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It is possible for several occurrences of the same attack to be active at the 
same time. A STATL attack scenario, therefore, has an operational semantics 
in terms of a set of instances of the same scenario prototype. The scenario 
prototype represents the scenario's definition and global environment, and the 
scenario instances represent attacks currently in progress. 

The evolution of the set of instances of a scenario is determined by the type 
of transitions in the scenario definition. A transition can be consuming, non-
consuming, or unwinding. A nonconsuming transition is used to represent a 
step of an occurring attack that does not prevent further occurrences of attacks 
from spawning from the transition's source state. Therefore, when a noncon­
suming transition fires, the source state remains valid, and the destination state 
becomes valid too. An example of a nonconsuming transition is given in Fig­
ure 7.1. The transition between states s i and s2 represents the execution of a 
file. This step does not invalidate the previous state, that is, another execution 
of the program may occur. Semantically, the firing of a nonconsuming tran­
sition causes the creation of a new scenario instance. The original instance is 
still in the original state, while the new instance is in the destination state of 
the fired transition. In contrast, the firing of a consuming transition makes the 
source state of a particular attack occurrence invalid. Semantically, the firing 
of a consuming transition does not generate a new scenario instance; it simply 
changes the state of the original one. The transition between states s2 and s3 
in Figure 7.1 is an example of a consuming transition. The transition is fired 
when the executed Trojan program opens a connection. This invalidates state 
s2. It is no longer necessary to check if the program is opening a network con­
nection since the program has already been identified as a Trojan. Unwinding 
transitions represent a form of ''rollback" and they are used to describe events 
and conditions that invalidate the progress of one or more scenario instances 
and require the return to an earlier state. The transition between states s i and 
sO in the example in Figure 7.1 is an unwinding transition. The deletion of the 
uploaded file invalidates the condition needed for the attack to complete, and, 
therefore, the scenario instance is brought back to the previous state before the 
file was created. 

2.1.2 STATL Syntax. This section presents STATL's syntax. It also 
includes fragmentary examples for each of the syntax rules. In the syntax 
rules, literal keywords are in boldface and other literal text is enclosed in single 
quotes. Optional items are enclosed in square brackets '[', ' ] ' , items that may 
appear zero or more times are enclosed in curly braces '{ ' , ' } ' . Altematives 
are separated by '| ' and grouped with parentheses where necessary to indicate 
associativity. Examples may include ellipses (...) to indicate that details have 
been left out; the ellipses are not part of STATL. 
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Lexical Elements. STATL identifiers consist of letters, digits, and the 
underscore character '_', and start with a letter. For example host_name and 
IPadd r2 are identifiers. STATL identifiers are case-sensitive, so I P a d d r e s s 
is different from IPAddress . STATL compound identifiers use standard 
object-oriented dot notation, as in ''object.attribute". STATL keywords are re­
served words and may not be used as identifiers. For example, since s c e n a r i o 
is a keyword, it may not be used as a variable name. 

STATL includes two kinds of comments: any text between "/*" and ''*/" 
(except "*/"), including the delimiters, is a comment. Any text following "II" 
to the end of the line, including the '7/ " marker, is a comment. Whitespace may 
appear anywhere in a STATL specification except within tokens (keywords, 
identifiers, and multiple-character operators). 

Data Types. STATL includes several built-in types: i n t and u - i n t in 
various sizes, b o o l , s t r i n g , t i m e v a l (for timestamps), and t i m e r . It 
also includes arrays, plus containers v e c t o r , s e t , l i s t , and map. It is 
not possible to define new data types within a STATL scenario. Application-
specific types must be defined within the application-specific extension library 
(see Section 2.3). For example, network-based scenarios may use different 
types than host-based scenarios, but both use i n t and t i m e v a l . 

Scenario. A scenario uses zero or more libraries of application-specific 
types, events, functions, and predicates. A scenario has a name, may have 
parameters, may contain constant and variable declarations, and most impor­
tantly, contains the states and transitions that define the ''attack signature" -
what to match and what to do with matches. A scenario may also define sup­
porting functions to be used in state and transition assertions and code blocks: 

Scenario ::= 
{ use LibrarylD {',' LibrarylD] ';' } 
scenario ScenarioID 
[ScenarioParameters] 

[FrontMatter] 
{State I Transition \ NamedAction} 

{ FunctionDefinition } 

A scenario must have at least one transition and two states - the initial state 
and a final state. The initial state must have no incoming transitions, and final 
states have no outgoing transitions. Scenario parameters are specified as a list 
of comma-separated typed identifiers: 

ScenarioParameters ::= 
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'(' Parameter {',' Parameter} ') ' 
Parameter ::= Type Parameterld 

Example: 

scenario example (string host, int count) 
{ ... } 

The example scenario has two parameters, h o s t and coun t . Parameters are 
accessible by the scenario instances as global constants. 

Front Matter, Scenarios may declare constants and variables: 

Front Matter ::= 
{{ConstDecl | VarDecl)} 

ConstDecl ::= 
const Type Constid { ' [ ' [ size ] ' ] ' } '=' InitialValue ';' 

VarDecl ::= 
[global] Type Varld { ' [ ' [ size ] ' ] ' } ['=' InitialValue] ';' 

A variable declared "global" is shared by all instances of the scenario. A vari­
able not declared "global" is instantiated privately in each instance of the sce­
nario. Variables may be assigned initial values. 

Example: 

use tcpip; 
scenario example 
{ 
const int bufsize = 1024; 
global int count = 0; 
Host server; 

} ' " 

This example declares a constant integer b u f s i z e with value 1024 and de­
clares a global variable coun t with initial value 0. This variable will be shared 
by all instances of the scenario. That is, if a scenario instance increments the 
c o u n t variable, the update is seen by all other instances of the scenario. The 
variable declaration in the example also includes a variable named s e r v e r 
of type Host (a type defined in the network-based language extension called 
t c p i p ) . Because s e r v e r is a local variable (i.e., its declaration does not 
contain the keyword global), each instance of the scenario will have its own 
copy of s e r v e r . 
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State. "State" is one of the two fundamental concepts in STATL. States 
have names so they can be referred to in transitions and in the graphical rep­
resentation of the scenario (i.e., in the STD). Each state may have an assertion 
and a code block, but these elements are optional: 

State ::= 
[initial] 
state Stateld 

•{• 
[StateAssertion] 
[CodeBlock] 

'}• 

Exactly one state must be designated as the initial state. When a scenario 
plugin is loaded into an IDS a first instance is created in the initial state. 

The state assertion, if present, is tested before entry to the state, after testing 
the assertion of the transition that leads to the state. A state's assertion is 
implicitly True if none is specified. A state's code block is executed after the 
incoming transition's assertion and the state's assertion have been evaluated 
and found to be True and after the incoming transition's code block (if it exists) 
is executed. 

Example: 

scenario example 
{ 
const int threshold = 64; 
int counter; 

initial 
state si { } 

state s3 
{ 
counter > threshold 
{ log("counter over threshold limit"); } 

} 

} " " 

In this example state s i is designated as the initial state. It has neither an 
assertion nor a code block. State s3 has an assertion and a code block. The 
assertion specifies that the value of local variable c o u n t e r is greater than the 
value of constant t h r e s h o l d . The code block calls the built-in procedure 
l o g to write a message to the IDS's log file. 

Transition. 'Transition" is the second of the two fundamental concepts in 
STATL. Each transition has a name and must indicate the pair of states that it 
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connects. Transitions may have the same source and destination state; that is, 
loops are allowed. In addition, a transition must specify a type, must specify 
an event type to match, and may have a code block: 

Transition ::= 
transition TransitionID '(' Stateld ' -> ' Stateld ') ' 
(consuming | nonconsuming | unwinding) 

( '[ ' EventSpec ' ] ' | Actionid ) 
[':' Assertion] 
[CodeBlock] 

•y 

A transition's event is specified either directly (see section on EventSpecs) or 
by reference to a named signature action (see section on NamedSigAction). 
In the former case the transition's assertion is just the assertion in the transi­
tion. In the latter case, if the named signature action includes an assertion and 
the transition also includes an assertion, then the resulting assertion is the con­
junction of the two assertions. An example is given later, after named signature 
actions are defined. 

A transition's code block is executed after evaluating the transition's asser­
tion and the destination state's assertion, and before executing the destination 
state's code block. More precisely, the order of evaluation of assertions and 
the execution of code blocks, after matching an event type (defined later), is as 
follows: 

1 evaluate the transition assertion. If True, then 

2 evaluate the state assertion. If True, then 

3 execute the transition code block, possibly modifying local and global 
environments, and then 

4 execute the state code block, possibly modifying local and global envi­
ronments^. 

Transitions are deterministic, which means that every enabled transition fires 
if its assertion and the destination state's assertion are satisfied. A transition's 
code block may perform any computation supported by STATL and the IDS 
extension in use, but is typically used to copy event field values into the global 
or local environment for later reference. 

Example: 

use bsm, unix; 
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scenario example 
{ 
int userid; 

transition t2 (si -> s2) 
nonconsuming 

{ 
[READ r] : r.euid != r.ruid 
{ userid = r.euid; } 

} 

} '" 

In this example, t 2 is a nonconsuming transition that leads from state s i to 
state s2. The event spec indicates that the transition should match events of 
type READ, with a filter condition specifying that the e u i d and r u i d fields 
of the event must differ for the transition to fire. The transition's code block 
copies the e u i d field of event r into the local variable u s e r i d for later ref­
erence. Note that this scenario uses both bsm and u n i x extensions, which 
define BSM events and UNIX-related abstractions, respectively. 

EventSpec, ''Event specs" are the essential elements of transitions. They 
specify what events (signature actions) to match and under what conditions. 

EventSpec ::= ( BasicEventSpec [SubEventSpec] ) | Timer Event 

BasicEventSpec ::= EventType Eventid 

SubEventSpec ::= '[' EventSpec { ',' EventSpec } ' ] ' 
EventType ::= ANY | 

ApplEventType '(' ApplEventType {'|' ApplEventType } ') ' 

An event spec is either a basic event spec optionally followed by a subevent 
spec, or it is a timer event. A basic event spec identifies the built-in meta-event 
"type" ANY, which matches any event, or an application-specific event type 
(e.g., READ) or a disjunction of application-specific event types (e.g., (UDP | 
TCP)), and a name that will be used to reference the matching event. A basic 
event spec identifying a single type matches an event of the same type only. A 
basic event spec that is the disjunction of two or more event types matches an 
event of any of the types in the disjunction. A subevent spec identifies a set 
of event specs. Subevent specs enable complex, tree-structured event patterns. 
A subevent spec matches a set of subevents if each event spec in the subevent 
spec matches one of the events in the set. 

Example: 

[(READ I WRITE) access] : 
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access.euid != access.ruid 

Example: 

[ IP d l [TCP t l ] ] : 
( d l . s r c == 1 9 2 . 1 6 8 . 0 . 1 ) && ( t l . d s t == 23) 

The first example is a USTAT event spec that matches read or write events in 
which the effective and real user-ids differ. The second example is a NetSTAT 
event spec (with a subevent spec) that matches any IP datagram containing a 
TCP segment, with source IP address 1 9 2 . 1 6 8 . 0 . 1 and destination port 23. 

The built-in meta-event type ANY is effectively the same as disjunction over 
all application-specific event types, but is easier to specify (and more efficient 
to implement as a special case). 

NamedSigAction. A named signature action has a name and specifies an 
event spec: 

NamedSigAction ::= 
action Actionid 

'{• 
( '[ ' EventSpec ' ] ' | Actionid ) 
[':' Assertion] 

'}' 

Named signature actions may be used to improve clarity and maintainability 
when multiple transitions have identical or similar actions; for example, having 
the same action type but slightly different assertions. In such cases the common 
part can be factored out, put into a named signature action, and then used in 
the similar transitions. 

Example: 

use bsm, unix; 
scenario example 
{ 

action al 
{ 

[WRITE r] : r.euid != 0 
} 

transition tl (si -> s2) 
{ 
al: r.euid != r.ruid 

} 

transition t2 (si -> s3) 
{ 
al: r.euid == r.ruid 
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} 

} ' " 

In this example transitions t l and t 2 both use named signature action a l as 
their event spec, but with different assertions. This is equivalent to: 

use bsm, unix; 
scenario example 
{ 

transition tl (si -> s2) 
{ 

[WRITE r] : (r.euid != 0) && (r.euid != r.ruid) 
} 

transition t2 (si -> s3) 
{ 

[WRITE r] : (r.euid != 0) && (r.euid == r.ruid) 
} 

} '" 

CodeBlock. Transitions and states may have code blocks that are executed 
after the corresponding transition and state assertions have been evaluated and 
found to be True. A code block is a sequence of statements enclosed in braces: 

CodeBlock ::= 

{statement} 

The statements in a codeblock can be assignments, for and while loops, if-
then-else, procedure calls, etc. Semantically, the statements in a STATL code 
block are executed in order, in the context of the global and local environments 
of the scenario instance in which the code block is executed. 

Timers. Timers are useful to express attacks in which some event or set 
of events must (or must not) happen within an interval following some other 
event or set of events. Timers can also be used to prevent "zombie" scenarios 
- scenarios that have no possible evolution - from wasting memory resources. 

Timers are declared as variables using the built-in type t i m e r . There are 
both local and global timers. All timers must be explicitly declared. Timers 
are started in code blocks using the built-in procedure t i m e r ^ s t a r t . Timer 
expiration is treated as an event, and these events may be matched by using 
"timer events" as transition event specs. 

Example: 

scenario example 
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{ 

timer tl; 

state si 
{ 

{ timer_start(tl, 30); } 
} 

transition expire (sl->s2) 
{ [timer tl] } 

} "" 

The code block of state s i starts timer t l , which will expire in 30 seconds 
(i.e., at a time 30 seconds later than the timestamp on the event that led to state 
s i ) . The timer event t i m e r t l matches the expiration of the timer named 
t l . When timer t l expires, transition e x p i r e will fire, leading to state s2. 

Starting a timer that is already ''running" resets that timer. A single timer 
may appear in multiple transitions; every enabled transition that has t i m e r t 
as its event spec fires when the timer expires. 

Assertions. Assertions appear as filter conditions in states and in event 
specs (which are the matching element of transitions). STATL assertions are 
built up from literal constants, variable and constant names, function calls, and 
common arithmetic and relational operators. A STATL assertion is evaluated 
at runtime in the context of the global and local environments of the scenario 
instance where it is evaluated. 

Assertions may use, but may not change, the value of any name in the global 
or local environment. In addition, transition assertions may refer to the events 
named in the event spec and to the fields of those events. 

2.2 STAT Core 

The STAT Core module is the runtime for the STATL language. The Core 
implements the concepts of state, transition, timer, etc. In addition, the Core 
performs the event processing task, which is the basic mechanism used to de­
tect intrusions by matching event streams against attack scenarios. 

The STAT Core module has an event-based multi-threaded architecture (see 
Figure 7.2). Events are sent to or received from the Core through four separate 
event queues. 

• The control queue is used to send control events to the Core. These 
events modify the Core's behavior or its configuration (e.g., by request­
ing the activation of a new attack scenario). 

• The info queue is used by the Core to publish control-related informa­
tion, such as the result of a reconfiguration request. The events in this 
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Event Providers 

Figure 7.2. The STAT Core Architecture. 

queue are used by external components (e.g., a MetaSTAT Proxy, see 
Section 4) to monitor the status of a Core component. 

• The input queue is the source of the event stream for the intrusion de­
tection analysis. Multiple extemal Event Providers (see Section 2.3) can 
contribute events to this queue. 

• The output queue is used by the Core to publish events related to the 
intrusion detection process, such as detection alerts. This event queue 
can be connected to the input event queue of another Core component to 
realize a multi-core pipelined architecture. 

The most important task of the Core is to keep track of active attack in­
stances, which are called, in STATL terms, scenario instances. The Core main­
tains a data structure for each scenario instance. The data structure contains the 
current state of the scenario, its local environment, and the list of transitions 
that are are enabled, that is, the transitions that may possibly fire. These transi­
tions have an associated action and a corresponding assertion, which, together, 
represent the subscription for an event of interest. The set of all current event 
subscriptions for all the active scenario instances is maintained by the Core in 
an intemal database. 

The Event Engine component of the Core is responsible for extracting events 
from the input queue and matching each event against the active event subscrip-
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tions. For each matching event subscription the tuple {scenariotransition ̂  
event) is inserted in the set of transitions to be fired. There are three sepa­
rate sets depending on the type of transition: nonconsuming, consuming, and 
unwinding. 

Once all the enabled transitions have been collected, the transitions are fired 
one by one. First, nonconsuming transition are fired. When a nonconsuming 
transition of a scenario instance is fired, a new scenario instance is created. 
The original instance becomes the parent of the new instance which, in tum, 
becomes one of the original instance's children. The child instance has a copy 
of the parent's local environment and a copy of the parent's timers. The state 
of the child instance is set to the destination state of the transition that fired. 
Then, the destination state code fragment is executed in the context of the child 
instance. If the destination state is a final state the child instance is removed. 
Otherwise, for each outgoing transition of the destination state a subscription 
for the associated event is inserted in the event subscription database. 

After all the nonconsuming transitions have been fired, consuming transi­
tions are fired. In the most common case, the instance state is changed to the 
destination state, previous subscriptions are canceled, and new subscriptions 
for the events associated with the transitions outgoing from the new state are 
inserted in the event spec database. Then, the destination state code is executed. 
If there are multiple enabled consuming transitions to be fired associated with 
the same scenario instance, then for each transition firing, except for the last 
one, a clone of the scenario instance is created. A cloned instance differs from 
a child instance in that a clone instance has the same parent as the original 
instance. After the creation of the clone, the execution process follows the 
steps of the previous case. Another special case is represented by a scenario 
instance that is in a state that can be the destination of an unwinding transition, 
that is an unwindable state. In this case, if the instance has any descendants, 
it is possible that at some time in the future one of the descendants may want 
to unwind to the ancestor instance as it is in its current state. If the instance's 
state changes because of the firing of a consuming transition, the system would 
reach an inconsistent state. To avoid this, a clone instance is created and the 
original instance is put in an inactive status. In the inactive status, the current 
subscriptions of the instance are removed and they are not replaced with new 
subscriptions. The instance will be restored to an active status if one of the 
children actually unwinds to the instance in the specified state. 

After both consuming and nonconsuming transitions have been fired, the 
Core proceeds to fire the unwinding transitions. The firing of an unwinding 
transition with respect to a scenario instance has the effect of undoing the steps 
that brought the scenario instance to its current state. This means that other sce­
nario instances may be affected by the unwinding procedure. More precisely, 
if we consider an unwinding transition from state Sx to state Sy we have to 
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Figure 7.3. The STAT Framework extension process. The grayed boxes are the modules that 
need to be developed to extend the framework. The other components are generated automati­
cally through either translation or compilation. 

remove all the instances that were created by the series of events that brought 
the unwinding instance from state Sy to state Sx- In the Core, this is achieved 
by traversing back the parent/child chain until an instance in state Sy is found. 
Then the instance subtree rooted in the last visited instance is removed. 

After all the transitions have been fired, the Configuration Manager compo­
nent takes control of the Core. If a new control message is found in the control 
queue, the necessary reconfiguration of the Core is performed, and then the 
event processing is resumed in the new configuration. 

2.3 STAT Extensions 

The STATL language and the Core runtime are domain-independent. They 
do not support any domain-specific features that may be necessary to perform 
intrusion detection analysis in particular domains or environments. For exam­
ple, network events such as an IP packet or the opening of a TCP connection 
cannot be represented in STATL natively. Therefore, the STAT Framework 
provides a number of mechanisms to extend the STATL language and the run­
time to match the characteristics of a specific target domain. 

The framework extension process is performed by developing subclasses 
of existing STAT Framework C+-I- classes. The framework root classes are 
STAT_Event, STAT.Type, STAT_Provider, STAT_Scenario,and ST-
AT_Response. In the following paragraphs, the extension process is pre-



200 Chapter 7 

sented in detail. A graphic description of the extension process is given in 
Figure 7.3. 

The first step in the extension process is to create the events and types that 
characterize a target domain. A STAT event is the representation of an element 
of an event stream to be analyzed. For example, an IP event may be used 
to represent an IP datagram that has been sent on a link. The event stream is 
composed of IP datagrams and other event types, such as Ethemet frames and 
TCP segments. All event types must be subclasses of the STAT-.Event class. 
Basic event types can be composed into complex tree structures. For example, 
it is possible to use a tree of events to express encapsulation, such as Ethemet 
frames that encapsulate IP datagrams, which, in tum, contain TCP segments. 

All of the types used to describe the components of an event and other auxil­
iary data structures must be subclasses of the STAT_Type class. For example, 
the IPAddres s class is a type used in the definition of the IP event, and, 
therefore, it is a subclass of STAT^Type. 

A set of events and types that characterize the entities of a particular domain 
is called a Language Extension. The name comes from the fact that the events 
and types defined in a Language Extension can be used when writing a STATL 
scenario once they are imported using the u s e STATL keyword. For example, 
if the IP event and the IPAddress type are contained in a Language Exten­
sion called t c p i p , then by using the expression u s e t c p i p it is possible to 
use IP events and IPAddres s objects in attack scenario descriptions. 

The events and types defined in a Language Extension must be made avail­
able to the runtime. Therefore, Language Extensions are compiled into dy­
namically linked libraries (i.e., a ' ' . so" file in a UNIX system or a DLL file 
in a Windows system). The Language Extension libraries are then loaded into 
the runtime whenever they are needed by a scenario. 

Attack scenarios are written in STATL, extended with the relevant Language 
Extensions. For example, a signature for a port scanning attack can be ex­
pressed in STATL extended with the t c p i p Language Extension. STATL 
attack scenarios are then automatically translated into a subclass of the ST-
AT_Scenario class. Finally, the attack scenarios are compiled into dynami­
cally linked libraries, called Scenario Plugins, When loaded into the runtime, 
Scenario Plugins analyze the incoming event stream looking for events or se­
quences of events that match the attack description. 

Once Language Extensions and Scenario Plugins are loaded into the Core it 
is necessary to start collecting events from the environment and passing them 
to the STAT Core for processing. The input event stream is provided by one 
or more Event Providers, An Event Provider collects events from the external 
environment (e.g., by obtaining packets from the network driver), creates STAT 
events as defined in one or more Language Extensions, and inserts these events 
into the event queue of the STAT Core. 
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Event Providers are created by subclassing the STAT_Provider frame­
work class. This class defines a minimal set of methods for initialization/fi-
nalization of a provider and the retrieval of events from the environment. An 
Event Provider component is compiled into a dynamically linked library. An 
Event Provider library module can be loaded into the STAT Core at runtime. 
Once a Provider has been loaded, it has to be activated with specific param­
eters. The activated Event Provider will then start collecting events from the 
extemal environment. A single Event Provider can be activated in many in­
stances and many different Event Providers can be loaded and activated at 
one time. Each activation of an Event Provider is associated with a dedicated 
thread. The thread uses the functions defined in the Event Provider module to 
retrieve events from the environment and insert them into the Core event queue 
for processing. 

A runtime equipped with Language Extensions, Scenario Plugins, and Event 
Providers represents a functional intrusion detection system. In addition, the 
STAT Framework also provides classes that define Response Modules. A Re­
sponse Module is created by subclassing the STAT_Response class. A Re­
sponse Module contains a library of actions that may be associated with the 
evolution of a scenario. For example, a network-based response action could 
reset a TCP connection, or it could send an email to the Network Security Offi­
cer. Response Modules are compiled into dynamically linked libraries that can 
be loaded into the runtime at any moment. Functions defined in a Response 
Module can be associated with any of the states defined in a Scenario Plugin 
that has been loaded in the runtime. This mechanism provides the ability to 
associate different types of response functions with the intermediate steps of 
an intrusion. 

Figure 7.4 presents the high-level class structure of the STAT Framework. 
The classes in the top part of the hierarchy are the STAT Framework classes. 
The lower part of the hierarchy is represented by the classes used to create 
a simple network-based intrusion detection system. The Language Exten­
sion Module is created by extending STAT^Event with subclasses IP, UDP, 
and TCP, which represent instances of the corresponding protocol units. The 
STAT_Type class is subclassed by IPAddres s and P o r t , which are used to 
represent IP addresses and TCP/UDP ports, respectively. N e t S n i f f e r is an 
Event Provider (a subclass of STAT^Provider) that reads the packets sent 
on a network link and creates instances of the IP, UDP, and TCP events. The 
three subclasses UDPFlood, RemoteBuf f e r O v e r f low, and P o r t s c a n 
extend the framework with descriptions of three network-based attacks. Fi­
nally, the subclass NetworkResponse contains network-specific response 
functions such as firewall reconfiguration directives and TCP connection shut­
down. 
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Figure 7.4. The STAT Framework class hierarchy. 

3. THE STAT FAMILY 
The framework described in the previous section has been used to develop 

a number of STAT-based intrusion detection systems. These IDSs are con­
structed by extending the STAT runtime with a selection of Language Exten­
sions, Event Providers, Scenario Plugins, and Response Modules. 

To be more precise, we developed an application, called xSTAT, that acts 
as a generic wrapper around the STAT Core runtime. xSTAT can be config­
ured with different components. For example, xSTAT may load a network-
centered Language Extension (e.g., the t c p i p extension described in Sec­
tion 2), a network-based Event Provider, and some network attack scenarios. 
The resulting system would be a network-based intrusion detection system, 
similar to Snort [28] or ISS RealSecure [13]. Note that loading a different set 
of components would create a completely different IDS. In addition, the STAT 
Framework has been ported to a number of platforms, including Linux, Solaris, 
Windows NT/2000/XP, FreeBSD, and MacOS X. Therefore, it is possible to 
create IDSs for these platforms by recompiling the necessary components. 

By extending the STAT runtime with different modules it is possible to pro­
duce a potentially unlimited number of IDSs. In the past few years, we con­
centrated on the most important applications of intrusion detection, and we 
developed a family of intrusion detection systems based on the STAT Frame­
work. The following subsections give a brief description of the current toolset. 

3-1 USTAT 

USTAT was the first application of the STAT technique to host-based in­
trusion detection. Even though the type of analysis that is performed on the 
event stream has mostly remained unchanged, the tool architecture has been 
completely re-designed [25]. USTAT performs intrusion detection using BSM 
audit records [30] as input. The record contents are abstracted into events 
described in a BSM-based Language Extension. USTAT also uses a UNIX-
centered Language Extension that contains the definitions of a number of UNIX 
entities, such as user, process, and file. USTAT uses a BSM-based Event 
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Provider that reads BSM events as they are produced by the Solaris audit­
ing facility, transforms them into STAT events, and passes them to the STAT 
Core. The events are matched against a number of Scenario Plugins that model 
different UNIX-based attacks, such as buffer overflows and access to sensitive 
files by unprivileged applications. 

3.2 NetSTAT 
NetSTAT is a network-based IDS composed of a network-centered Lan­

guage Extension, an Event Provider that collects traffic from traffic dumps or 
network links, and a number of scenarios that describe network-based attacks, 
such as scanning attacks, remote-to-local attacks, and traffic spoofing. Net­
STAT is similar to other network-based intrusion detection systems. However, 
it has some unique features that are the result of being part of the STAT fam­
ily. For example, NetSTAT scenarios can be written in a well-defined language 
that has a precise semantics [5]. In addition, it is possible to perform stateful 
analysis that takes into account the multi-step nature of some attacks. This is 
in contrast to most existing network-based intrusion detection systems, which 
are limited to the analysis of single packets and do not provide a well-defined 
language for the description of multi-step scenarios. 

3.3 WebSTAT and logSTAT 
WebSTAT and logSTAT are two systems that operate at the application level. 

They both apply STAT analysis to the events contained in log files produced by 
applications. More precisely, WebSTAT parses the logs produced by Apache 
web servers [1], and logSTAT uses UNIX syslog files as input. In both cases, 
Language Extension modules that define the appropriate events and types have 
been developed, as well as Event Providers that are able to parse the logs and 
produce the corresponding STAT events. 

3.4 AlertSTAT and afedSTAT 
AlertSTAT is a STAT-based intrusion detection system whose task is to fuse, 

aggregate, and correlate alerts from other intrusion detection systems. There­
fore, AlertSTAT uses the alerts produced by other sensors as input and matches 
them with respect to attack scenarios that describe complex, multi-step attacks. 
For example, an AlertSTAT scenario may identify the following three-step at­
tack. The first step is a scanning attack detected by a network-based intrusion 
detection system, such as Snort or NetSTAT. This is followed by a remote 
buffer overflow attack against a Web Server (as detected by WebSTAT). Next, 
an alert produced by a host-based intrusion detection system (e.g., USTAT) 
located on the victim host indicates that the Apache process is trying to ac­
cess the / e t c / e x p o r t s file on the local machine. The resulting alert is an 
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aggregated report that conveys a much higher level view of the overall attack 
process. 

AlertSTAT operates on alerts formatted according to the lETF's Intrusion 
Detection Message Exchange Format (IDMEF) proposed standard [2]. The 
application is built by composing an IDMEF-based Language Extension with 
an Event Provider that reads IDMEF events from files and/or remote connec­
tions and feeds the resulting event stream to the STAT Core. A number of at­
tack scenarios have been developed, including the detection of complex scans, 
"many-to-one" and "one-to-many" attacks, island hopping attacks, and privi­
lege escalation attacks. 

Another correlator, called afedSTAT, has also been developed. The afed­
STAT IDS uses the events contained in a database of alerts, called AFED, 
which was developed by the Air Force Research Labs. In this case, the Event 
Provider is a format translator. More precisely, the Event Provider used in 
afedSTAT reads events from the database and transforms them into IDMEF 
events as specified by the IDMEF Language Extension. As a consequence, 
it was possible to reuse all of the scenarios developed for AlertSTAT in the 
analysis of the AFED data without change. 

3-5 WinSTAT and LinSTAT 

WinSTAT and LinSTAT are two host-based systems similar to USTAT. Win­
STAT uses the event logs produced by Windows NT/2000/XP LinSTAT uses 
the event logs produced by the Snare Linux kemel module [12]. These two 
systems are an interesting example of component reuse to implement simi­
lar functionality in different environments/platforms. The Event Providers for 
USTAT, LinSTAT, and WinSTAT are obviously different. However, some of 
the entities used in scenarios are the same, and so are some of the scenarios 
(e.g., a scenario that detects privileged access from unprivileged applications). 

3.6 AodvSTAT and AgletSTAT 

The versatility of the STAT Framework was tested in developing very dif­
ferent systems. A well-defined framework extension process is not only a good 
way to develop a family of systems; it is also useful to produce proof-of-
concept prototypes in a short amount of time. This is the case for two sys­
tems, called AodvSTAT and AgletSTAT. AodvSTAT is an IDS that interprets 
AODV [24] protocol messages and detects attacks against ad hoc wireless net­
works. AgletSTAT is an IDS that analyzes the events generated by a mobile 
agent system, caWtd Aglets [18], and detects attacks that exploit mobile agents. 
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3.7 Family Issues 

Developing a family of systems using an object-oriented framework has a 
number of advantages. First, the members of the program family benefit from 
the characteristics of the common code base. For example, all of the STAT 
applications use extended versions of STATL, and, therefore, they all have a 
well-defined language to describe attack scenarios. Second, it is possible to 
embed command and control functionality within the shared part of the frame­
work. As a consequence a single configuration and control paradigm can be 
used to control a number of different systems. This is an issue that is particu­
larly relevant for the domain of intrusion detection, and it is explained further 
in Section 4. Third, by factoring-out the commonalities between members of 
the family, it is possible to reuse substantial portions of the code. Finally, the 
use of a framework-based approach reduces the development time and allows 
one to build complete intrusion detection systems in a small amount of time. 

4. METASTAT 

MetaSTAT is an infrastructure that enables dynamic reconfiguration and 
management of the deployed STAT-based IDSs. MetaSTAT is responsible for 
the following tasks: 

• Route control messages to STAT sensors and other MetaSTAT in­
stances. MetaSTAT components can remotely control STAT-based sen­
sors ^ through control messages. These messages may also cross the 
boundary of a web of sensors if the infrastructure security policy allows 
one to do so. 

• Collect, store, and route the alerts produced by the managed sen­
sors. Alerts about ongoing attacks are collected in a database associated 
with a single web of sensors. In addition, MetaSTAT components and 
STAT-based sensors can subscribe for specific alerts. Alerts matching a 
subscription are routed to the appropriate MetaSTAT endpoints. Alerts 
can also be sent across webs of sensors, to support high-level correlation 
and alert fusion. 

• Maintain a database of available modules and relative dependen­
cies. Every STAT component is stored in a Module Database together 
with meta-information, such as the dependencies with respect to other 
modules and the operational environment where the module can be de­
ployed. 

• Manage sensor reconfiguration. MetaSTAT uses the Module Database 
and the information regarding the components that are active or installed 
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Figure 7,5. Architecture of a web of sensors. 

at each STAT-based sensor as the basis for controlling the sensors and 
planning reconfigurations of the surveillance infrastructure. 

4.1 Control Infrastructure 
The high-level view of the architecture of the STAT-based web of sensors 

is given in Figure 7.5. MetaSTAT uses a communication infrastructure, called 
CommSTAT, to route messages and alerts between the different MetaSTAT end-
points in a secure way. CommSTAT messages are based on the IDMEF format, 
which defines two events, namely H e a r t b e a t and A l e r t . This original set 
of events has been extended to include STAT-related control messages that are 
used to control and update the configuration of STAT sensors. For example, 
messages to ship a Scenario Plugin to a remote sensor and have it loaded into 
the Core have been added, as well as messages to manage Language Exten­
sions and other modules. 

MetaSTAT-enabled sensors are connected iodi MetaSTAT proxy, which serves 
as an interface between the MetaSTAT infrastructure and the sensors. The 
proxy application performs preprocessing of messages, authentication of the 
MetaSTAT endpoints, and integration of third-party applications into the Meta­
STAT infrastructure. When receiving messages from a MetaSTAT controller, 
the proxy passes the control message on to the connected sensors, which ex­
ecute the control command. Three different classes of control messages are 
supported: 
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Figure 7.6. Evolution of a STAT-based sensor. 

• Install/uninstall messages. An install message copies a software com­
ponent to the local file system of a sensor, and an uninstall message 
removes the component from the file system. 

• Load/unload messages. A load message instructs a sensor to load a 
STAT module into the address space of the sensor. After the processing 
of the message is completed the loaded module is available for the sensor 
to use. An unload message removes an unused module from the address 
space of a sensor. 

• Activate/deactivate messages. An activate message starts an instance 
of a previously loaded STAT module. The activate message supports 
the passing of parameters to a STAT module. It is common to activate 
several instances of the same module with different parameters. A deac­
tivate message stops the execution of an instance. 

The configuration of a STAT sensor can be changed at run-time through 
control directives sent by the MetaSTAT controller to the proxy component re­
sponsible for the sensor. A set of initial modules can be (and usually is) defined 
at startup time to determine the initial configuration of a sensor. In the follow­
ing paragraphs, an incremental configuration of a STAT-based sensor will be 
described to better illustrate the role of each sensor module, provide a hint of 
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the high degree of configurability of sensors, and describe the dependencies 
between the different modules. 

When a sensor is started with no modules, it contains only an instance of 
the STAT Core waiting for events to be processed. The Core is connected 
to a proxy, which, in turn, is connected to a MetaSTAT controller instance. 
This initial ''bare" configuration, which is presented in Figure 7.6 (a), does not 
provide any intrusion detection functionality. 

The first step is to provide a source of events. To do this, an Event Provider 
module must be loaded into the sensor and then activated. This is done through 
MetaSTAT by requesting the shipping of the Event Provider shared library to 
the sensor, and then requesting its loading and activation. An Event Provider 
relies on the event definitions contained in one or more Language Extension 
modules. If these are not available at the sensor's host, then they have to be in­
stalled and loaded. Once both the Event Provider and the Language Extensions 
are loaded into the sensor, the Event Provider is activated. As a consequence, 
a dedicated thread of execution is started to execute the Event Provider. The 
provider collects events from an external source, filters out those events that are 
not of interest, transforms the remaining events into event objects (as defined 
by a Language Extension), and then inserts the event objects into the Core in­
put queue. The Core, in tum, consumes the events and checks if there are any 
STAT scenarios interested in the specific event types. At this point, there are 
no scenarios, and, therefore, there are no events of interest to be processed. 
This configuration is described in Figure 7.6 (b). 

To start doing something useful, it is necessary to load one or more Scenario 
Plugins into the Core and activate them. To do this, first a Scenario Plugin 
module, in the form of a shared library, is installed on the sensor's host. A 
scenario may need the types and events of one or more Language Extension 
modules. If these are not already available at the destination host then they 
are installed and loaded. Once all the necessary components are available, 
the scenario is loaded into the Core and activated, specifying a set of initial 
parameters. When a Scenario Plugin is activated, an initial scenario prototype 
is created. The scenario prototype contains the data structures representing the 
scenario's definition in terms of states and transitions, a global environment, 
and a set of activation parameters. The prototype creates a first instance of 
the scenario. This instance is in the initial state of the corresponding attack 
scenario. The Core analyzes the scenario definition and subscribes the instance 
for the events associated with the transitions that start from the scenario's initial 
state. At this point the Core is ready to perform event processing, as shown in 
Figure 7.6 (c). 

As a scenario evolves from state to state, it may produce some output. A 
typical case is the generation of an alert when a scenario completes. Another 
example is the creation of a synthetic event, which is a STAT event that is 
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generated by a scenario plugin and inserted in the Core event queue. The event 
is processed like any other event and may be used to perform forward chaining 
of scenarios. 

Apart from logging (the default action when a scenario completes) and the 
production of synthetic events (that are specified internally to the scenario def­
inition), other types of responses can be associated with scenario states using 
response modules. Response modules are collections of functions that can be 
used to perform any type of response (e.g., page the administrator, reconfig­
ure a firewall, or shutdown a connection). Response modules are implemented 
as shared libraries. To activate a response function it is necessary to install 
the shared library containing the desired response functionality on the sensor's 
host, load the library into the Core, and then request the association of a func­
tion with a specific state in a scenario definition. This allows one to specify 
responses for any intermediate or final state in any attack scenario. Each time 
the specified state is reached by any of the instances of the scenario, the corre­
sponding response is executed. Responses can be installed, loaded, activated, 
and removed remotely using the MetaSTAT component. Figure 7.6 (d) shows a 
response library and some response functions associated with particular states 
in the scenario definition. 

At this point, the sensor is configured as a full-fledged intrusion detection 
system. Event providers, scenario plugins, language extensions, and response 
modules can be loaded and unloaded following the needs of the overall intru­
sion detection functionality. As described above, these reconfigurations are 
subject to a number of dependencies that must be satisfied in order to suc­
cessfully load a component into the sensor and to have the necessary inputs 
and outputs available for processing. These dependencies are managed by the 
MetaSTAT component, and they are discussed in the next section. 

4.2 Sensor Reconfiguration 
The flexibility and extendibility supported by the STAT-based approach is 

a major advantage: the configuration of a sensor can be reshaped in real-time 
to deal with previously unknown attacks, changes in the site's policy, different 
levels of concem, etc. Fine-grained configurability requires careful planning 
of module installation and activation, and this activity can be very complex 
and error-prone if carried out without support. For this reason the MetaSTAT 
component maintains a database of modules and their associated dependencies 
and a database of the current sensor configurations. These databases provide 
the support for consistent modifications of the managed web of sensors. In 
the following, the term module is used to denote language extensions, event 
providers, scenario plugins, and response modules. The term external compo­
nent is used to characterize some host facility or service that is needed by an 
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event provider as a source of raw events or by a response function to perform 
some action. Extemal components are outside the control of MetaSTAT. For 
example, a BSM event provider needs the actual BSM auditing system up and 
running to be able to access audit records and provide events to the STAT Core. 

Dependencies between modules can be classified into activation dependen­
cies Mid functional dependencies. Activation dependencies must be satisfied 
for a module to be activated and run without failure. For example, consider a 
scenario plugin that uses predicates defined in a language extension. The lan­
guage extension must be loaded into the Core before the plugin is activated. 
Otherwise, the plugin activation will fail with a run-time linking error. Func­
tional dependencies are associated with the inputs of a module. The functional 
dependencies of a module are satisfied if there exist modules and/or exter­
nal components that can provide the inputs used by the module. Note that a 
module can successfully be activated without satisfying its functional depen­
dencies. For example, suppose that a scenario plugin that uses BSM events 
has been successfully activated, but there is no BSM event provider to feed 
BSM events to the Core. In this case, the scenario is active but completely 
useless. The inputs and outputs of the different module types, and the relative 
dependencies are summarized in Table 7.1. 

Module 

[ Event 
Provider 

Scenario 
1 Plugin 

Response 
Module 

Language 
Extension 

Inputs 

Extemal 
event 
stream 
STAT 
events, 
synthetic 
events 
Parameters 
from plu­
gin 
None 

Outputs 

STAT 
events 

Synthetic 
events 

Extemal 
response 

None 

Activation 

Language 
modules 

Language 
modules 

Language 
modules 

Language 
modules 

Dependencies 

Extension 

Extension 

Extension 

Extension 

Functional Dependencies 

Extemal components 

Scenario plugins, Event 
providers 

Extemal components 

None 

Table 7.7. Input and output, and dependencies of STAT sensor modules. 

Information about dependencies between modules is stored in MetaSTAT's 
Module Database. 

Determining the functional dependencies on other modules requires that 
two queries be made on the Module Database. The first query gets the in­
puts required by the module. The second query determines which modules are 
generating the inputs that were returned from the first query. The results re­
turned from the second query identify the modules that satisfy the functional 
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dependencies of the original module. The functional dependencies on exter­
nal components are modeled explicitly by the database. In addition to de­
pendencies, the Module Database also stores information such as version and 
OS/architecture compatibility information. 

The Module Database is used by MetaSTAT to automatically determine the 
steps to be undertaken when a sensor reconfiguration is needed. Since sen­
sors do not always start from a "bare" configuration, as shown in Figure 7.6 
(a), it is usually necessary to modify an existing sensor configuration. There­
fore, the MetaSTAT component maintains a second database called the Sen­
sor Database, which contains the current configuration for each sensor. This 
database is updated at reconfiguration time by querying the current configura­
tion of the sensor. 

To be more precise, the term configuration is defined as follows: A STAT 
sensor configuration is uniquely defined by a set of installed and activated 
modules and available external components. The term installed is used to de­
scribe the fact that a module has been transferred to and stored on a file system 
accessible by the sensor and in a location known by the sensor. The term acti­
vated is used to describe the fact that a module has been dynamically loaded in 
a sensor as the result of a control command from MetaSTAT. The term loaded 
has the same meaning as activated in relation to language extension modules. 

A configuration can be valid and/or meaningful A configuration is valid if 
all activated modules have all their activation dependencies satisfied. A con­
figuration is meaningful if the configuration is valid and all functional depen­
dencies are also satisfied. 

4.3 Reconfiguration Example 

To better describe the operations involved in a reconfiguration and the sup­
port provided by MetaSTAT, an example will be used. 

Suppose that the Intrusion Detection Administrator (IDA) noted or was no­
tified of some suspicious FTP activity in a subnetwork inside the IDA's organi­
zation. Usually, the IDA would contact the responsible network administrator 
and would ask him/her to install and/or activate some monitoring software to 
collect input data for further analysis. The IDA might even decide to login 
remotely to particular hosts to perform manual analysis. Both activities are 
human-intensive and require considerable setup time. 

MetaSTAT supports a different process in which the IDA interacts with a 
centralized control application (i.e., the MetaSTAT console) and expresses an 
interest in having the subnetwork checked for possible FTP-related abuse. This 
request elicits a number of actions: 
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1 The scenario plugins contained in the Module Database are searched for 
the keyword "FTP". More precisely the IDA's request is translated into 
the following SQL query: 

SELECT module_id, name, os_platform, description 
FROM Module_Index 
WHERE (name LIKE '%ftp%' OR 

description LIKE '%ftp%') 
AND type="plugin"; 

The following information is returned: 

module,id 

inodule_l 

inodule_2 

module_9 

name 

wu-ftpd-bovf 

ftpd-quote-abuse 

ftpd~protocol-verify 

os^platf orm 

Linux X86 

Linux X86 

Linux X86 

description 

BOVF attack 
against 
ftpd 
QUOTE 
command 
abuse 

FTP 
protocol 
verifier | 

The IDA selects the wu-f t p - b o v f and f t p d - q u o t e - a b u s e sce­
nario plugins for installation. 

2 The Module Database is examined for possible activation dependencies. 
The wu-f t p - b o v f activation dependencies are determined by the fol-
lov îng query: 

SELECT dep_module_id FROM Activation_Dependency 
WHERE module_id="module_l"; 

The query results (not shown here) indicate that the scenario plugin re­
quires the f t p language extension. This is because events and pred­
icates defined in the f t p extension are used in states and transitions 
of the wu-f t p - b o v f scenario. A similar query is performed for the 
f t p d - q u o t e - a b u s e scenario plugin. The query results indicate that 
the s y s l o g language extension is required by the plugin. 

3 The Module Database is then searched for possible functional depen­
dencies. For example in the case of the wu-f t p - b o v f scenario the 
following query is executed: 
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SELECT input_id FROM Module_Input 
WHERE module_id="module_l"; 

The query returns an entry containing the value FTP_PROTOCOL. This 
means that the wu-f t p - b o v f scenario uses this type of event as input. 
Therefore, the wu~f t p - b o v f scenario plugin has a functional depen­
dency on a module providing events obtained by parsing the FTP pro­
tocol. A similar query indicates that the f t p d ~ q u o t e - a b u s e plugin 
has a functional dependency on a provider of SYSLOG events. 

4 These new requirements trigger a new search in the Module Database 
to find which of the available modules can be used to provide the re­
quired inputs. SYSLOG events are produced by three event providers: 
s y s l o g l , s y s l o g 2 , and w i n - a p p - e v e n t . The FTP_protocol 
events are produced, as synthetic events, by the f t p - p r o t o c o l - v e ­
r i f y scenario. 

5 Both the s y s l o g l and s y s l o g 2 event providers require an exter­
nal source, which is the syslog facility of a UNIX system. In particu­
lar, s y s l o g 2 is tailored to the syslogkd daemon provided with Linux 
systems. Both event providers have an activation dependency on the 
s y s l o g language extension. The w i n - a p p - e v e n t event provider 
is tailored to the Windows NT platform. It depends on the NT event 
log facility (as an extemal component) and relies on the NT event log 
language extension (winevent) . The f t p - p r o t o c o l - v e r i f y is a 
network-based scenario and, as such, requires a network event provider 
that produces events of type STREAM, which are events obtained by re­
assembling TCP streams. The scenario has two activation dependencies; 
it needs both the t c p i p and the f t p language extensions. The first is 
needed because STREAM events are used in the scenario's transition as­
sertions. The second is needed to be able to generate the FTP_proto­
co 1 synthetic events. 

6 Events of type STREAM are produced by an event provider called n e t -
p r o c . This event provider is based on the t c p i p language extension, 
and requires, as an extemal component, a network driver that is able to 
eavesdrop traffic. 

7 At this point, the dependencies between the modules have been deter­
mined (see Figure 7.7). The tool now identifies the sensors that need to 
be reconfigured. This operation is done by querying the Sensor Database 
to determine which hosts of the network under examination have ac­
tive STAT-based sensors. The query identifies two suitable hosts. Host 
l u c a s , aLinux machine, has a bare sensor installed. Host S p i e l b e r g , 
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lang ext 
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Figure 7,7, Dependency graph for scenarios wu-f t p - b o v f and f t p d - q u o t e - a b u s e . In 
the figure, arrows marked with the letter "A" are used to represent activation dependencies. Ar­
rows marked with "I" represent the relationship between a module and the input events required. 
Arrows marked with an "O" represent the relationship between an event type and the module 
that produce that type of event as output. Arrows marked with "E" represent a dependency on 
an external component. 

another Linux machine, runs a STAT-based sensor equipped with the 
n e t p r o c event provider, the t c p i p language extension, and some sce­
nario plugins. Both hosts provide the network driver and UNIX syslog 
extemal component. The tool decides (possibly with intervention from 
the IDA) to install the f t p d - q u o t e - a b u s e scenario on l u c a s and 
the wu-f t p - b o v f scenario on S p i e l b e r g . 

8 The s y s l o g language extension is sent to l u c a s , and it is installed in 
the file system. This is done using the following CommSTAT messages: 

<x-Stat-extension-lib-install id="l"> 
<extension__lib name= "syslog" version="l. 0 .1 "> 

[... encoded library ...] 
</extension-lib> 

</x-stat-extension-lib-install> 

<x-Stat-extension-lib-activate id="2"> 
<extension__lib name="syslog" version="l.0.1"> 
</extension-lib> 

</x-stat-extension-lib-activate> 
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The s y s l o g 2 event provider is sent, installed, and loaded in the sensor 
by means of similar commands. At this point syslog events are being fed 
to the Core of the sensor on host l u c a s . The f t p d - q u o t e - a b u s e 
scenario plugin is sent to the host, installed on the file system, and even­
tually loaded into the Core. 

9 The f t p language extension is sent to host S p i e l b e r g . The t c p i p 
language extension is already available, as is the n e t p r o c event provi­
der. Therefore, the f t p - p r o t o c o l - v e r i f y scenario plugin can be 
shipped to host S p i e l b e r g , installed, and loaded into the Core. The 
scenario starts parsing STREAM events and producing FTP.PROTOCOL 
synthetic events. As the final step, the wu-f t p d - b o v f scenario is 
shipped to host S p i e l b e r g , installed, and loaded into the Core, where 
it immediately starts using the synthetic events generated by the f t p - ' -
p r o t o c o l - v e r i f y scenario. 

After the necessary reconfigurations are carried out, the IDA may decide to 
install specific response functions for the newly activated scenarios. A process 
similar to the one described above is followed. Response modules, in the form 
of shared libraries, may be installed on a remote host and linked into a sensor. 
Additional control commands may then be used to associate states in a scenario 
with the execution of specific functions of the response module. 

5, RELATED WORK 
Object-oriented frameworks are ''sets of cooperating classes that make up 

a reusable design for a specific class of software" [6]. Generally, frameworks 
are targeted for specific domains to maximize code reuse for a class of appli­
cations [15]. The STAT Framework is targeted for the development of event-
based intrusion detection systems. In this context, the use of a framework dif­
fers from traditional approaches [11, 29], because all of the components that 
are developed as part of the framework are highly independent modules that 
can be composed (almost) arbitrarily through dynamic loading into the frame­
work runtime. In addition, the framework extension process is not limited to 
the creation of a domain-specific intrusion detection system. The same pro­
cess produces products for different domains, depending on the events, types, 
and predicates defined in the Language Extensions. The product of the STAT 
Framework is a family of intrusion detection systems. 

The concept of program families was introduced by Pamas in [22] and 
has received considerable attention from the Software Engineering commu­
nity ever since. Unfortunately, the criteria, methodologies, and lessons leamed 
in developing software families in a number of fields have not been applied to 
intrusion detection. Even though in recent years the focus of intrusion detec­
tion has moved from single-domain approaches (e.g., network-based only) to 
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multi-domain approaches (e.g., correlation of alerts from both network-level 
and OS-level event analysis), this change of focus has not been matched by 
a corresponding shift in development methodology. As a consequence, while 
IDS are becoming more common, their development is still characterized by an 
ad hoc approach. Notable examples are SRFs Emerald [26, 20], ISS RealSe-
cure [13], and Prelude [31]. All of these toolsets include a number of different 
sensor components and high-level analysis engines. For example. Emerald has 
a host-based intrusion detection system, two network-based analyzers, and a 
correlation/aggregation component. Even though the toolset covers a number 
of different domains, there is no explicit mechanism in the Emerald approach 
that is exclusively dedicated to support the extension of the system to previ­
ously uncovered domains. The same limitation appears in both RealSecure, 
which is a mainstream commercial tool, and Prelude, which is an open-source 
project. 

6. CONCLUSIONS 
The STAT Framework is an approach for the development of intrusion de­

tection systems based on the State Transition Analysis Technique. This chapter 
described the framework, the corresponding extension process, and the result 
of applying the framework to develop a family of systems. 

The work reported in this chapter makes contributions in several areas. By 
using object-oriented frameworks and by leveraging the properties of program 
families it was possible to manage the complexity of implementing intrusion 
functionality on different platforms, environments, and domains. The frame­
work supports efficient development of new intrusion detection sensors be­
cause the main mechanisms and the semantics of the event processing are im­
plemented in a domain-independent way. Therefore, the IDS developer has 
to implement only the domain/environment-specific characteristics of the new 
sensor. Practitioners in the field of intrusion detection can certainly gain from 
the lessons leamed. Hopefully, they will use the STAT framework or adapt a 
component-based software family approach for their own development. 

Two areas where the reported work contributes to previous work in the com­
ponent and framework communities is in leveraging the architecture to have a 
common configuration and control infrastructure and in having the attack spec­
ification language tightly coupled with the application development. STAT-
based intrusion detection systems that operate on different event streams (e.g., 
OS audit records and network packets) and at different abstraction levels (e.g., 
detection and correlation) share a similar architecture and similar control prim­
itives. As a consequence, a single configuration and control infrastructure can 
be used to manage a large number of heterogeneous components. 
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Language Extension modules extend the domain-independent STATL core 
language to allow users to specify attack scenarios in particular application do­
mains. The same Language Extension modules are compiled and used by the 
runtime core for recognizing events and types. Because it is the same Lan­
guage Extension module for both, the user automatically gets an attack spec­
ification language along with his/her intrusion detection system. In addition, 
because the attack specification languages are an extension of the STATL core 
language, a user does not need to leam a new language style when setting up 
attack scenarios for a new intrusion detection application. 

The STAT tools and the MetaSTAT infrastructure have been used in a num­
ber of evaluation efforts, such as the MIT/Lincoln Labs evaluations and the 
Air Force Rome Labs evaluations, in technology integration experiments, such 
as DARR/\'s Grand Challenge Problem (GCP) and the iDemo technology inte­
gration effort. In all of these very different settings, the STAT tools performed 
very well by detecting attacks in real-time with very limited overhead. In most 
cases, the STAT tools were run and compared with other tools from both the 
research and the commercial worlds. The positive feedback received from the 
organizers of these evaluation efforts provided a particularly significant com­
parison of the STAT toolset performance with respect to other state-of-the-art 
intrusion detection technologies. 

The STAT Framework, the MetaSTAT infrastructure, and the STAT-based 
tools are open-source and publicly available at the STAT web site http://www,' 
cs. ucsb, edu/r^rsg/STAT. 
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Notes 

1. An alternative would be to execute the transition codeblock before evaluating the state 

assertion. However, this would require backtracking to undo environment changes when the 

state assertion is not satisfied. Otherwise, the environment could be changed for "partially" 

fired transitions, which would be semantically unsatisfactory. 

2. In the remainder of this chapter an instance of an intrusion detection system may be 

referred to as a sensor. 
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ENCAPSULATION OF USER'S INTENT: A NEW 
PROACTIVE INTRUSION ASSESSMENT 
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Abstract: Few practical implementations of anomaly detection systems are currently known. 
Major hindrances in this regard are poor accuracy of detection and excessive false 
positives. While some of the reasons may be attributed to theory and technology, 
a major factor that is overlooked is the user. We propose a novel approach that 
brings the user into the loop by querying him for his session intent in a proactive 
manner. This encapsulated intent serves the purpose of a certificate based on 
which more accurate intrusion detection decisions can be made. 

Keywords: Anomaly detection, Intrusion detection, Misuse detection. Role based access 
control. User intent 

1. INTRODUCTION AND MOTIVATION 
The field of computer security is concerned with enforcing a code of proper 

conduct in the digital domain. The various facets of computer security are 
prevention, detection and mitigation. Preventive measures, such as firewalls, 
form the first line of defense. However, they may not be adequate to contain 
every possible attack. It is, therefore, essential to detect those attacks that 
have breached this line of defense and initiate additional countermeasures. The 
process of detecting attacks is called intrusion detection, and a program that 
performs this task is called an intrusion detection system (IDS). 

Intrusion detection systems can be categorized as either misuse detection or 
anomaly detection systems. Misuse detection techniques look for very specific 
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patterns of attacks, but their effectiveness is limited to the database of pattems or 
signatures of known attacks. On the other hand, anomaly detection approaches 
rely on defining a reference line for normalcy and flagging any significant 
deviations as intrusive activity. A downside of this approach is that determining 
proper thresholds for normalcy and intrusions is very difficult. 

Many important lessons have been learned in conjunction with the advances 
that have been made in intrusion detection. Intrusion detection is primarily a 
process of decision-making based on systemic audit data that is gathered from 
probes, which are placed at strategic points in a computer system or network. 
An operating system on a computer can offer multiple interfaces through which 
users can interact with the computer, as illustrated in Figure 8.1. A user may 
execute commands locally on a shell, which consequently invokes the system 
call subsystem. Users may also access the computer remotely by utilizing the 
networking subsystem. Unfortunately, these very channels of interaction with 
a computer may be misused to launch attacks; hence, security systems have 
to be deployed at these points. Extemal network-level attacks are perhaps the 

User 

commands 

1 System calls • 

Operating system 

1 Networking subsystem 
1 ! 

t 
Network packets 

Network medium 

User space 

Kernel space 

Figure 8.1, Multiple Interfaces Provided by an Operating System 

most common type of attacks and they have been well-studied. Consequently, 
a gamut of techniques and tools are currently available such as firewalls, net­
work intrusion detection systems and security audit tools. On the system call 
interface, the threat manifests mainly in the form of mobile code, malicious 
users, insiders and masqueraders. In order to combat the problem of malicious 
mobile code and users, solutions such as proof carrying code and sandboxing 
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have been proposed. In contrast, few solutions have been offered for the threat 
posed by insiders and masqueraders. Traditional rule-based misuse detection 
systems are not very successful, because it is not possible to define signatures 
accurately for every user. Due to their ability to construct specific statistical 
models, anomaly detection approaches are considered more promising. How­
ever, practical implementations of anomaly detection systems are not common 
due to issues involving data collection and processing, leaming time and high 
false positive/negative rate. 

In this chapter, we propose a novel methodology to tackle these issues and lay 
the groundwork for the implementation of a practical anomaly detection system. 
The first step of our intrusion detection technique is generation of a run-time 
plan for the user. The user is then monitored for any significant deviation from 
this plan. This plan is composed of verifiable assertions that are automatically 
generated on the basis of a few system usage inputs provided by the user at 
the beginning of a session. These inputs are obtained in a controlled manner 
through some form of user interface. Once an assertable plan is generated, the 
user will be monitored throughout the session to see how closely he conforms 
to the plan. Any significant deviation from the plan is construed as an intrusion. 

This approach is based on sound principles of signature analysis that have 
been successfully used in concurrent monitoring of processor operation for fault 
tolerance. Besides, the new approach offers several advantages. First of all, 
this does away with audit trail analysis. Audit trails are generally huge and 
the analysis and filtering out of useful information is expensive ([14]). Also, 
the assertable plan based on encapsulation of owner's intent attaches a greater 
significance to the semantics of user's operations and also can take into account 
user dynamics and any intended changes in the user behavior. Therefore, no 
special leaming is needed as is the case with other statistics based systems. 
The analysis is done at a much higher level of abstraction compared to kemel 
level monitoring ([11]). This can lead to the detection of intricate and subtle 
attacks. Since on-line monitoring can potentially lower the latency of detection, 
our scheme can be combined with any recovery schemes for effective damage 
containment and restoration of service. 

2. BACKGROUND AND RELATED WORK 

Intrusion detection techniques have been devised at various levels, i.e., using 
audit data sampled deep inside the system, system call level and in some cases 
at the user level. Some aspects of these techniques are similar to our approach. 

Rule Based 

When certain attack patterns and their security implications are known, it 
is possible to derive their signatures, and arrive at rules to detect and disallow 
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such activity. Due to the ease of implementation and reasonably high accuracy, 
this is one of the commonly used techniques for intrusion detection and preven­
tion. These rules form a security policy and they may be derived and enforced 
([9]; [2]; [10]; [21]; [29]) at various levels. The rules may govem various as­
pects such as packet formats, network activity, system usage, program and user 
behavior, etc. 

Program Behavior Based 

Of particular interest is ([10]) where intended program behavior is specified 
in terms of assertions. These assertions are, in general, rules which govem 
what a program can or cannot do. This approach is feasible for a small number 
of programs but does not scale well in real world settings where there are a 
large number of programs available for use. The concept of assertions that we 
speak of is very similar to this idea except that our specifications are at various 
levels. The technique discussed in ([7]) constructs program behavior profiles 
and compares the mn-time activity against this profile. Various models based 
on automatons and state transitions ([29]) exist to model program behaviors. 

User Behavior Based 
The work that is closest to our approach is ([25]) that speaks about modeling 

user intent based on system audit data. This technique was not very effective 
primarily because of the amount of information collected and the problem of 
ambiguity resolution at that level. The work discussed in ([13]) attempts to 
model user behavior statistically by observing the operations and commands 
that he uses, and detect any deviations from this profile. The problem is tackled 
from an AI perspective. However, considering the large number and variety of 
operations and commands, detection becomes infeasible and inaccurate. An­
other notable work ([3]) uses keystroke monitoring to identify users and then 
differentiates between legitimate users and intruders. However, ([12]) discounts 
this technique as being impractical due to the myriad ways of expressing the 
same attack at the keystroke level. Aliasing has also been cited as a reason for 
the defeat of this technique. 

Role Based Access Control 

Role based access control (RBAC) mechanism ([6]) defines a sandbox based 
on the user-id and associated privileges. Roles are assigned to each user and he 
can make only those transactions for which he has the required privileges. This 
mechanism is similar to our approach in way of defining the bracket of allowed 
activity. However, RBAC is successful when the transactions that can be made 
are few and clearly defined. Hence, it finds good applications in databases. 
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Real-time Detection 

Quite a few techniques claim to achieve real-time detection. This is true 
when the data set is small or the instance of the problem is small ([10]; [9]). 
In other cases, even if the data is large, they may be able to detect intrusions 
rapidly but have to do it offline resulting in slower response times. Some 
other previous works such as a more powerful version of NADIR ([8]) called 
UNICORN accepts audit logs from Cray Unix called UNICOS, Kerberos and 
common file systems. It then analyzes them and tries to detect intruders in 
real-time. However, since these audit logs can be large, significant computing 
power has to be devoted to process them, defeating the very goal of real-time 
intrusion detection. 

Distributed and Concurrent Schemes 

DIDS ([23]) is a distributed intrusion detection system which looks at and 
correlates the connections on multiple machines to the initial login. GrIDS 
([26]) is a graph based intrusion detection system that collects data about ac­
tivities on computers and network traffic between them. This graph is then 
used to detect large-scale automated or coordinated attacks in real-time. The 
computer science lab at SRI Intemational has completed a project called EMER­
ALD (Event Monitoring Enabling Response to Anomalous Live Disturbances) 
([19]). This project has developed a distributed monitoring scheme which uses 
a combination of a signature engine and a profiler engine within the monitor 
for intrusion detection. It is possible to draw some parallels from the domain 
of fault tolerance such as the concept of system level check for concurrent error 
detection ([!]). It is now a well accepted theory that faults can be detected 
by using verifiable assertions placed at strategic points in the real-time sys­
tem. These assertions are similar to the rules and other invariants specified 
for system behavior for intrusion detection. The research group at Purdue has 
developed an adaptive network monitoring scheme using autonomous agents. 
Their approach ([24]) is distributed in the sense that one agent is used per node 
instead of a monolithic entity. The agent is somewhat similar to the monitor 
of EMERALD ([19]). This architecture also uses a hierarchical approach like 
EMERALD. 

IMasqueraders and Insider Threats 

The problem of insiders and masqueraders is a serious one with few solutions. 
The work of ([16]) is a recent attempt at trying to solve the problem using 
anomaly detection via truncated command lines. Though they report some 
success, they admit that such success is limited only to their data set and the 
results may not even be replicable. This work also compares and contrasts other 
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known statistical techniques to solve the problem. We argue that it is neither 
feasible nor practical to solve the problem using only statistical methods because 
of the number of possibilities. 

3. GUIDELINES 
On the basis of the rich experience provided by these recent research efforts, 

we have identified some guidelines to achieve our goal of a practical online 
anomaly detection system. We also present arguments in support of these 
guidelines. 

GUIDELINE 1 Use the principle of least privilege to achieve better security. 
The principle of least privilege ([6]) implies that security is achieved only 

at the loss of certain freedom. A user's operations should be restricted to the 
extent that it is just sufficient for him to perform his jobs without hindrance. 

GUIDELINE 2 Use mandatory access control wherever appropriate. 
Mandatory access controls ^ are rules that govern the access to objects and 

resources. This principle supplements Guideline 1 when there is a conflict of 
interest between the user's freedom and achieving better security. 

Both of these guidelines serve an additional purpose. In general, data col­
lection and processing is central to an anomaly detection technique. It is often 
the case that audit data gathered by sensors or probes contains noise, which 
interferes with the construction of accurate statistics. By setting appropriate 
restrictions and rules for system usage, this noise can be reduced. This require­
ment is stated as Guideline 3. 

GUIDELINE 3 The data used for intrusion detection should be kept simple and 
small 

This has several implications. If the data is kept small and simple, it becomes 
possible to effectively sift through it for information regarding attacks. The 
processing and storage overheads are reduced significantly. More importantly, 
this reduces false positives and facilitates lower detection latency. Since our 
focus is user-level intrusion detection, data collection is done at higher levels 
in the system such as commands and system calls, rather than low levels such 
as a filesystem and networking subsystems. 

GUIDELINE 4 Intrusion detection capabilities are enhanced if environment 
specific factors are taken into account. 

No single intrusion detection can sufficiently cater to all the security needs. 
The parameters used to collect information are very dynamic and highly en­
vironment specific. A lot of anomaly based intrusion detection systems do 
not take into consideration the environmental factors. The expectation that 
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anomaly based systems will perform well irrespective of the environment has 
been proven to be unrealistic ([15]). In order to achieve similar efficacy in 
detection, such systems should be flexible enough so that their parameters can 
be configured to reflect the environment they are deployed in. 

4. METHODOLOGY OVERVIEW 

Intrusion Model and Assumptions 

Any activity at the user level is initiated by programs executed on some user's 
behalf. We classify malicious user activity into the following categories. 

• System abuse and access violations 

A user after logging into a system may execute commands that lower 
the overall quality of service or attempt to access resources that he is not 
authorized to. 

• Identity theft attacks 

An attacker can assume the identity of a legitimate user through a compro­
mised password or physically joining an open session of an authenticated 
user. 

In our definition of a distributed system, we include a network of computers 
that service users on the basis of an account and a password. Further, we assume 
that the users on different machines have the same user-id although the pass­
words could be distinct. This model precludes the monitoring of web surfing 
and anonymous ftp activities. No specific topology is assumed for the network. 
All communications between nodes are by message passing and the network 
is assumed to be stable. This model makes our intrusion detection approach 
unique in that all intrusions are abstracted as happening through well-defined 
user sessions which are invoked through a user-id and password submission. 
The problem of intrusion detection simply transforms into monitoring these 
well-defined user sessions. We also assume that a user session on a node is of 
finite length. 

Basic Principle 

Our technique of intrusion detection using verifiable assertions is firmly 
based on the principle of control flow checking in fault tolerance ([18]; [22]; 
[28]). In control flow checking, an analysis prior to compilation of the pro­
gram is done to generate a control flow graph of the application. Signatures or 
assertions are embedded into the instruction stream at compile time to gener­
ate a reference graph. At run-ime, signatures generated from the execution of 
instructions are monitored and at designated intervals, the run-time signatures 
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are compared with predetermined signatures of the reference graph. Any dis­
crepancy between the run-time signatures and the expected signatures indicates 
an error. Both instruction level bit errors and control flow errors are detected 
by this scheme. Though the control flow checking concept can be extended 
to intrusion detection, instruction-level models are not applicable here because 
instruction-level control flow variations may not indicate attacks occurring at 
higher levels. Accordingly, we use a different approach for the derivation of a 
reference graph as described below. 

In our intmsion detection scheme, the user starts a session on a computer in 
a standard way, that is, by logging in. The system then encapsulates his intent 
as a session-scope. This is an approximate summary of his intended system 
usage. Once the scope-file is submitted, the user is allowed to continue with his 
session. Meanwhile the system translates the scope-file into a set of verifiable 
statements. When no ordering of events is considered on the activities of the 
user, the set is simply a table of verifiable statements. It has no control flow 
information as such. 

The verifiable statements give a mechanism for monitoring the user behavior. 
These statements are generated automatically by reading the scope-file and 
interpreting the user inputs properly. An important component of our verifiable 
statements is the subject field. The subject field is generated from the user-id 
and other unique identifications such as the IP address of the workstation, tty 
number of the terminal being used etc. All such information will be coded into 
the subject field. For instance, a user may wish to open multiple login sessions. 
As long as such intent is expressed in the scope-file, a more general subject 
coding can be done for this user in order to allow him to work from different 
terminals or set up multiple login sessions. There is only one monitor process 
per user even though multiple sessions are opened. 

When the user is in session, his operational commands are checked to see if 
they are the ones he originally intended to execute. Any significant deviation 
from the plan is an indication of potential intrusive activity. 

The flow diagram of Figure 8.2 represents the basic principle of our new 
approach and by itself has limited usage. While extensions are easily conceiv­
able for improved performance ([27]), we retain our basic framework for ease 
of presentation of the scheme. Some of the techniques used to minimize false 
alarms and to build robustness to this basic monitoring scheme will be discussed 
later. 
User Intent Encapsulation 

Actively querying a user for computational intent may initially appear as a 
departure from traditional techniques and an avoidable annoyance, but there are 
some definite benefits. When an online IDS is installed on a computer system, 
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Figure 8.2. Flow Diagram of Intrusion Detection 

it makes decisions regarding the current user activity, which may or may not be 
contested by a user. Figure 8.3 illustrates the various scenarios. 

IDS decision: 
Is the current user activity intrusive? 

User consent: 
Does the user agree? 

Yes 

No 

Yes 

True Positive 

False Positive 

No 

True Negative 

False Negative 

\ 

Figure 8.3. Different Scenarios Corresponding to an IDS' Decisions and a Monitored User's 
Response to Those Decisions 

The four regions, shaded and unshaded, represent the "hits" and "misses" 
of an IDS' detection mechanism. Perfect intrusion detection is achieved if all 
the decisions of the IDS lie in the shaded regions without exception. However, 
that is seldom the case. Misuse detection techniques are generally accurate 
in detecting known attacks, but they are not complete. On the other hand, 
although anomaly detection approaches claim to be complete, they are not 
very accurate on the account of statistical methods being used. Even when the 
IDS is very accurate, a decision can be wrong simply because the user being 
monitored contests it. This problem cannot be solved merely by technology 
or theory alone. Instead, we propose to bring the user into the loop. When 
a user, whether a legitimate user or an intruder, is queried for intent at the 
beginning of a session, this expressed intent becomes a certificate of normal 
user activity. Some obvious concerns may arise at this point. This technique 
can only be practical if the process of intent encapsulation is not very intrusive 
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by nature. Also, it becomes important to do it in a way that captures maximum 
information with minimum effort. Intent encapsulation has been suggested as 
an effective alternative to formal verification of chip design .̂ As in the intent-
driven verification in the form of expressed and implied, intent encapsulation in 
our case can be achieved by a direct query which is explicit or in indirect ways 
which is implicit', each has its advantages and disadvantages. 

Figure 8.4. Illustration of Effects of Implicit and Explicit Intent Encapsulation 

Let us assume that the entire superset of operations is O as shown in Fig.8.4. 
This is the entire set of operations supported on a computer system that any 
user can attempt to execute. 

Implicit Intent Encapsulation. By using Guideline 2 (§ 3) and observing 
that certain intents can be inferred directly from the context, we define a default 
bracket of privileges corresponding to a user's user-id and his role (based on 
the RBAC methodology). For example, a teller in a bank may have a different 
job description than that of a manager, therefore requiring a different set of 
privileges. This bracket Od (Fig. 8.4) can be considered as the hard coded intent 
of the user. This technique has been widely used in commercial databases and 
has been successful. RBAC works well when the transactions and the ways in 
which they are accomplished are few and clearly defined. 

Explicit Intent Encapsulation. RBAC based technique suffers from the 
limitation that these bracket of privileges are static and pre-defined. This results 
in a very general profile for the users and leads to poor performance. 

By explicitly querying the user for intent, it is possible to define a smaller and 
personalized bracket of privileges or jobs for each user. Let the set of operations 
that a user defines to be his session-scope be Ou • If this set is bounded only by O, 
then this technique is not very different from the known statistical techniques for 
detecting insiders and masqueraders. However, by bounding Ou by Od instead 
of O, the user can express intent up to the set defined by his user-id. Such a 
controlled intent extraction occludes questions such as "What if the user lies?" 
because the user is allowed to choose only from what he is given. This subset 
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of jobs that are chosen forms the baseline for monitoring through the various 
sessions. Since this reference line is very focused and small, it becomes feasible 
to perform online and real-time monitoring which results in a low latency of 
detection and also lower false positives. 

Variations of this technique included querying the user at the beginning of 
every session. This has the advantage that it can accommodate drastic changes 
from one session to the other. Its shortcoming is that it is very intrusive by 
nature. A slightly passive technique involves querying the user only at the 
beginning of his first session and then invalidating this intent only when some 
event occurs that warrants another query. For example, a student's activity 
involving the use of tools for his courses remain unchanged till the end of the 
current semester. This is less intrusive by nature and is perhaps adequate for 
most environmental settings. 

Summary. The major advantage of intent encapsulation is that it can be 
done very specific to the environment making anomaly detection very effective. 
Also, by making the profiles very personalized, it becomes easier to establish 
the user's identity by way of differences in the choice of jobs and the choice of 
operations henceforth. 

5. A BASIC ALGORITHM AND ENHANCEMENTS 

Definitions 

DEFINITION 8.1 An intrusion or anomaly is defined as any deviation from 
a known normal operational behavior 

The prior determination of legitimate operations or a sequence of operations is 
done based on certain criteria. Details of the criteria are not elaborated here, but 
for most operations, the determination of legitimacy should be simple ([27]). 
This definition of intrusion includes such activities as masquerading, legitimate 
user penetration, and legitimate user leakage ([5]), internal abuse, and illegal 
resource access such as buffer overflow attacks. Our IDS is not designed to 
handle extemal network level attacks, such as IP spoofing and remote exploits. 
Hence, these are not a part of the intrusion model. 

DEFINITION 8.2 A watchdog is a process that continuously monitors user 
commands typed in from a keyboard, submitted in the form of a script or a 
macro or input by mouse clicks, 

A watchdog process is spawned immediately following a user-id and pass­
word submission, and the creation of a user session. Only one watchdog process 
per user-id is created. The watchdogs are implemented to take into account the 
various ways user level commands can be submitted (globbing, aliasing, etc.). 
This watchdog process is active as long as the user sessions are active. 
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DEFINITION 8.3 Session-scope is a file containing a list of intended activities 
submitted by a user at the beginning of a session. The session is assumed to 
be of bounded duration. Long periods of inactivity are considered as the end 
of a session. The session may then be locked or logged out. Regardless, it is 
a good security measure to avoid open sessions remaining unattended for long 
periods of time. 

This file, which encapsulates the owner's intent, is a high level description of 
user operations in a specific format. Since only one monitor session is set up 
per user account, only one session-scope is accepted per user account even if 
multiple sessions are opened on a given user account. The session-scope, once 
submitted, is treated as a secure document and is not accessible to anyone. 
Having one session-scope per user-id over a given period of time facilitates 
easy monitoring and also leads to low overhead and better coverage. 

DEFINITION 8.4 A verifiable assertion is a quadruple which associates a 
user with the intended operation over a given period of time. 

The format of the assertions is as follows. 

{subject^ action^ object., period) (8.1) 

where "subject" is a user (along with additional IDs such as terminal identifi­
cation, IP address etc.), "action" is an operation performed by the subject, such 
as login, logout, read, execute, "object" is a recipient of actions such as files, 
programs, messages, records, terminals, printers, etc., and "period" signifies 
the time interval for the usage of an action. These verifiable assertions are 
generated in advance for each user event specified in the session-scope file and 
forms a small and bounded set. 

DEFINITION 8.5 A sprint-plan (Signature Powered Revised INstruction Ta­
ble) is a collection of verifiable assertions. 

This is a table automatically generated as a response to a user's session-scope 
file. The sprint-plan can also be viewed as a signatured stream of atomic opera­
tions (commands) that is generated for the purpose of on-line monitoring. The 
preparation of an accurate sprint-plan at the beginning of a session is a one­
time effort as indicated in Figure 8.2. The effort in generating the sprint-plan is 
mostly dependent upon the session-scope. If the session-scope file is too cryptic 
or imprecise, it is possible to interpret legitimate use as an intrusion, giving rise 
to false positives. An important user requirement is the availability of enough 
flexibility to work on a session on a user's own workstation. This adds some 
burden on the sprint-plan generator. The assertions are currently derived with 
the information based on observation of user activity and specific requirements 
of jobs similar to the rule generation in ([2]). It can be further supplemented 
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by certain techniques such as accounting checks or reasonableness checks 
([20]; [27]) as well as systematic methods based on finite automata and Markov 
graphs ([4]). 

A Sketch of the Algorithm 

The user is queried for a session-scope at the beginning of the session. He is 
also given the choice of choosing whether multiple simultaneous user sessions 
should be allowed. The user is then allowed to continue with the session with no 
further interruption from the IDS. The user input line in the form of a singular 
command, command alias, macro or a script is monitored as a set of atomic 
operations by the per user watchdog, irrespective of whether it is an interactive 
or a batch submission. These atomic operations will have the subjectID resolved 
based on run-time characteristics. One can choose to monitor every single user 
command or set a particular monitoring rate depending upon parameters like 
system load and specified security levels. If the atomic operations are found in 
the previously generated sprint-plan, the session continues without interruption. 
If there is a mismatch, further examination is conducted to see if there is a 
subject ID violation. If so, an intrusion is obvious and appropriate signals will 
be sent to a master watchdog. Otherwise, the mismatch is interpreted simply 
as a deviation from the original plan and the count on permissible unplanned 
commands is incremented. If this count reaches a tolerance limit, then an 
intrusion is flagged and appropriate action is initiated. 

Intrusion Scenarios and Enhancements 

We now consider various intrusion scenarios and analyze the methodology. 
The sessions belong to either a legitimate user or an intruder. 

• Case 1: A legitimate user logs in. 

This is the most innocuous case. The user logs in, expresses his intent 
and proceeds to work. 

• Case 2: An intruder logs in. 

Since the system cannot readily distinguish between legitimate user and 
an intruder, an intruder would also be routinely presented with a session-
scope query. An intruder is more likely to choose the largest possible set 
for it gives additional flexibility to carry out malicious operations. How­
ever, this set is constrained by Od- Moreover, each operation submitted 
by the intruder is examined by the per user watchdog. While this may 
not totally eliminate intrusions, it does effectively restrict the intruder. 

• Case 3: Two legitimate logins in some sequence in time. 
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When a user starts a session from his desktop and later starts another 
session while the first one is alive perhaps from a different machine. For 
example, a user may be working in his office and then remotely logs in 
from his lab. This is the normal case of simultaneous logins and we do 
not expect to have too many deviations. 

• Case 4: The first login is from the legitimate user and the second login 
is from an intruder. 

If the first login is from the legitimate user then he is presented with the 
session-scope query. If an intruder logs in before the user's session is 
terminated, he is not queried for a session-scope and he must emulate the 
user precisely to avoid detection. His operations are restricted just as in 
Case 2. 

• Case 5: The first login is from an intruder and the second login is from 
the legitimate user. 

The intruder is likely to specify the broadest session-scope possible. He 
is still restricted by Od- In this case, the legitimate user who logs in will 
not be queried for a session-scope. If it is his first session then it should 
raise strong suspicion. If not, the variations between the intruder's and 
user's operations are going to culminate in an intrusion sooner or later. 

• Case 6: Two intruders log in. 

This is a variation of Case 5 except that the second intruder does not 
expect a query and continues to work in his session. Unless their actions 
are concerted, deviations are bound to occur which result in an intrusion 
signal. 

Enhancements 

Several refinements to the basic algorithm are possible to enhance the ro­
bustness and efficacy of intrusion detection. 

Profiling User Operations. Currently, very limited profiling is done by the 
basic algorithm. However, the detection technique can be made more effective 
if there is a better profiling scheme. Profiling on a per user basis within the 
bracket of activity defined by the session-scope generates an identity for the 
user while retaining the default restrictions imposed by the bracket. Profiling 
can be done by taking into consideration not only the frequency distribution of 
operations but also the temporal characteristics of system usage. 

Dynamically Updating Session-scope. Although a user may specify a rela­
tively broad session-scope, over time it may be possible to detect those opera­
tions that very rarely appear and then shrink the session-scope to eliminate these 
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operations. A non-intrusive version of this enhancement would be to assume a 
default intent of Od instead of querying and then performing the elimination of 
operations. However, this is a more passive approach and may require a long 
leaming process. 

6. IMPLEMENTATION DETAILS 

Architecture 
Our intmsion detection model is amenable to hierarchical monitoring where 

the lowest level of hierarchy is the user-session level monitoring. Hierarchical 
arrangement of watchdog monitors is highly effective in distributed systems as 
evident from other intrusion detection schemes such as COAST ([24]), EMER­
ALD ([19]) and HUMMER ([17]). 

A watchdog process is set up for each user on a given node. However, the 
process remains dormant until a user starts a session on a node. These watch­
dogs are essentially instances of the same process, monitoring the various user 
sessions. They remain restricted to the local nodes, but once operational, inter­
act with a master watchdog which is responsible for coordinating distributed 
and concurrent system monitoring. This extends the whole security system 
from a host level system to a network level intrusion detection system. 

In addition to the user watchdogs and master watchdogs, each local network 
has a separate watchdog called a File Watchdog. The function of the file watch­
dog is to monitor accesses to secure files on the file server. The file watchdog 
will interact with the master watchdog on the individual nodes to coordinate the 
dissemination of intrusion detection and to initiate recovery. The architecture 
of the individual user watchdog is shown in Figure 8.5. 

The watchdog process receives input from the User Command Buffer and/or 
from the OS. The Atomic Operation generator converts user command lines 
into an on-line assertion statement. The Inclusion Checker module verifies if 
the assertion statement generated on-line is in the set of previously generated 
verifiable assertions. The optional blocks in the figure represent enhanced 
features. 

In order to test our basic ideas, we built a preliminary prototype. The session-
scope can be fed into the system in a variety of ways. We use a graphical user 
interface (GUI) to simplify the process of the user input. This makes it possible 
to perform the process of intent encapsulation in a controlled manner. 

If the login is valid, the watchdog queries the user about the applications the 
user is going to work in that particular session. Based on the applications a 
preselected list of inputs containing the system resources available for the user 
is provided in a GUI, from which the user can select the scope of the session. 
The watchdog also queries the user about his multiple login intent. If the user 
wishes to open multiple sessions, a list of all the hosts a user can connect to in 
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Figure 8.5. Block Schematic of the Watchdog Process 

the network is generated. The scope-file thus obtained is given to a converter, 
which is built into the watchdog. The converter converts the scope-file into a 
sprint-plan consisting of verifiable assertions. A formatter formats this spring-
plan into a format that can be used for comparison. 

Once the sprint-plan is generated which is a one-time monitoring effort, the 
user is allowed to proceed with his normal operations. Every user operation on 
the system is monitored and converted to an atomic operation by the watchdog's 
preprocessor. This is done using ptrace(2). By forcing the process to stop at 
exec(2) and subsequent system calls, it is possible to determine which command 
is being executed and the resources it uses. The output of the preprocessor is 
similar to the sprint-plan, and is used by the watchdog for comparison with 
the reference sprint-plan. Site-specific details, if any, are also given to the 
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comparator. Any violation is reported to the master watchdog. The architecture 
of the monitor/comparator unit is shown in Figure 8.6. 

The comparator consists of a comparison unit and a logic unit. The compar­
ison unit does all the comparisons and if there is a mismatch then it is passed 
to the logical unit, which determines the violation flag level. 
Verifiable Assertions 

Verifiable assertions are basically an access control mechanism to enforce 
the bracket of activity of the user defined by his intent. They are mainly in the 
form of do^s and dont's. These assertions typically govem file system objects 
such as files and directories. They are currently derived manually. Fig. 8.7 
shows an example of such assertions in a simplified form. 

ProgramDevelopmentJob: 
commands: emacs, vim, xemacs 
file system objects: home dir - allow all, /usr/lib/, /lib, - read-only 

MailJob: 
commands: pine, elm, emacs 
file system objects: home dir - allow all, /var/mail/usemame - allow all 

AcademicCourse: 
commands: matlab, mathematica 
file system objects: home dir - allow all, /usr/lib, /lib - read-only, app specific libs - read-only 

Figure 8.7. A Sample of Verifiable Assertions 
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7. SIMULATIONS AND RESULTS 
We chose a student/faculty user academic environment for the purposes of 

testing. This environment has fewer security controls in place and allows greater 
freedom for the users and hence makes a good test bed to study the efficacy of 
our technique. We could also consider a regulated system such as web-enabled 
banking to estimate the feasibility and impact on a more general and commercial 
setting. 

Simulating a University Environment 

The basic architecture is client-server based. Such a setup allows us to derive 
some test cases from the published descriptions of well known attacks and in 
developing site-specific test cases based on the security policy. It also helps us 
to consider both sequential and concurrent intrusions. In a sequential intrusion, 
a single person issues a single sequence of commands from a single terminal 
or a workstation window. In concurrent intrusion, one or more intruders issue 
sequences of commands from several terminals, computers or windows. The 
command sequences work cooperatively to carry out an attack. For example an 
intruder can open multiple windows on a workstation and connect to a target 
computer from each window and try to distribute his intrusive activities among 
them. The platform allows us to simulate basic sessions such as telnet, ftp etc. 
Synchronization can be achieved which lets us specify a fixed execution order 
of events. 

When the student/faculty user logs in with a user-id/password submission, 
password verification is done first. If the user is authenticated to login he 
will be provided with a series of GUI windows to specify the scope of the 
session. The user selects the application he is going to work on. If, say, the user 
selects Research as the application, the user is provided with a preselected input 
list containing various categories such as simulators, design tools, operating 
systems, programming languages, scripts, documentation and miscellaneous 
items such as ftp, rlogin etc. 

The user just needs to check the tasks he intends to perform. Once this is 
done the watchdog queries the user if he intends to perform any other activities 
that are not present in the predetermined list. The user is also queried if he 
intends to open multiple sessions. 

The various components of the sprint-plan are combined together by a for­
matter to obtain the final sprint-plan. Figure 8.8 shows a run-time monitoring 
setup for a 1-user, 2-hosts system on a single server and is explained below. 

The sprint-plan generated for the user is stored at a secure location on the 
server. As soon as the user logs in to a host, the watchdog checks to see if 
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there is a sprint-plan already existing for the user, if there is none, it generates a 
new one. If a sprint-plan already exists, the user is allowed to proceed with his 
normal activity. The watchdog continuously monitors the user and compares it 
with the sprint-plan. 

Sprint Plan 

( Host2) 

To User 1 

Analyzer 

Exception Generator 

Intrusion signal to Master Watchdog 

Legend: 
User Login to Host 1 

-* User Login to Host 2 

Figure 8.8. Run-time Monitoring Setup 

Test Cases and Attack Scenarios 

The test data is based on user activity collected over a period of two months. 
We required the test data to be confined within the same semester. We used this 
data to derive the verifiable assertions and then test the strength of the scheme 
by subjecting it to a few test cases and attacks. 

There is usually no simple procedure to identify appropriate test cases for 
an intrusion detection system. A variety of intrusion scenarios are consid­
ered based on some common practices of system usage. These scenarios are 
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grouped into four categories, viz., one-user without multiple logins, one-user 
with multiple logins, multiple users without multiple logins and multiple users 
with multiple logins. Two set of experiments are performed in each of these 
categories, first with the worst case, where a user selects all the entities pro­
vided in the session-scope GUI by the watchdog and the second where a user 
selects only a few entities. The tests are performed by treating the logins as 
four different cases, with up to two users at a given time. The first case is where 
both logins are legitimate. In the second case, the first login is from a legitimate 
user and the second login is from an intruder. In the third case, the first login 
is from the intruder and the second login is from the user and finally the fourth 
case where both logins are from intruders. 

We performed a total of 32 attacks and they were of two types. One cat­
egory represented very obvious and apparent attacks such as transferring the 
/etc/passwd file from one host to another, password-cracking by comparing the 
entries in the /etc/passwd file to entries in another file, using a dictionary file for 
the same, and exploiting the vulnerabilities such as rdist, perl 5.0.1, etc. The 
system is able to detect all the intrusive activities and terminate the connection 
for the logins of intrusive users. The second category involved more subtle 
attacks similar to mimicry attacks ([30]). Even in such cases, since we monitor 
both the operations and the file system accesses, we are able to restrict the dam­
age caused by the intruder. The intruder is only able to cause damage within the 
user's login and home directory. In the worst case scenarios of one-user with 
multiple logins and multiple users with multiple logins, a relatively larger num­
ber of intrusive activities was not detected. The system has also generated a few 
false positives, flagging an intrusion when normal user activity is taking place. 
This happens when the user selects only a few entities from the session-scope. 
The results are summarized in Table 8.1 where detection latency is reported in 
terms of average number of user operations. The metrics shown in the table are 
consistent with the predictions made on the intrusion cases in § 5. 

System Overheads and Performance Impact 
Since Java is used for implementation, moderate impact on system perfor­

mance is expected. When new connections are made or more users login, the 
system load increases. However, this increase is only marginal because there is 
no need to maintain any large data structures for each user or connection. The 
main server on which our intrusion detection system is running is a Sun Ultra 
Enterprise 450 Model 4400 and the clients are Sun Ultra 5's running Solaris 
2.7. 

A normal user in a university environment is assumed to have about six to 
eight processes running on the system at a given time. There is one watchdog 
dedicated for each user which makes it one more process per user on the system. 
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0% 
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36.1 
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0% 
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0 
0% 
0% 
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0.6 
0% 
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17 
0% 

22.6% 
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29 
8.1% 
0% 

94.7% 
9.6 
0% 

5.3% 
100% 
0.5 
0% 
0% 

91.5% 
27 
0% 

8.5% 

Table 8.1. Summary of Preliminary Simulation Results 

This watchdog process does not use many run-time resources and hence may not 
become an overhead to the system. However, when several users are logged 
in and are being monitored, the system may see some performance loss. In 
order to study this overhead, we eliminated all unrelated activities in the test 
environment, started the intrusion detection system and allowed the users to 
log in. We analyzed the average load per minute (no. of jobs in the run queue 
on Unix) and the storage overhead in kB against the number of users on the 
system. At this particular stage of implementation without much optimization, 
the operation is very stable for about 15 users. The load on the system tends to 
increase as the number of monitored users increases beyond 15. The storage 
overhead (325 kB for a single user) increases at a constant rate with the number 
of users. When the session-scope is large, the watchdog maps it to a huge sprint-
plan. The storage used by the IDS in our study corresponds to the worst case 
scenario where a user selects all the entities from the session-scope provided 
by the watchdog in a GUI. 

8. DISCUSSION 
The proposed intrusion detection technique is very effective in detecting 

intrusions in user sessions. This is because the intruder's operations are likely 
to result in large deviations from the intended session-scope of the user. In the 
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event that an intruder is able to compromise an account, he is still restricted by 
the defined bracket of activity. 

The watchdog process which performs user session-level monitoring is the 
core module of the distributed concurrent intrusion detection scheme described 
in this chapter. Our scheme is not intended to be a replacement to other intrusion 
detection tools such as pattem matching and rule-based systems built to work 
on audit trail data. The concurrent monitoring watchdog described here can 
be used in conjunction with other distributed intrusion detection schemes to 
provide a higher detection resolution. For instance, the watchdog can be added 
as a third party security module in EMERALD'S monitor ([19]). 

Intrusion detection based on the encapsulation of owner's intent as described 
in this chapter will be more effective in detecting command level intrusions and 
intemal system misuse. A user's course-of-action (COA) can be influenced by 
the balance between the user affirming the truth while the system checks for a 
hidden intent to deceive. This close interaction between the user's thoughts and 
the system's corresponding actions opens up new areas in information assurance 
related to COA .̂ 

The proposed scheme has certain limitations. There will be some perfor­
mance loss due to the running of the watchdog monitors for each user. The 
watchdog processing time will increase with the size and vagueness of the 
session-scope and so it is important that users express a focused session-scope. 
We have implicitly made a simple cost/benefit statement to the user by requir­
ing them to cognate some about what they are going to do and then state it in 
the form of session-scope. Lack of cognition on the user's part followed by a 
vague statement of intent has a cost. To deal with this cost, the weight of system 
complexity will have to bear down on the user (to track the vague intent). The 
cost accrued by the user will be lower quality of service and this aspect can be 
built into future versions of our IDS. Further, Our IDS can by no means provide 
a comprehensive solution to intrusion detection. For example, malicious code 
attached to programs or network level attacks may not be detected since no 
execution level monitoring is done in this approach. Profiling on user sessions 
becomes infeasible if the user activity has a large entropy. In such cases, the 
only defense is static monitoring using verifiable assertions and confining the 
user activity within the bracket defined by the intent. 

9. CONCLUSION 
In this chapter, we have presented a new approach to intrusion detection 

using verifiable assertions. We have developed this scheme by leveraging some 
of the successful concepts from the fault tolerance domain. The main feature 
of our technique is that detection occurs concurrently with user operations and 
in real-time. The low latency detection of our technique can potentially speed 
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up the recovery of affected systems. This is a significant benefit compared to 
the schemes based on audit trail analysis. 

We have given a basic architecture and sketched an algorithm for intrusion 
detection. Several enhancements to the basic scheme are also presented. The 
technique is flexible in that changes or updates to the intended plan can be 
made easily. Also, every time a fresh session is started, a new set of verifiable 
assertions is generated. The finite length of a given user session helps to keep 
the sprint-plan to a small and bounded set. 

The concurrent intrusion detection prototype described in this chapter is pre­
liminary. Our simulation shows that on-line intrusion detection using assertion 
checking is feasible, that is, low performance overhead and good detection 
coverage. More detailed experiments with complex intrusion scenarios is de­
sired. This requires further enhancements to the sprint-plan generation and 
consideration of structural and temporal sequence checking. 

10- FUTURE WORK 

The intent of this chapter is to present a practical implementation of an online 
intrusion monitoring scheme and its technical details. The following extensions 
are easily conceivable. 

• Sequences of Operations and Improved Profiling 

It will be useful to consider sequences of operations to flag intrusions in 
addition to considering the set inclusion checks. See the optional blocks 
in Figure 8.5. This will enable the detection of more complex intrusions 
that are orchestrated by concocting sequences of benign operations. An 
analytical framework for reasoning about intrusions in such scenarios is 
already in place ([27]). 

• Network Level Attacks 

When multiple sessions are allowed, it may be possible to mount a dis­
tributed attack. Issues related to computer networks and abuse of network 
servers could be addressed as future work. 

• Automated Assertion Generation 

The generation of assertions can be automated using formal techniques 
such as accounting checks or reasonableness checks ([20]). Some pre­
liminary reasoning work has been reported in ([27]). 
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Notes 
1. Trusted Computer Security Evaluation Criteria, DOD 5200.28-STD, Department of Defense, 1985 
2. This technique has been used by Real Intent, a company that develops formal verification based 

products. As of 2002, the white paper is available at: 
http://www.realintent.com/products/idv_white_paper.html 

3. DARPA has undertaken a Course-of-Action Challenge project to aid in the military decision making 
process. Details can be found at the URL: 
<http://www.iet.eom/Projects/RKF/COA%20CP-spec-vO.3.htm> 
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TOPOLOGICAL ANALYSIS OF NETWORK 
ATTACK VULNERABILITY 

Sushil Jajodia, Steven Noel, Brian O'Berry 
Center for Secure Information Systems, George Mason University 

Abstract: To understand overall vulnerability to network attack, one must consider 
attacker exploits not just in isolation, but also in combination. That is, one 
must analyze how low-level vulnerabilities can be combined to achieve high-
level attack goals. In this chapter, we describe a tool that implements an 
integrated, topological approach to network vulnerability analysis. Our 
Topological Vulnerability Analysis (TVA) tool automates the labor-intensive 
type of analysis usually performed by penetration-testing experts. It is ideal 
for inexpensive what-if analyses of the impact of various network 
configurations on overall network security. The TVA tool includes modeling 
of network security conditions and attack techniques (exploits), automatic 
population of models via the Nessus vulnerability scanner, and analysis of 
exploit sequences (attack paths) leading to specific attack goals. Moreover, 
the tool generates a graph of dependencies among exploits that represents all 
possible attack paths without having to enumerate them. This representation 
enables highly scalable methods of vulnerability analysis, such as computing 
network configurations that guarantee the security of given network resources. 
Finally, this chapter describes some of the open technical challenges for the 
TVA approach. 

Keywords: Network vulnerability analysis, network attack modeling, network hardening. 

1. INTRODUCTION 

There are a number of tools available that can scan a network for known 
vulnerabilities. But such tools consider vulnerabihties in isolation, 
independent of one another. Unfortunately, the interdependency of 
vulnerabilities and the connectivity of networks make such analysis limited. 
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While a single vulnerability may not appear to pose a significant threat, a 
combination of such vulnerabilities may allow attackers to reach critical 
network resourceso 

Currently available tools generally give few clues as to how attackers 
might actually exploit combinations of vulnerabilities among multiple hosts 
to advance an attack on a network. After separating true vulnerabilities from 
false alarms, the security analyst is still left with just a set of known 
vulnerabilities. It can be difficult even for experienced analysts to recognize 
how an attacker might combine individual vulnerabilities to seriously 
compromise a network. For larger networks, the number of possible 
vulnerability combinations to consider can be overwhelming. 

In this chapter, we describe a tool that implements a powerful topological 
approach to global network vulnerability analysis. Our Topological 
Vulnerability Analysis (TVA) tool considers combinations of modeled 
attacker exploits on a network and then discovers attack paths (sequences of 
exploits) leading to specific network targets. The discovered attack paths 
allow an assessment of the true vulnerability of critical network resources. 
TVA automates the type of labor-intensive analysis usually performed by 
penetration-testing experts. Moreover, it encourages inexpensive "what-if' 
analyses, in which candidate network configurations are tested for overall 
impact on network security. 

In implementing TVA, we collect extensive information about known 
vulnerabilities and attack techniques. From this vulnerability/exploit 
database, we build a comprehensive rule base of exploits, with 
vulnerabilities and other network security conditions as exploit preconditions 
and postconditions. 

In the network discovery phase of TVA, network vulnerability 
information is automatically gathered and correlated with the exploit rule 
base. In the analysis phase, we submit the resulting network attack model to 
a custom analysis engine. This engine models network attack behavior 
based on exploit rules and builds a graph of precondition/postcondition 
dependencies among exploits. The result is a set of attack paths leading 
from the initial network state to a pre-determined attack goal. 

The next section describes the network attack problem, and Section 3 
reviews related work. Section 4 describes how TVA specifically addresses 
the network attack problem. Section 5 applies TVA to the optimal hardening 
of a network, and Section 6 discusses some of the TVA technical challenges. 
Section 7 summarizes and concludes this chapter. 
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2. NETWORK ATTACK PROBLEM 

We consider the complex problem of analyzing how attackers can 
combine low-level vulnerabilities to meet overall attack goals. Solving this 
problem involves modeling networks in terms of their security conditions, 
modeling atomic attacker exploits as transition rules among security 
conditions, and computing combinations of atomic exploits that lead to given 
network resources. 

In this problem, we model the various security conditions a. of a 
network as binary variables. In particular, the values model the conditions 
necessary for the attacker's success. For example, if some a- represents a 
vulnerable version of a particular software component, a- = 1 means the 
component exists and a. = 0 means it does not. Under an assumption of 
monotonicity^ a condition may transition from false to true but not back to 
false. That is, once a condition contributes to the success of an attack, it will 
always do so. 

Next, we model the success of some attacker exploit 
s =5. (a . ,a, , . . . .a . ) as a Boolean function of some set of conditions. 
For simplicity and without loss of generality, we model sj as a conjunction, 
i.e., ^ .(a. .a. .....a,. )=a- A a. A---Aa. . If an exploit involves 
disjunction (e.g. more than one version of a vulnerable program), we simply 
divide the disjunctive portions into separate conjunctive exploits. The 
success of an exploit s • then induces some set of new conditions to become 
true, i.e., ^^(a. , a .^ , . . . , a . J= 1 implies a^^ =hci =l,. . . ,a^^ = 1 . In 
other words, s. is a mapping from sf^ =\a. ,a- ,..,,a] \ (s .'s 
preconditions) to s • —S^n-^^n 9---?^n I ('^, ^^postconditions) such that if 
all the preconditions in Sj are true then all the preconditions in Sj 
become true. 

Given a network attack model, the next step is to determine how the 
application of exploits (in terms of security conditions) impacts network 
vulnerability. This step involves discovering combinations of exploits that 
lead to the compromise of a given critical resource. That is, some security 
condition a^^^^ is designated as the goal of the attack. An attack path is then 
a sequence of exploits s j ,Sj ,...ySj that leads to a^^^^ becoming true. Of 
particular interest are minimal attack paths, such that all exploits in the path 
are necessary for achieving the attack goal. 

Attack paths can help network administrators determine the best way to 
harden their networks. To ensure complete security, all attack paths must be 
accounted for. Some approaches in the literature do not report all paths, 
while other approaches explicitly enumerate all of them. For scalabihty, 
what is needed is a representation that allows the (implicit) analysis of all 
possible attack paths without explicitly enumerating them. For example, in 
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terms of network hardening, it is sufficient to know that a particular exploit 
is required for all possible paths, without explicitly generating all of them. 

In network hardening, it is also necessary to distinguish between two 
types of network security conditions. One type appears only as exploit 
preconditions. The only way that such conditions can be true is if they are 
true in the initial network conditions, since they are postconditions of no 
exploit. These initial conditions are precisely the ones we must consider for 
network-hardening measures. The other type of condition appears as both 
exploit preconditions and postconditions. We can safely disregard such 
conditions for network hardening, since attacker exploits can potentially 
make them true despite our hardening measures. 

Given a set of initial conditions .̂̂ .̂̂  = {cj, C2,..., c^ }, we therefore wish 
to compute assignments of condition values (hardening measures) in A-^ 
that guarantee the safety of a set of goal conditions A^^^^ = {̂ 1 ? ^2 ? • • • ? ̂ ^ j ' 
i.e., g. = 0 , V / . Moreover, we wish to compute hardening measures that 
minimize assignments of c. = 0 , since such assignments generally have 
some cost associated with them, e.g., the application of a security patch or 
the disabling of a service. 

3. PREVIOUS APPROACHES 

Several aspects of the TVA problem have been studied previously. 
While these studies have tended to focus on specific TVA-related 
subproblems, our goal is to develop TVA to its full potential. 

For example, Swiler et al [5] presents a tool for generating network 
attack graphs. In our TVA tool, we apply an altemative attack graph 
representation that is considerably more efficient, making the graphs feasible 
for larger networks. Templeton and Levitt [6] and Daley et al [7] describe 
approaches for specifying attacks that are similar in spirit to our exploit 
modeling. These approaches focus primarily on modeling, but we include a 
subsequent analysis phase. 

The application of model checking for network attack models was first 
proposed by Ritchey and Ammann [8]. More recently, Sheyner et al [9] 
modified the Symbolic Model Verifier (SMV) model checker to find all 
possible attack paths rather than a single attack path. 

We experimented with SMV as an initial TVA analysis engine, because 
we could deploy it off the shelf But scalabihty problems with SMV led us 
to develop a custom analysis engine. Our analysis engine applies an 
efficient graph-based representation of exploit dependencies, as described in 
Section 4.2. The application of such a representation to network 
vulnerability analysis was first described by Ammann et al [10]. 
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A central aspect of TVA modeling is connectivity among machines. A 
layered connectivity structure is needed to represent the various network 
architectures and protocols. Our connectivity model mirrors the 
Transmission Control Protocol/Intemet Protocol (TCP/IP) reference model 
and is described in more detail in [11]. 

4. DESCRIPTION OF TVA TOOL 

In this section we describe our TVA tool for analyzing vulnerability to 
network attacks. The description includes the modeling of network attacks 
and the analysis of network attack models for discovering attack paths to 
given critical resources. 

Figure 9-1 shows the overall architecture of our TVA tool. There are 
three components: (1) a knowledge base of modeled exploits, (2) a 
description of a network of interest, and (3) a specification of an attack 
scenario (attacker target, initial attack control, and network configuration 
changes). The TVA analysis engine merges these three components and 
then discovers attack paths (exploit combinations) based on the merged 
model. 

We model exploits in terms of their preconditions and postconditions. 
That is, each exploit is a rule in which the occurrence of a particular set of 
preconditions induces a particular set of postconditions. The resulting set of 
exploit rules comprises an attack knowledge base. The exploits in the 
knowledge base are generic, i.e., independent of any particular network. 

A network discovery component gathers configuration and connectivity 
information to produce a TVA network description. Here we use "network 
discovery" in a more general sense, i.e., it may include traditional network 
discovery tools, vulnerability scanners, and code to convert such tool outputs 
to a TVA network description. The network description and exploit 
knowledge base share a common name space, which enables the mapping of 
generic exploits to actual network elements. 
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Figure 9-1. TVA Architecture 

4.1 Modeling Network Attacks 

Keeping pace with evolving threats and vulnerabilities requires an on­
going effort in collecting information on network attacks that can be 
leveraged for TVA. The set of exploit rules in the TVA knowledge base 
must be comprehensive and up to date, since discovered attack paths will 
contain only those exploits that are actually included in the knowledge base. 

Once raw information related to network attacks is gathered, we model it 
in terms of exploit preconditions/postconditions. For comprehensive and 
accurate results, this modeling requires a good understanding of attacker 
strategies, techniques, and tool capabilities. Exploit conditions can be any 
generic attributes that potentially impact network security. 

Our TVA model structure is a hierarchical framework that serves as a 
taxonomy of model elements. The TVA model structure evolved as exploits 
were developed for various types of vulnerabilities. The evolving structure 
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supports the effects of firewalls and other connectivity-related devices. Also 
important is the modeling of machine groups, such that a successful attack 
against one group member applies equally to other machines in the group^. 

In our experience, the TVA model structure in Figure 9-2 is flexible 
enough to address a full range of vulnerability types and network 
configuration variations. For example, we have implemented exploit rules 
for traffic sniffing, password capturing and cracking, file transfers, command 
shell access, X Window access, secure shell (ssh) public key authentication, 
buffer overflows that grant elevated user privileges, port forwarding, 
machine identity spoofing, and denial-of-service attacks. 

In the next paragraph, we begin describing a way to automatically 
populate network models for TVA. However, it is much more difficult to 
automatically populate sets of modeled exploits. In particular, it is difficult 
to automatically capture the semantics needed for exploit preconditions and 
postconditions, because the vulnerability-reporting community has defined 
no standard formal language for specifying such semantics. Instead, 
databases of reported vulnerabilities usually rely on natural language text to 
describe vulnerabilities and ways of exploiting them. We have begun 
investigating how exploit semantics can be specified via web-based 
ontologies. 

For TVA to be practical for real networks, it is important to automate the 
network discovery process. We have integrated our TVA tool with the open-
source Nessus [1] vulnerability scanner. Nessus maps known vulnerabilities 
to network machines, reporting scan results using the extensible Markup 
Language (XML) [2]. The XML representation allows us to leverage the 
extensible Stylesheet Language (XSL) [3] to easily convert Nessus output to 
TVA input (which is also in XML). 

Figure 9-2. TVA Model Structure 
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To transform a Nessus report into a TVA network description, each 
reported Nessus vulnerability is cross-referenced against a hst of known 
exploits. If a match is found, the Nessus vulnerability is appHed as the name 
of a machine-connection precondition in the resulting network description. 
Nessus-based exploits may also have preconditions and/or postconditions for 
access type (e.g., execute or file transfer access) and privilege level (e.g., 
user or super user). 

TVA maintains network connectivity details in separate tables that 
describe each machine's connections to the rest of the network. This means 
that firewalls don't have to be modeled directly because the individual host 
tables implicitly address their effects. However, multiple Nessus scans are 
required to correctly populate the connectivity tables when firewalls are 
present. In general, a separate Nessus scan is required for each network 
segment to which a firewall connects. 

The network generation process merges the external and internal Nessus 
scans into a single coherent network description. The two-stage (external 
and internal) dataflow diagram for this process is shown in Figure 9-3. This 
process can be generalized in a straightforward fashion to handle arbitrary 
numbers of separate network segments. 

Stepl Step 2 Step 3 

Nessus 
External W attack.xml I—^ | xsltpro7 

config.xsl v"^ sTV"? attack, xsl 

nidxref.xsl 

Nessus 
Internal | | network.xml mH—^ 

network.xsl 

xsltproc 

attgen.xsl 

• 
Zi _ia 

tva.xsl 
4 

netgen.xsl 

r-^-^ 

f ^ ^ 
nulLxml 

T"^ 
-^ \ xsltproc 1 r tva.xml 

Figure 9-3. Generation of Network Description via Nessus 

In the first step of this process, Nessus generates a vulnerability report for 
each network segment. In the second step, the Nessus report XML is 
processed against a Nessus cross-reference (nidxref.xsl), written in XSL. 
The second step optionally inserts configuration-specific information 
(contained in config.xsl) as specified by the TVA user. The nidxref.xsl 
stylesheet is produced by the Nessus exploit generation process described 
below. This stylesheet enables the network description to be optimized so 
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that it contains only those Nessus connections for which exploits have been 
developed. 

The last step merges the intermediate files from the second step into a 
single network description (tva.xml) that also incorporates an attack goal 
specification from the TVA user. The null.xml document is a dummy file 
that satisfies the XSL processor requirement [4] for an input XML file. 

The process for generating TVA exploits from Nessus is shown in Figure 
9-4. It begins with Nessus plugins, which contain the detailed information 
that Nessus needs for detecting vulnerabilities. We have developed a 
program (np2xp) to convert the Nessus plugins list into XML. 

The resulting plugins.xml is then processed against the conditions.xsl 
stylesheet. This stylesheet is produced manually through researching the 
plugin information, e.g., consulting the relevant data in our 
vulnerability/exploit database. As we discussed earlier in this section, it is 
difficult to totally automate this manual step. The processing against 
conditions.xsl inserts the preconditions and postconditions developed 
through this exploit-modeling process. Finally, the resulting exploits.xml is 
transformed into Java modules and compiled into the TVA analysis engine. 
This process also generates the Nessus identification cross-reference file 
(nidxref.xsl) described eariier, which is in turn used to generate TVA 
network descriptions from Nessus scans. 

Nessus 
plugin 

list 
1 nx2xp -^-^ 

C ^ IZ^ 

plugins.xml 

By hand 

conditions.xsl 

xsltproc 

xp2java.xsl * xsltf 

1 

3roc 1 1 

r 

Java exploits nidxref.xsl 

exploits.xml 

1 xsltproc 1 1 ̂  
c^ ~^ 

buildxref.xsl 

Figure 9-4. Generation of Exploits via Nessus 
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4.2 Network Attack Analysis 

Given a particular TVA model (network description and set of exploits), 
we analyze the model to discover attack paths to critical network resources. 
From these attack paths we can then derive an expression for network safety 
in terms of the initial configuration. This safety expression in tum supports 
decisions about hardening the network against attacks. 

We begin with a set of exploits S ^{s^.Sj,^^] in terms of security 
conditionsy]( = {(3̂ (22 5...}. These exploits and conditions conform to the 
modeling framework described in Section 4.1. The network attack model 
(network conditions and exploits) can be built by hand, automatically 
generated, or a combination of both. 

The attack paths we compute are based on a directed graph of the 
dependencies (via preconditions and postconditions) among exploits and 
conditions. One way is to represent conditions as graph vertices and exploits 
as (labeled) graph edges. The dual of this representation is also possible, 
with exploits as graph vertices and conditions as labeled graph edges. 

We employ a third representation that is a bit more flexible. This 
representation has both conditions and exploits as vertices. Edge labels then 
become unnecessary, with directed edges simply representing generic 
dependency. In this representation, a dependency edge e = \a^s) going 
from condition a to exploit s means that s depends on a , i.e., a is a 
precondition of s . Similarly, a dependency edge e = \s^ a) going from 
exploit s to condition a means that a depends on s, i.e., a is a 
postcondition of s. 

We build the dependency graph through a multi-step process. We first 
build the set of all exploits S^^^^ a S that can be successfully executed by 
the attacker. Working from S^^^^, we then build a dependency graph D^^^^ 
starting from the initial condition exploit s-^^:^^. That is, we start from s-^^^^, 
search S^^^^ for exploits whose preconditions match the postconditions of 

ĵĵ ĵ , add exploit dependencies for any s^^^^^ found, and then remove s^^^^^ 
from S^^^^. We continue by iteratively adding dependencies to D^^^^ by 
searching 5,,^, and removing s^^^^^ from 5,,^,. The resulting graph D-^, 
represents forward dependencies from -̂̂ .̂̂ , i.e., exploits in Z)-̂ -̂̂  are those 
that are forward-reachable from s-^^^^. 

Next we do a backward traversal of the forward-reachable dependency 
graph Z)-ĵ .̂ , starting from the attack goal exploit ^ j . The resulting 
dependency graph D includes exploits that are not only reachable from the 
initial conditions, but are also relevant to (i.e., reachable from) the attack 
goal. In fact, D comprises the necessary and sufficient set of exploits with 
respect to the initial and goal conditions, i.e., all exploits can be executed, 
and all exploits contribute to the attack goal. Thus D represents the set of 
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minimal attack paths, in which no exploit can be removed without impacting 
the overall attack. 

Given a dependency graph D, we then construct an expression that 
concisely represents all possible attack paths. This construction involves the 
recursive algebraic substitution of exploits (via precondition/postcondition 
dependencies) in the backward direction, starting from the goal-condition 
exploit ^g^ ĵ. That is, we start from '̂̂ ^̂ j and algebraically substitute it with 
the conjunction of its preconditions, i.e. 5g,,, -> \a^^^^^, flfg,,,^,..., â ^̂ ,̂  }. 

We then substitute each of the goal-condition preconditions a^^^^ with 
the exploit that yields it as a postcondition, since these are logically 
equivalent. In the event that more than one exploit yields this postcondition, 
we form the disjunction of all such exploits, since logically any one of them 
could provide the postcondition independent of the others. 

We continue in a recursive fashion, substituting the newly generated 
exploit expressions in the same way we treated the goal-condition exploit 
expression. In doing this recursive algebraic substitution, we make direct 
use of the exploit-condition dependency graph by traversing it breadth first. 
Once the dependency graph has been fully traversed, the result is a concise 
expression that represents all possible attack paths to the goal. 

Initial-condition assignments of false mean that the corresponding 
network services are unavailable. It is desirable to choose assignments with 
minimal impact on network services. We can immediately choose one 
assignment over another if all of its disabled services also appear disabled in 
the other set. This choice is desirable because the selected set represents a 
comparative increase in available services. Moreover, this choice is neutral 
with respect to relative priorities of network services, since no service is 
disabled in the chosen set in comparison to the other. 

This analysis yields all possible hardening measures (sets of initial-
condition assignments) that have minimal impact on services. The analyst 
can now compare the various sets and select the one that offers the best 
combination of offered services. 

5, EXAMPLE TVA APPLICATION 

In this section, we demonstrate by example how TVA combines 
vulnerabilities in a network to find attack paths to a particular goal. We then 
analyze the TVA results to determine the best way to harden the network 
against attack. 

In this example, a restrictive firewall protects the machines that support 
public web and email services, as shown in Figure 9-5. This example shows 
how connectivity-limiting devices affect the TVA model and how vulnerable 
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services on a network can be exploited even when direct access to services is 
blocked. 

The firewall implements the following policy to restrict connectivity 
from the attack machine: 
1. Incoming ssh traffic is permitted to both maude and ned, although only 

ned is running the service (this is a common practice under the 
assumption that it is safe because ssh is a secure protocol); 

2. Incoming web traffic is permitted only to maude, which is running 
Microsoft's Internet Information Server (IIS); 

3. Incoming email is permitted to ned, which is running the sendmail server; 
4. Incoming File Transfer Protocol (FTP) traffic is blocked because ned is 

running the wu_ftpd server, which has a history of vulnerabilities; 
5. All outgoing traffic is permitted (this is a common practice under the 

assumption that outgoing traffic won't harm the internal network). 

NT4.0 
IIS 

Linux 
sendmail 

ssh 
wu_ftpd 

maude ned 

Figure 9-5. Network Diagram for Example TVA Application 

The attack goal for this example is to obtain super user (root) access on 
ned. This is not directly possible because (1) no known exploits exist for the 
version of sendmail running on ned, and (2) the firewall blocks access to the 
vulnerable wu_ftpd service from the attack machine. The question now is 
whether the attack goal can be realized indirectly, i.e., through a sequence of 
multiple exploits. 

The initial locus of attack is on the attack machine, since only that 
machine has user access and privilege defined as an initial condition, via the 
TVA network description. In general, the initial attack machine will also 
tend to have a complete set of programs used by the exploits in the model. 
Network connectivity is represented at the machine level by listing all 
possible connections from the given machine to all other destination 
machines in the network description. The effect of a firewall or other 
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connectivity-limiting device is to reduce the size of each machine's 
connectivity table, but such devices generally will not appear as specific 
machines in the network description unless they run their own services to 
which other machines can connect. For this scenario, the firewall did not 
support any such services. 

The attack goal is represented in the network description as a particular 
set of resources on a particular machine (the goal machine could appear 
elsewhere in the network description, with any set of initial conditions 
defined for it). In this example, we are only testing whether execute access 
(the ability to run programs) with super user (root) privilege can be obtained 
on ned. However, in general it is possible to test any other conditions, such 
as the appearance of any new connectivity or program in its configuration. 

Figure 9-6 shows the resulting TVA attack graph for this example. For 
clarity, the specific exploit preconditions and postconditions are omitted 
from the figure, but they are described in Table 9-1. 

IISRDS(ATTACKM.\UDE) 

RCPDO\\'NLOAr>(M:\UDE.ATX-\CK) 

/ 
\\'UFTPDX{M.\UDE>JED) PORTFORW.Aja)(ATTACK>t-^UDE,NED) 

\\TJFTPDX(ATTACK;̂ ED) 

EXECUTE(NED) S U P E R U S E R ( I ^ ^ ^ [ 

Figure 9-6. Attack Graph for Example Application of TVA 

Despite the firewall poHcy designed to protect it, the external attacker 
obtains execute access with super user privilege on ned. The attack graph 
shows that the initial exploitation of the IIS vulnerabihty on maude 
ultimately leads to the compromise of^ned, e.g., the following: 
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1. The IIS Remote Data Services (RDS) exploit enables the attacker to 
execute programs on maude; 

2. Given the access provided by the IIS RDS exploit, the remote copy^ (rep) 
program on maude is executed to download a rootkit"̂  from the attack 
machine; 

3. A port-forwarding program from the rootkit is then executed to set up 
access from the attack machine through maude to the FTP service on 
ned\ 

4. Finally, the wu_ftpd exploit is executed through the forwarded 
connection against ned to obtain root access there. 

Table 9-1. Exploits for Example Application of TV A 
Exploit Description Preconditions Postcondition 
IISRDS One of many 

exploits associated 
with Microsoft's 
Internet Information 
Server (IIS) 

RCPDOWNLOAD Binds rsh access to 
the ability to transfer 
programs (e.g., 
rootkits) from victim 
machine using the 
rep program 

WUFTPDX Yields super user on 
many Unix 
platforms that run 
the Washington 
University FTP 
daemon, wu-ftpd 

PORTFORWARD Enables attacker to 
work around 
firewall when 
foothold obtained on 
an internal machine. 
One of few exploits 
that implements 
"middleman" 
machine to direct 
exploits against 
victim machine. 

1. 

2, 

1. 

2. 

3. 

1. 

2. 

3. 

1. 

2. 

3. 

4. 

, Execute access on attack 
machine 
Attack machine has 
connectivity to IIS service 
on victim 

Execute access on attack 
machine 
rep program on attack 
machine 
Attack machine has 
connectivity to victim's 
rsh service 
Execute access on attack 
machine 
wu-ftpd exploit program 
exists on attack machine 
Attack machine has 
connectivity to FTP 
service on victim 
Middleman and victim 
are different machines 
(implicit, not in attack 
graph) 
Execute access on 
middleman 
Port-forwarding program 
on middleman 
Attacker connectivity to 
transport-layer (unused) 
port on middleman 

Ability to 
execute 
programs on 
victim at super 
user privilege 
level 
Copies victim 
machine's 
programs to 
attack machine 

Super user 
execute access 
on victim 

Attacker 
acquires 
middleman's 
transport layer 
connectivity to 
victim 

Finding such attack paths is a unique TVA capability. No commercial 
tool connected outside the firewall is currently capable of reporting more 
than an IIS vulnerability on maude. Connected inside the firewall, a 
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commercial tool would also report the vulnerable wu_ftpd service, but 
human analysis would still be required to build an attack path from the 
outside through maude to ned. This would be an easy enough exercise for an 
experienced penetration tester working on such a small network. But it 
would be infeasible for networks in which voluminous outputs must be 
analyzed manually for large numbers of machines. 

From a TVA attack graph, we can immediately compute an expression 
for the attack-goal conditions in terms of the initial conditions. This process 
involves traversing the attack graph in a backwards direction, algebraically 
substituting exploits with those exploits that satisfy their preconditions. This 
computation is done recursively, with the recursion ending when an exploit's 
precondition is an initial condition. 

As we explained in Section 2, the only conditions relevant to network 
hardening are the initial conditions. An expression g(cpC2,...5C^) for the 
attack goal in terms of initial conditions C-^^^^ = {cj, C2, •.., c^} then provides 
a way to determine if a particular network configuration is guaranteed safe 
with respect to the attack goal. From the particular form of g , we can 
determine the safe assignments of A-^^^^. 

Figure 9-7 again shows the TVA attack graph for this example, this time 
with the initial conditions included. For convenience, the figure includes 
algebraic symbols that correspond to our analysis of network hardening. In 
particular, exploits are denoted by Greek letters, and initial conditions are 
denoted by c.. 

TXANS_llS_ftDS(AriACK>UUIME) DCCOTrnMriACIE) 

TR.^»«_lA\l_FTft)iM\UDCMDj 

T1tANS,I|S_ltI>S<U\UDEMAUDD A nStDSUTtACXMAUDEJf^ 

^4 ^5 

\ K A 5: 
IKTDO*?ajO\I><M\iroEATX\aO TIL\NS_l«USED_P0rTtAnACK«AUDO 

KajPTTIXXtMAUDOTD) POIlTrOlt^^AR0(AtTACK>l̂ W«:N^>l CMCVTCCAnAClO KM ^M FTK) X(,\TX\riO 

\ ^ lATlFTrOXiATIACKNID) 

,.CXCCUXG(KC>> ^^urutusouNeD). 

s 

Figure 9-7. Attack Graph with Exploit Preconditions Included 
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By examining Figure 9-7, we can traverse the attack graph backwards, 
starting from the goal condition g", and recursively perform algebraic 
substitution according to precondition/postcondition dependencies. 

g = 5 + ^ 

= a\a + pjc^c^c^ + a\a + p)c^c^c^c^c^ (1) 

= CJC2C4C3 \C^ + CjC^Cg ) 

In terms of the problem domain, some initial conditions are outside the 
network administrator's control. In particular, the administrator has no 
control over conditions like programs and user access/privilege on the 
attacker's machine. Thus we have Cj = c^ = Cg =1, so that Eq. (1) 
becomes 

g = c,c,c,{c,+c,) (2) 

From Eq. (2), four assignments of initial conditions are apparent that 
provide network safety. While other safe assignments are also possible, 
these four minimize the cost of hardening the example network: 
1. Patch or disable the IIS RDS web server on maude (Cj = 0 ); 
2. Disable outgoing rsh from maude {c^ = 0); 
3. Remove the rep program from maude {c = 0) ; 
4. Patch or disable wu__ftpd from maude to ned, and block all unused ports 

on maude (c^ + Cj =0). 
When considered separately, each of these four options has a minimal 

hardening cost, in the sense that no hardening measure can be ignored 
without jeopardizing the attack goal. The network administrator can then 
choose the option that has overall minimum cost, based on the relative costs 
of the individual hardening measures. 
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6. TECHNICAL CHALLANGES 

The TVA modeling framework supports the full range of network and 
exploit information needed for realistic scenarios. But to make TVA 
feasible for large networks, automatic model generation methods are needed. 

As described in Section 4.1, we currently create TVA network 
descriptions via the Nessus vulnerability scanner. But Nessus lacks the 
ability to provide certain types of information. For example, with Nessus we 
must assume that firewalls enforce generic policies for the individual 
network segments. Although this may be an acceptable approximation of 
firewall effects, real policies often include host-specific rules. 

While host-specific rules could be handled by individual Nessus scans 
from each machine in the network, this procedure is not very efficient. A 
more efficient solution would be to build TVA models directly from firewall 
filter tables. Also, while transport and application layer information is 
available from Nessus, additional topology information is needed to 
delineate between the link and network TCP/IP layers. 

Although Nessus can guess a remote machine's operating system, it is 
not always correct and often cannot determine a specific version. Many 
exploits depend on detailed information about the operating system. 
Vulnerabilities are often removed by applying a patch to the applicable 
operating system or application. Patch-level information is therefore 
required for accurate exploit modeling. 

Nessus scans for vulnerabilities from a remote location, so it can only 
detect network service information. However, many vulnerabilities are local 
and are not exploitable or detectable over a network. Processes are required 
to gather program-specific information from individual hosts, e.g., from host 
configuration files. For example, some trust relationship and group 
membership information is difficult to obtain remotely. This information is 
valuable for TVA, to determine whether an exploit is really possible or 
whether it affects machines other than the immediate target. 

As one can imagine, TVA attack graphs might become huge for large, 
poorly secured networks. Analytical and visual methods are necessary for 
handling such (quadratic) attack-graph complexity, such as aggregating parts 
of the graph as summary information or culling parts of the graph not of 
immediate interest. We have developed a prototype drill-down visualization 
tool that shows great promise in solving the attack graph management 
problem. 

A current bottleneck for TVA implementation is the process of modeling 
exploits manually. The problem is that much of the domain knowledge is 
available only as natural-language text. What is needed are exploit 
specifications written in a standard, machine-understandable language. 
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It appears that this requirement can be met by the emerging Semantic 
Web [12] under development by the World Wide Web Consortium. The 
vision is that web content of the future will be defined and linked in a way 
that it can be used for automation, integration, and reuse across various 
applications, not just for display purposes as with Hypertext Markup 
Language (HTML). With the Semantic Web, standardized rule-based 
markup provides the actual semantics (meaning) for web content. 

TVA has potential application beyond penetration testing and network 
hardening. For example, it can be applied to the tuning of intrusion 
detection systems. In practice, network administrators must often balance 
the risk of attack against the need to offer services. Even with network 
hardening guided by TVA, administrators may still decide to tolerate some 
residual network vulnerability from services they absolutely need. The 
intrusion detection system could be configured to consider only this residual 
vulnerability and thus generate alarms only in the context of genuine threats 
to critical network resources. 

At a minimum, vulnerabilities that do not significantly contribute to 
overall risk can be ignored, reducing the effective false-positive rate. It may 
also be possible to infer new intrusion signatures from TVA results, in tum 
increasing the number of true positive detections. 

But there is a limit to what can be accomplished with network hardening 
and intrusion detection. The need to offer services is at odds with network 
hardening, and effective intrusion detection will remain challenging, 
particularly in the face of novel attacks. 

To augment methods of avoidance and detection, TVA can be applied to 
attack response, both defensive and offensive. For defensive response, the 
network is dynamically hardened in the face of attacks. A less conservative 
approach is to launch an offensive counterattack in response to an attack 
against one's own network. While approach may be extreme, it could be the 
only available option for allowing a network to function after being attacked. 

7. SUMMARY AND CONCLUSIONS 

This chapter describes a tool for Topological Vulnerabihty Analysis 
(TVA), a powerful approach to global network vulnerability analysis. The 
tool analyzes dependencies among modeled attacker exploits, in terms of 
attack paths (sequences of exploits) to specific network targets. While the 
current generation of commercial vulnerabihty scanners generates 
voluminous information on vulnerabilities considered in isolation, they give 
little clues as to how attackers might combine them to advance an attack. 
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The tool automates the type of labor-intensive analysis usually performed 
by penetration-testing experts, providing a thorough understanding of the 
vulnerabilities of critical network resources. It encourages inexpensive 
what-if analyses of the impact of candidate network configurations on 
overall network security. 

Also, the tool employs a comprehensive database of known 
vulnerabihties and attack techniques. This database includes a 
comprehensive rule base of exploits, with vulnerabilities and other network 
security conditions serving as exploit preconditions and postconditions. 

During TVA network discovery, network vulnerability information is 
gathered and correlated with exploit rules via the open-source Nessus 
vulnerability scanner. Our custom TVA analysis engine then models 
network attack behavior based on the exploit rules, building a graph of 
precondition/postcondition dependencies. This graph provides attack paths 
leading from the initial network state to a specified goal state. From the 
attack graph, we can determine safe network configurations with respect to 
the goal, including those that maximize available network services. 

Our TVA tool provides powerful new capabilities for network 
vulnerability analysis. It enables network administrators to choose network 
configurations that are provably secure and minimize the cost of network 
hardening. TVA also has potential application to other key areas of network 
security, such as identifying possible attack responses and tuning intrusion 
detection systems. 

ACKNOWLEDGEMENTS 

We gratefully acknowledge the software development efforts of Michael 
Jacobs in support of this chapter. The work of Sushil Jajodia was partially 
supported by the Virginia Commonwealth Information Security Center 
(www.cisc.jmu.edu). 

NOTES 

1. In the context of network security, our assumption of monotonicity is quite reasonable. It 
simply means that once an attacker gains control of a resource, he need never relinquish it 
in order to further advance the attack. In other words, no backtracking is necessary. 

2. An example of machine group effects is that guessing a Windows NT domain user 
password would probably allow login to all machines in the domain. 

3. The rep program is installed by default with Windows NT 4.0. 
4. A ''rootkit" is a hacker term that refers to tools an attacker often transfers to a 

compromised machine for the purpose of expanding access or escalating privileges. 
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ANALYZING SURVIVABLE COMPUTATION IN 
CRITICAL INFRASTRUCTURES 

Yvo Desmedt 
Computer Science Department, Florida State University 

Abstract: For centuries, our society relied on mechanical technology. Today, it is being 
computerized to such an extent that we are becoming very dependent on computer 
technology. This makes cyber attacks a potential threat to our society. Heuristics 
is one approach to analyzing which infrastructures are critical and vulnerable. 
We will discuss several methods that can be used to analyze this topic more 
scientifically. The methods are independent of the type of attacks the enemy 
uses, whether, e.g. a traditional bomb or cyber terrorism. 

Keywords: Critical Infrastructure, adversarial structure, flow, model, security, AND/OR 
graph 

1. INTRODUCTION 

The first industrial revolution made us very dependent on mechanical devices. 
Some mechanical devices played a more important role than others. Ball­
bearings were viewed as the most critical component. 

Today, we are moving towards an information technology society. Com­
puters (general purpose as well as dedicated ones) control and manage several 
aspects of our society. Examples are the use of computers for bookkeeping, 
in sensors and control units. In large plants, several dedicated computers as 
well as general purpose computers are commonly used. Computers are also de­
ployed extensively in modem communication equipment, in database systems 
(e.g., airline reservation systems), etc. Essentially, our society has become quite 
dependent on computers. 

When a home computer is maliciously shut down, the applications on the 
computer, such as word processing, are no longer available. The impact of 
unavailability (e.g., caused by a denial of service) may be much greater for 
one application than for another. For example, compare a word processor 
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program used on a PC at home, versus computers used to manage the stock 
market, or used in airline reservation systems. Aside from direct impacts of 
shutdowns or incorrect computations (or other security failures), there are also 
indirect impacts. Indeed, a shutdown of a computer, e.g., one used to control 
mechanical, chemical and other processes, may have a ripple through effect on 
the economy as a whole. 

Although there has been a lot of research on information security [2,24], there 
are still several problems. Some research problems have not been sufficiently 
addressed. Indeed, computer viruses continue to pose a major threat today, as 
they did 15 years ago. Yet, there is no major effort anymore to develop a secure 
operating system [27]. So, it is unlikely we will see inexpensive computer 
security deployed on a large scale. This implies that in order to protect our 
critical infrastructure, we must identify which parts of the infrastructure are 
truly critical. Indeed, failure to do this correctly may result in "over-protecting" 
infrastructures that are in fact less critical, wasting resources and creating a false 
impression of security. 

An important question is how to identify which infrastructures are critical. 
One approach is ad-hoc. That approach was used by the President's Commis­
sion on Critical Infrastructure Protection during the Clinton administration [26]. 
In that case, there was almost a one-to-one mapping between the infrastructures 
identified as critical and the employers of the members of the commission. So, 
unfortunately, the commission clearly failed to fully analyze which infrastruc­
tures outside their area of expertise should have been added to the list. For 
example, the food distribution and production industry is one of the many that 
clearly seems critical. It is now included in the list of President's National 
Strategy for Homeland Security [20]. However, how can we ensure that the list 
is now complete and the most critical infrastructures are identified? A different 
approach is, therefore, to find a more scientific method for identifying them. 

In Section 2, we will discuss a method for modeling both the ''mechanical" 
as well as the information technology aspects of our society. In Section 3, we 
will reflect and improve on the typical approaches used to model the enemy. 
The strength of the models used here is that these models are independent of 
the type of attack the enemy uses. In Section 4, we will survey how flow can be 
used to measure what is critical, and what results have been found so far using 
this method. A problem with the flow based method is that it does not allow 
for dealing with multiple applications that have different relative impacts. A 
method inspired by economics is surveyed in Section 5. In Section 6 we will 
end by examining open problems, and then conclude. 
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2. HOW TO MODEL THE INFRASTRUCTURES 
When talking to an industrial or a mechanical engineer, one discovers that the 

different sectors involved in making a product, like a car, are modeled using a 
PERT directed graph (digraph) [16]. PERT stands for Program Evaluation and 
Review Technique. A computer scientist models communication networks [18] 
by (directed) graphs. So, it seems that since both use graphs, we could easily 
merge our mechanical (chemical, etc.) world with our information technology 
one. Unfortunately, these two graphs are used in very different ways. 

When a PERT digraph is used, an output, (a sink), often corresponds to a 
product/task that plays no role in other products/tasks. For example, in the 
production of a car, (where nodes correspond to a sector of the economy), the 
sink node corresponds to the production of cars and other nodes correspond 
to the tire manufacturing sector, the rubber sector, the steel sector, etc. The 
outgoing edges represent the products/tasks that are the output of the node, 
which is the corresponding infrastructure/task. A node can only produce an 
output provided that the required input(s) from each incoming input edge is 
available. For example a car needs 4 tires, and a motor, etc. 

In a network directed graph, data can flow from one node ^ to a node B via 
any directed path from Ato B (provided there is no congestion). So, when one 
compares PERT digraphs with network, one observes that the role of a node 
differs. In the PERT graph, the node corresponds to an "AND" in the sense that 
to produce the output all inputs are required. On the other hand, in a network 
graph, the node corresponds to an ''OR." Indeed, a node can provide an output, 
provided an input is available from just one input. Note that this AND or OR 
should not be viewed as logical gates! 

So, it seems that combining a mechanical society and an information tech­
nology one is more difficult. However, the Artificial Intelligence concept of 
AND/OR graph [25] permits the merging of these, as suggested in [5]. We will 
now survey this approach, focusing on the car production example. 

While the PERT graph models infrastructures, it cannot deal with redun­
dancy. Usually there is more than one factory that produces tires. So, a car 
manufacturing plant could choose tires from different tire manufacturing plants. 
This point is important when one tire manufacturing plant is shut down. So, a 
node labeled OR can be used to indicate this redundancy. A node labeled AND 
is used to indicate that all inputs are needed. A manufacturing plant corresponds 
in practice to a few AND/OR labeled nodes. This unifying approach obviously 
allows modeling PERT directed graphs, network directed graphs, and what one 
could call a redundant PERT graph [9]. Therefore, the model does allow for 
integrating data networks with a mechanically oriented society. 
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3. MODELING THE POTENTIAL OF AN ENEMY 
Now that we have described a unifying approach to model infrastructures, 

another question is how to model the enemy. For many years the enemy was 
viewed as an outsider [29]. Today, such a model is clearly outdated. Indeed, 
computer viruses, worms [2] and vulnerable operating systems where user-
friendliness is viewed as more important than security, allow an enemy to take 
over several computers. So, it has become clear that insiders may be corrupted. 

The first model that described this is the threshold model, used by Blakley 
and Shamir [3, 28]. This was studied in a narrow context. The problem was 
that one wanted to back up a secret in n safes, while being afraid that a number, 
let's say^ up to t, is not trustworthy. One does not know in advance which 
of these safes may be corrupted. The same threshold idea was used in the 
context of secure distributed computing. The original problem [22, 12] deals 
with n computers selecting a bit (or a leader), however t may deviate from 
the prescribed protocol. The question regarding how reliable communication 
remains possible under such an attack was studied in [17], and privacy was 
discussed as well in [13] (see also [11]). The problem of secure distributed 
computation in general was studied in [14, 1,6]. Note that these studies assume 
that the nodes are general purpose computers, which in infrastructures is often 
false. Indeed, they could play mechanical, chemical or other non-computer 
roles. Furthermore, even if they are computers, they could be dedicated ones 
instead of general purpose ones. 

Unfortunately, the threshold approach no longer properly mimics the power 
of an enemy. Indeed, few operating systems are around today. Moreover, the 
number of different types of CPUs used is small. So, why would it be harder 
for an enemy to break into t + 1 computers running on the same platform 
compared to attacking t computers on very different platforms. This seems 
illogical, particularly when taking into account that an enemy who has found a 
weakness against one platform can easily exploit it against several computers 
on the same platform. An initial approach to dealing with this problem is to 
assign an adversarial structure^ Tadv which is a list of sets of nodes the enemy 
can corrupt [19]. 

So, the model used here assumes the enemy can take over some nodes, as 
defined by the adversarial structure. This model is in sharp contrast with some 
other approaches in which one hopes to build trusted computers [2] and/or be 
able to detect any intrusion. The model used corresponds more to the cur­
rent reality, where computer viruses and worms take over some, but not all, 
computers. This is one of the major advantages of the model used. 

Clearly this model of an enemy is very general. The problem with this model 
is that the size of an adversarial structure may be exponential in size of the 
number of nodes, making it impractical to work with. Recently, a threshold-
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platform model was introduced [4]. This model is based on the assumption 
that the cost of breaking into all machines running the same platform is not 
much more than breaking into a single one. However, the cost to break into 
computers on different platforms is assumed to be sufficiently higher than the 
cost of corrupting computers that rely on the same platform. The threshold 
is not based on the number of computers, but on the number of platforms an 
enemy can penetrate. This model can be justified using the model described 
in Section 5. Evidently, both the threshold and threshold-platform model are 
special cases of general adversarial structures. 

A problem with all these models is that they do not take into account the im­
pact of the attack. The above delineates which nodes the enemy can potentially 
take over. While several modem hackers want to demonstrate the feasibility 
of an attack, a strike against a (computer automated) infrastructure may be 
planned by an adversary who wants to optimize the impact of the attack. The 
adversarial structure does not model which of these choices specified by F is 
the most optimal from the enemy's viewpoint. Modeling this aspect is rather 
new and different approaches have been taken. In sections 4 and 5, we will 
discuss some metrics the enemy could choose when optimizing the attack. In 
these approaches, the infrastructure or economy as a whole is modeled using 
an AND/OR directed acyclic graph. 

4. A MINIMUM FLOW BASED APPROACH 

The survival of our society depends on the flow of goods and data through 
distribution networks. Typical examples are food, fuel and water distribution. 
If such flows fall below a critical value, our economy will suffer and people 
may die. For simplicity, we will focus on a single flow application. In Section 5 
we discuss how different applications can be weighted. Note that the number 
of cars produced by a car manufacturing plant can also be modeled using a flow 
model. We will now discuss how this approach proceeds in [9]. 

Flow model 

To each edge e e E in the AND/OR directed acyclic graph G{V^E) let 
capacity c(e) correspond. We assume the capacity is discrete [9]. (Even if 
it were continuous, when a computerized control system is used, the data is 
represented in a discrete matter.) The flow /(e) going through an edge e must 
be less or equal to the capacity c(e). When we speak about a capacity c and 
flow / , we are referring to, respectively, all the capacities c(e) and all flows 
/(e) over all edges e. Note that both c and / can be viewed as functions with, 
as domain E, the set of all edges. 

We will now explain models used to study the relation in a node between 
incoming and outgoing flows. In a typical water distribution system, the total 
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flow coming into a node must equal the total outgoing flow to maintain mass 
preservation. So, this model seems fit to be used to describe the relation between 
incoming flows and outgoing ones in an OR labeled node, which usually deals 
with flows of the same type (e.g. tires, water, etc.). When reconsidering the 
use of AND nodes, as described in Section 2, we see that different types are 
typically used. Indeed, as previously stated, a car needs 4 tires, a motor, etc. 
So, there is a correlation between the incoming flows and outgoing flows. This 
could be modeled as follows. If i; is a node labeled AND, let v"' be the set of 
incoming edges and t;+ be the set of outgoing ones. We then require that for 
each e e v" Uv'^ there is a constant ĉ ĝ, such that: 

Vei , 62 ev~ UV+ : Cy^ei * / ( e i ) = C ,̂e2 * 7(^2) (10.1) 

In [9], a different type of flow relation was used for nodes labeled AND. The 
main difference is that it assumed that any outgoing flow of an AND node is 
always less or equal to any of its incoming flows. This model is, for example, 
utilized when the AND/OR graph corresponds to distributed computation. 

An altemative relation between flows coming into an OR labeled node and 
its outgoing flows may be needed when we deal with data. As already observed 
by Martelli and Montanari [23], data can be copied. In this case, the outgoing 
flow of each edge must be less than or equal to the total incoming flow into the 
node. This model is often called ''additive." 

The enemy's impact 

We will now discuss some metrics the enemy could use to optimize the 
attack. The AND/OR acyclic directed graph has ''sinks," which means, nodes 
without outgoing edges. In practice, these correspond to output nodes, such as 
those representing the final factory where goods are manufactured (e.g. a car 
manufacturing plant), or to consumers that use the product, like water. So, the 
total flow coming in such sinks can be used to measure the performance of the 
system. We call this total flow Ff{G). The / indicates the flow used in the 
graph satisfying the conditions discussed in Section 4.0 (such as the fact that 
fie) < c(e)). 

Since Ff{G) depends on / one might wonder what the maximum value is 
over all possible allowable values of / . We speak about the maximum capacity 
of the graph Cc{G) as being this maximum. The c indicates that this value is 
a function of the capacities of the edges and, evidently, of the model used that 
describes the relation between incoming and outgoing flows into nodes. 

We now model the impact of the enemy. This will again be modeled inde­
pendently of the method of attack the enemy uses. Let us compare this approach 
with, for example, intrusion detection [7]. A major difference is that intrusion 
detection is a method which is limited to computer security. The approach 
used here does not have such a limitation. The goals are also distinct. While 
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intrusion detection wants to detect an attack, this study wants to analyze what 
damage an enemy can cause on the critical infrastructure, if the enemy succeeds 
in an attack. 

We will now focus on an enemy that destroys one or more nodes. This 
could be done using e.g. bombs, or some other type of sabotage. This may also 
be achieved by breaking into the computers that control the plant and cause a 
shutdown, or even an explosion in the case of a chemical plant [8, p. 257]. So, 
the outgoing flows of such a node drop to zero. When the system has enough 
redundancy, the impact of such node destruction does not necessarily imply 
that the total flow drops to zero. We will now describe this. 

When the enemy destroys all the nodes in a set t/ C V, their flow drops to 
zero. One describes the remaining AND/OR graph with the remaining nodes 
U = V \U and remaining edges. This then naturally defines Cc^{G), the 
remaining capacity of the graph. Evidently, if the enemy has unlimited power, 
the enemy can destroy all nodes, and the capacity drops to zero. The case where 
the enemy can only destroy up to t nodes is therefore more interesting to study. 
As follows from Section 3, in general the enemy could only have the power 
to destroy a set of nodes U in Tadv{V) {V indicates that VadviV) is a list of 
subsets of V). We will now discuss how the enemy can choose an "optimal" 
set, t/, out of the potential sets he can destroy. 

The enemy could choose two strategies. In the first case, the enemy tries to 
reduce the remaining capacity below a critical value Ccrit- So, the enemy will 
choose a set [/ G Tadv{y) such that CCQ(G) < Ccrit- We call this a winning 
strategy for the adversary. If no such U exists the best the enemy can do is 
to do as much damage as possible. In this context this mean choosing a set 
U € TadviV) such that for any other U' e Tadv Cc^ (G) < Cc^^ (G). The last 
strategy may be a ''losing strategy," however, it is the best available in view of 
the limited resources of the adversary. 

The results of more detailed studies on these flow problems are described 
in [9]. This work demonstrates that for certain flow models it seems computa­
tionally hard for the enemy to choose an optimal or winning strategy. 

An example 

Ball-bearings were viewed as the most critical component of a mechanical 
infrastructure, as can be verified using a PERT graph model of the mechanical 
world. In such a PERT graph removing the single node of the ball-bearing 
sector implies that several outputs (such as cars, planes, tanks, etc.) can no 
longer be produced. Therefore, Nazi Germany's factories involved in making 
ball-bearings were targeted by bombing campaigns during World War II. 

A problem with the PERT model is that it does not take redundancy into 
account. If enough factories (more than t) can produce ball-bearings and the 
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enemy has the resources to only bomb t of these factories, then the approach 
discussed allows, e.g. to analyze whether the capacity remaining after the de­
struction oft factories is above Ccrit-

We will come back to this example in Section 5.0. 

Limitations of this approach 

The flow approach is a useful tool to analyze the vulnerability of one infras­
tructure. However, when multiple infrastructures are involved, it does not allow 
them to be compared. The following method averts this problem. 

5. AN ECONOMICS BASED APPROACH 

We will now survey the work in [10]. 

Modeling what the enemy can attack 

A problem with the models described in Section 3 is that they describe 
what the enemy can do in a very general context. Indeed, the adversarial 
structure permits describing any subsets of nodes as being vulnerable. The 
question, however, remains: how to choose this adversarial structure. Before 
answering this question, we have a criticism against the traditional adversarial 
structure [19]. 

The adversarial structure models the nodes the enemy can take over. How­
ever, even if the adversary is unable to take over any nodes, the enemy can still 
control edges (links). Note that originally, as in the study of cryptography [24], 
the enemy was assumed to attack the edges, not the trusted nodes. One might 
wonder why the traditional adversarial structure models do not account for this. 
In a computer network, it may make sense to assume that the adversary suc­
ceeds in taking control of some nodes. Then the adversary has full control of 
the corresponding edges. When cryptographic tools are available, privacy and 
authenticity of the communication can easily be guaranteed. So, it may seem 
that the remaining edges are protected. Unfortunately, this does not handle de­
nial of service attacks. So from now on, we will view the adversarial structure 
^adv{y U £") as a list of subsets of nodes and edges [10]. 

The question now is how to choose this adversarial structure. One method 
is to assume that to any attack, there corresponds a cost, and that the adversary 
has a limited budget. So to each S C V U E corresponds a cost cs for the 
adversary to take control of all these nodes or edges in S. The enemy has a 
budget BE and 

radv(VuE) = {S\cs<BE}^ 

which means the adversary can attack a set of nodes and edges within the 
budget BE [10]. Note that VadviV U E) describes what the enemy can attack. 
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However, it does not say anything about what is most optimal for the adversary 
to attack. 

As usual, in economic studies the unit does not need to be monetary. Indeed, 
a hacker's budget could be expressed in the numbers of free hours available. 

It is important to observe that cs is not necessarily linear. So, if 5 = ^i U52 
and ^i n52 = 0, then cs is not necessarily equal to cs^ +cs2- Indeed, if similar 
platforms are used in Si and 52, then cs may be only slightly larger than the 
maximum of cs-^ and cs2 -

Optimizing the attack 
As in Section 4, flows will be used to describe what is the most optimal for 

the enemy to attack. However, a weighting factor is now used to indicate its im­
portance. When we consider an application a, to it corresponds the nodes/edges 
involved, which we call Ta, being a subgraph of an AND/OR acyclic directed 
graph. Note that different applications may use overlapping nodes/edges, so if 
a^ o! then Ta H TQI is not necessarily empty. Indeed, the same freeways and 
computer networks are involved in multiple applications. 

To Ta may correspond a flow FT^, satisfying rules as discussed earlier on. 
Moreover, there is a maximum flow, or capacity CT^ • 

To an application a corresponds its impact factor la. This impact factor is 
not necessarily measured from a monetary viewpoint. E.g. terrorists may be 
interested in the psychological impact. So, if we consider several applications, 
or even the economy as a whole, to it corresponds a weighted total flow F = 
griFTa,, FT^2 »• • •) and a weighted total capacity C = gciCra^, Cxa^ »•••)• 
Note that QF and gc are not necessarily linear, so F is not necessarily J2a ̂ aFxa • 

When 5 € T̂  U £̂ , we now define Cg as the remaining weighted capacity 
after the removal of the nodes and edges in 5. So, as in Section 4, an enemy, 
in order to optimize the attack, will choose a set 5 of nodes and edges that is 
in Tadv{y U E) such that C§ < CCHU where Ccrit is now the weighted critical 
capacity. We call this a winning strategy for the adversary. 

One may think that this economic approach is less powerful than an appli­
cation oriented one. Indeed, suppose there is more than one application with a 
critical capacity. How can one guarantee that each application with a critical 
capacity is reflected? Since the weighted total capacity function gc is non­
linear, it is possible that when the enemy succeeds in having the capacity of one 
application fall below the critical value that Cg < Ccrit- It should also be clear 
now that this generality of this particular model is also its weakness. In order 
for it to be useful, approximations will have to be made so that one can make 
predictions. 
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The example revisited 
As already stated, the problem with the flow based approach of Section 4 is 

that it does not combine different applications. To illustrate this let us focus on 
the example discussed in Section 4.0. 

In the example of Section 4.0, one focuses on an enemy that targets the ball­
bearing industry. However, even if the enemy may fail to reduce the remaining 
capacity of the ball-bearing industry to below its critical value, the enemy may 
be able to reduce the flow of the production of cars and planes (which need 
ball-bearings) to a level that affects the economy as a whole. This could be 
achieved by using a combined attack targeting ball-bearing as well as other 
nodes (being factories producing other components). 

Protecting 

When a system is being designed, the designer has a budget BD, Further­
more, a minimum required weighted total capacity CD is expected from the 
system. The designer is asked to build an AND/OR graph G such that: 

• the cost(G') < BD, and 

• the weighted total capacity > CD, and 

• the enemy cannot win. This means that there is not a winning strategy 
for the enemy (see Section 5.0 for the definition of a winning strategy 
and Section 4.0 for a discussion of strategies in general). 

If this is impossible, the enemy will win, or the budget will need to be increased. 
Evidently, this approach is very general. To be used in practice, it would 

require a relation between the cost of security (setting up secure nodes and 
edges) and the cost of an attack. Today, no methods exist to tackle this prob­
lem. However, the economic approach may be useful for demonstrating that 
some models, such as the threshold model for the enemy (see Section 3), are 
unrealistic. It can be used as the foundation for proposing alternative models. 

6. FURTHER RESEARCH AND CONCLUSIONS 
These models and their use are the result of many years of research. If our 

society wants to identify which infrastructures are truly the most critical, more 
refined and altemative models will have to be presented. We will now suggest 
some paths that could be followed, taking into account: 

the dynamic aspect of our society. The above models are very static. As is 
common in control theory, time aspects could be included. This per­
mits dealing with buffers. The buffers guarantee that if the enemy shuts 
down nodes and edges in 5, and that even if Cg < CCHU the society 
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could survive for a while. Obviously, if the control of these buffers is 
computerized, the adversary can try to target it, making the buffers less 
useful. 

Recovery is also a dynamic aspect that must be studied. Indeed, destroyed 
infrastructures can often be rebuilt. 

Note that Ccrit is dynamic, too. If the adversary were to succeed in an 
attack that reduced the population significantly, the new Ccrit would be 
lower, making it harder, potentially, for the enemy to inflict a second 
serious blow. 

Destruction of nodes and edges may also result in an unacceptable slow 
down in production. If the nodes and edges that were destroyed had a 
relatively low delay, replacing them may increase the time to go from the 
input to the output. This problem is well known in the study of critical 
paths of PERT graphs [16]. Similar studies for AND/OR graphs can be 
found in [9], but they do not discuss the impact of the enemy. Another 
question is how hard it is for the enemy to optimize which nodes to destroy 
in an AND/OR graph to slow down the process the most. 

that damaged nodes are not necessarily destroyed. In this context, several 
issues are not currently modeled. These are, for example: 

• In the flow model, if the enemy takes over a node, the capacity of the 
outgoing edges is reduced to zero. In other words, the node "shuts 
down." However, not all attacks correspond with a reduction to a 
zero flow. The enemy may only be able to reduce the flow. 

• It may also be undesirable if an adversary could increase a flow. In­
deed, that would imply a waste of resources. If the system contains 
buffers, such an undesired increase may decrease the capability of 
recovering from an attack. For example, the enemy, having control 
of the computer facility that manages the flow coming from a buffer, 
such as a dam, may cause a spill by opening the floodgates. 

• Modeling the enemy as just being able to stop, reduce or increase 
the flow is obviously not sufficient. As is well known by the work on 
secure distributed computing (see Section 3 for a short survey), the 
output of a node could be faulty. The same problem may occur with 
non-data items. In the case of, for example, computer controlled 
robots, the impact of an adversary breaking into a node may lead 
to the production of products that do not satisfy the specifications. 
So, the result is the flow of faulty products. This, if not detected, 
may have a ripple through effect. The problem of detecting whether 
an output is faulty may actually be (computationally) hard. In se­
cure distributed computing, this problem is solved by having the 
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node prove in "zero-knowledge" [15] that the output satisfies the 
specifications. Its generalization to a mechanical society would be 
to convince the user that the specifications are satisfied without re­
vealing such information as the production method used. However, 
generalizing this idea to outside the area of information security 
seems non-trivial. 

There are many more different approaches that can be followed. Some 
researchers have suggested using a probabilistic viewpoint [30]. The problem 
with this approach is that security is inherently non-ergodic. Another problem is 
that while the probability that an attack of catastrophic proportions could happen 
may be very small, the damage caused by it would be very large. Unfortunately, 
the product of a function / i , whose limit is tending towards 0 and a function 
/2, whose limit is growing to infinity is, in general, undefined! 

In conclusion, we have surveyed theoretical approaches used in secure dis­
tributed computation. The advantage of these approaches is that these abstract 
away the method used by the enemy to attack. We have argued that the ap­
proaches must be adapted for dealing with critical infrastructures. Nodes are 
not necessarily general purpose computers, and the traditional network model 
does not take the AND condition into account. Reduction in flow is one way of 
measuring the effect of an attack. If the impact on several applications needs 
to be studied, an economic model seems the most natural. We believe that this 
approach is just the start towards more precise models that can be used to study 
the potential impact of cyberterrorism or cyberwar, combined with more clas­
sical means of destruction. Whether such large scale attacks will ever be used 
depends on socio-political arguments that go beyond scientific discussions and 
have therefore not been taken into account. 
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Notes 
1. In secret sharing it is custom to call the maximum number of untrusted insiders t — I, while in 

network security one says that up t insiders can be corrupted. Since the discussion in this chapter is more 
closely related to network reliability and security, we use t in both contexts. 

2. This idea originated from the work on secret sharing [21]. In this earlier work, an access structure is 
defined as the dual (complement) of an adversarial structure. Further details of access structures and secret 
sharing are beyond the scope of this paper and can be found in [21]. 
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INTRODUCTION 

Robert L. Grossman 
Laboratory for Advanced Computing, University of Illinois at Chicago, and Open Data Partners 

Abstract: We describe a type of data mining system designed to screen events, build profiles 
associated with the events, and send alerts based upon the profiles and events. 
These types of systems are becoming known as alert management systems (AMS). 
We give some examples of alert management systems and give a quick introduc­
tion to their architecture and functionality. 
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1. INTRODUCTION 
In this chapter, we give an overview of systems designed to screen events, 

build profiles associated with the events, and send alerts based upon the profiles 
and events. These types of systems are becoming known as alert management 
systems (AMS). In this paper, we give some examples of alert management 
systems and give a quick introduction to their architecture and functionality. 

Section 2 contains a brief description of related work. Section 3 contains 
the key definitions. Sections 4 and 5 describe the functionality and architecture 
of alert management systems. Section 6 describes several examples. Section 
7 describes some alert management systems built by the author and Section 8 
contains the conclusion. Skimming the examples in Section 6 first may make 
the paper easier to understand. 

2. BACKGROUND AND RELATED WORK 

One of the best understood examples of alert management systems are sys­
tems designed to detect fraud. Descriptions of fraud systems can be found in 
[1]̂  [4], [6], [7]. As far as we are aware of the idea of abstracting the concepts 
of events, profiles, and alerts and considering a class of systems that uses these 
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concepts for scoring, matching, routing, and linking appears to be novel. On 
the other hand, as the large number of examples described in Section 4 shows, 
various examples of alert management systems have been around for quite a 
long time. Additional references can be found in the references of the work 
cited above. 

3. EVENTS, PROFILES, AND UPDATES 
Alert management systems are based upon three primitive concepts: events, 

profiles, and updates, which we now describe. 

1 Profiles, abstracting feature vectors, are modeled as an (unordered) set 
of vectors {xi e R ^ : i G J .} The indices z G J are called profile ids. 

2 Events, abstracting transactional data, are modeled as an ordered set of 
{ej : j E J}, with the following properties: 

(a) there is a map 0{ej) assigning a profile id i 6 2" to each event ej, 

(b) events can be concatenated ej • e^ and this concatenation is asso­
ciative (ei(ejefc)) = {{eiej)ek)\ 

The indices j E J are called transaction ids. 

3 An update is given by an action of events on profiles tk • xi with the 
following properties: 

(a) for an event e^ and a profile xi, 

^k ' Xi fc xt. , 

(b) Xi = ek ' Xi, in case 9{ek) ^ i 

(c) For all events ej and e^ 

yej • Cfcj • Xi = 6j • (̂ 6fc • Xi), 

In words: transactional data are modeled by events; profiles summarize state 
information derived and aggregated from their associated events; and events 
update profiles. The update action captures the aggregation and computation 
of derived attributes which is usually involved when one or more transactions 
are used to update their corresponding profile. 

Given an initial collection of profiles, the effect of transactional event data 
is to move each profile along an orbit. 

In the paper [9], a very similar set up, dual to the set up here, is used to model 
events, profiles and updates. 
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4. FUNCTIONALITY 
Although different alert management systems can have quite different func­

tionality, many of them share the following core functionality: scoring, match­
ing, routing, and linking. In this section, we give brief descriptions of each of 
these. 

Scoring 

Scoring is a function mapping profiles to a continuous 

/ : R ^ —> R 

or finite set of values or labels 

/ : R ^ —> Labels. 

Alert management systems are often used for real time scoring in the following 
way: 

1 Let Cj be an event associated with a profile ID i, i.e., 0{ej) = i. 

2 Let Xi be the profile associated with profile ID i and 

be the result of updating the profile with the event. 

3 With this data, / ( x ^ is the result of scoring the updated profile using a 
scoring function /(•). 

In other words, the event data is used to update the corresponding profile, which 
is then scored. The goal is to detect bad behavior as soon as possible. 

Finally, the term signature is sometimes applied to an updating rule in which 
the old profile or score is averaged with the new profile or score. More precisely, 
using the notation above, a signature based update uses an update of the form 

y'i = of{x[) + (1 - e)yu 

where yi is the previous, y[ is the new score, x[ = Cj • Xi is the updated profile, 
and /(xj), the corresponding score. Here ^ > 0 is a constant. Signature based 
methods are described in [2] and [3]. Signature based methods are commonly 
used in alert management systems since signatures "smooth" blend new event 
information with historical information stored in the profile, something which 
in practice is quite helpful. 
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Matching 

Sometimes associating a profile ID z in J with an event is straightforward 
and sometimes it can be quite challenging. For example, given a credit card 
transaction or call detail record if the profile ID is the account number or the 
calling number, then the profile ID is immediately and unambiguously available 
from the event data. On the other hand, if the profile ID must be matched against 
another list, such as list of customers, this can be more difficult. For example, 
is John Smith, 121 Oak Road, San Francisco, CA the same as J. Smithe, Oak 
Avenue, San Francisco, CA 94701? As the amount of data grows, this problem 
becomes computationally challenging. Even more difficult is the problem of 
associating a profile ID to an individual who is deliberately trying to make 
this task difficult, such as an individual engaged in fraud or other inappropriate 
activities. In this case, multiple variants of names, addresses and phone numbers 
may be used. 

Alert management systems using matching to normalize names, addresses 
and similar information and to check names, addresses and related information 
against various lists. Alert management systems often contain both bad and 
good lists, i.e. lists containing individuals which must be check more carefully 
(bad lists) and individuals which are known to the system and have already been 
vetted (good lists). 

Workflow 

Often after events and profiles have been scored and checked against good 
and bad lists, additional work is required. Further investigation may be war­
ranted, checks against additional lists may be formed, various alerts may be 
sent, etc. For this reason, alert management systems often contain a workflow 
component containing rules describing the various types of further processing 
that is required. For example, workflow rules may be used to assign further in­
vestigative work to analysts based in part on the analysts current work load and 
area of expertise. In many cases, the impact of an alert management system is 
fundamentally dependent upon the quality of the workflow component. Even if 
the scoring component is extremely accurate with a very low false positive rate, 
nothing is gained unless the alerts produced by the score get to an individual 
analyst who can take the appropriate action at the appropriate time after having 
examined the appropriate auxiliary data. 

Linking 

Events and profiles can often times be linked by common shared attributes or 
by attributes which have some suspicious relationship with each other. A few 
examples will make this clearer. For example fraud rings sometimes stage a 
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number of different accidents in order to collect insurance payments. The acci­
dents, although seemingly unrelated, may share a common cell phone number 
(with different addresses), may all occur within a small physical region, may 
all use the same body shop, or the same doctor, etc. Of course, two accidents, 
neither of which are fraudulent, may also share common links or attributes. The 
goal of linking analysis software is to identify linkages which are suspicious in 
some way so that further investigation may be done. Sometimes link analysis 
software is also known as forensic software. Some examples of link analysis 
can be found in [11]. 

5. ARCHITECTURE 
In this section, we describe a common architecture for an alert management 

system. See Figure ILL In practice, actual alert management systems are 
usually much more complex. The functionality for an alert management system 
can be divided into three general areas. First, functionality which extracts, 
transforms, cleans, and loads the data. Second, functionality, for the off-line 
(i.e. non-real time) analysis of data. This includes data analysis, data mining, 
link analysis and related types of forensic activities. Third, functionality for 
the on-line or real time analysis, routing, and workflow. 

The off-line analysis usually contains a data warehouse or data mart and 
various data analysis, data mining, and forensic analysis tools. From this off­
line analysis, data mining models and profiles are often produced for the on­
line system. In addition, the off-line analysis may involve extensive checking 
against various intemal and third party databases, checking which may be too 
time consuming to take place on-line. 

The on-line analysis usually contains one or more databases containing vari­
ous watch lists which incoming events and profiles are compared to. In addition, 
scoring may be done using the data mining model produced from the off-line 
analysis. Finally, workflow and routing is usually done producing various alerts 
and reports. 

Part of the complexity of alert management systems is that the extraction, 
transformation, cleaning and loading must be consistent for the both the off-line 
and on-line components. There is usually reporting which is part of both the 
off-line and on-line components of the system. 
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Figure 11.1. A typical architecture for an alert management system. 
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6. EXAMPLES 

In this section, we give some examples of alert management systems. In 
most of the cases discussed below, there is a natural way to label a data set of 
events. For example, events may be labeled "good" or "bad"; "intrusion" or 
"no intrusion"; "normal" or "abnormal"; "threat" or "no threat"; "fraud" or "no 
fraud"; or "red" or "blue". For simplicity, we often refer to the labels simply 
as "bad" or "good," with the understanding that the particular meaning of these 
terms is dependent upon the particular example. 

A labeled set of events can be used to label profiles in different ways. A 
common rule is to assume that profiles are initially labeled good until an event 
labeled bad is associated with them, after which they are labeled bad. Notice 
that this makes sense for credit card transactions and similar types of event data: 
a given credit card account can have a mixture of good and bad transactions. 
The goal is to detect when there are bad transactions and thereafter stop all 
transactions. Given a labeled set of events, we can use a variety of classification 
algorithms to construct a scoring function, which is simply a numerical function 
on state space R ^ indicating the likelihood that a profile is bad. 

Credit Card Transacations. One of the best examples of transactional data 
is provided by credit card transactions. The data in a credit card transaction is 
broadly based upon the ISO 8583 standard and includes the account number, the 
date and time of the transaction, the amount of the purchase, etc. By aggregating 
transactional data by account number, a profile can be built for each account 
number. A fraud model uses transactional data to update profiles and then 
scores each profile for the likelihood of fraud. 

Perhaps the best known alert management system for detecting credit card 
fraud is the Falcon System developed by HNC [10]. 

Call Detail Records. A Call Detail Record (CDR) contains data about tele­
phone calls, including the date and time of the call, the duration of the call, the 
calling number, the called number, the telephone number of the billed party, 
which may be different then the calling number (for example, with 800 num­
bers), and related data. By aggregating CDR data by the calling number, a 
profile can be created. A variety of models can be built using these profiles. As 
before, a fraud model can be built which updates profiles using CDR data and 
then scores the updated profiles for the likelihood of fraud. As another example, 
models can be built predicting the likelihood of customer attrition or chum, or 
predicting the lifetime value of a customer. For the latter two examples, models 
may be built based upon a single calling number, or by aggregating all calling 
numbers associated with a given individual, household, or business. 

Alert management systems for detecting telephone fraud have been devel­
oped by several of the large telephone companies, for example by AT&T [3]. 
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Passenger Name Records, A third example is provided by passenger name 
records or PNRs. The transactional data in a PNR includes the originating city, 
connecting cities, if any, the destination city, flight numbers, name and address 
of the passenger, frequent flyer number, and related information. Giving a 
collection of PNRs, profiles can be built for each passenger Using these profiles, 
a risk assessment can be done for each airline passenger. 

An example of an alert management system for PNRs is the Computer As­
sisted Passenger Screening System (CAPS) used by the TSA to screen airline 
passengers at airports. 

Network Intrusion Systems. Another example is provided by network intru­
sion systems employing statistical methods. Network intrusion systems monitor 
events derived from system logs and other sources. These are used to update 
various intemal feature vectors, which are used as the inputs to statistical mod­
els, whose outputs trigger alerts. 

Today, the most common network intrusion detection systems, such as Snort 
[12], look for specific pattems in the data (which are also called signatures, but 
different than the signatures described above) and do not employ event-profile 
based techniques. 

Suspicious Activity Reports. The Financial Crimes Enforcement Network or 
FINCEN, which is part of United States Department of the Treasury, collects 
reports from financial institutions about various types of suspicious financial 
transactions. These reports are called Suspicious Activity Reports or SARs. 
There are a number of criteria used for deciding whether or not to file a SAR. 
In addition, financial institutions are precluded from doing any business with 
certain individuals or business which have been placed on various watch lists. 
Larger financial institutions use alert management systems for comparing new 
accounts to the watch list, as well as for scoring transactions in order to decide 
whether or not it is necessary to file a SAR. 

Automated Manifest System. The Automated Manifest System (AMS) is 
a system operated by the US Customs which provides inventory control and 
release notification for cargo entering the US. Carriers, port authorities, service 
bureaus, freight forwarders, and container freight stations can use the AMS to 
provide digital processing of manifest and waybill data. The AMS in turn can 
use manifest and waybill event data to build profiles about the users of their 
systems. Alert management systems associated with the AMS can score both 
event data (manifest and waybill data), as well profiles summarizing activities 
about carriers and other users of the system. Particularly important for systems 
like this is improving scoring by overlaying third party data over intemal event 
and profile data. 

Interagency Border Inspection System The US Customs Service and Immi­
gration and Naturalization Service (INS) use the Interagency Border Inspection 
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System (IBIS) to screen individuals at ports of entry to the US. IBIS data is 
collected from a variety of sources and profiles generated by IBIS are shared 
by a over 20 US federal agencies. IBIS is used at ports of entry to clear ex­
peditiously the majority of the traveling public, while allowing attention to be 
focused on a relatively small number of individuals. IBIS contains data on 
suspect individuals, businesses, vehicles, aircraft, and vessels. 

7. STATUS 

During the period 1996-2002, Magnify developed an alert management sys­
tem based upon its PATTERN data mining system [7]. PATTERN was a data 
mining system which was designed for mining very large data sets which did 
not fit into memory and was based upon the following ideas: 

• PATTERN employed ensemble based modeling. Typically, ensembles 
were used to partition data into chunks which could fit into memory. 

• PATTERN also employed boosting to improve the accuracy of the en­
sembles produced. 

• PATTERN employed a column oriented data warehouse so that numeri­
cally intensive operations could be performed efficiently on large amounts 
of disk resident data. 

• PATTERN was designed to run on both single workstations and clusters 
of workstations. MPI was used for message passing when employed on 
clusters. 

• PATTERN used an XML representation for statistical and data mining 
models to provide a simple interface between the off-line data mining 
component and the on-line scoring or deployment of component of the 
system. 

• PATTERN contained specialized libraries for data transformations and 
data aggregations so that large numbers of events could be aggregated 
into profiles efficiently. 

This functionality was added over a period of time. During the period, 1995-
1996, the alert management system consisting of a off-line data mining system 
which was used for scoring. An on-line scoring component was added during 
1997-1998 following the architecture described in Figure 11.1. A component 
for transforming and aggregating data was added during the period 1999-2000. 
A workflow and routing component was added during the period 2000-2002 
[8]. Simple matching and linking was done in an ad hoc fashion, dependent 
upon the particular requirements of of the application. 
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The alert management systems built over PATTERN were used for a variety 
of applications including: detecting credit card fraud, detecting insurance fraud, 
analyzing TCP packet data for network intrusions, and uncovering suspicous 
events and profiles in passenger name record data. 

8- CONCLUSION 

In this note, we have provided a quick introduction to alert management 
systems. We have introduced the primitive concepts of events, profiles, and 
updates. We have also given six examples of these types of systems; many 
more could be given. There are four key functions usually present in an alert 
management system: scoring, matching, linking, and workflow, which we have 
briefly described. Finally, we have given a brief description of a common 
architecture used by alert management systems. With the increased focus on 
homeland defense, alert management systems will no doubt grow in importance. 
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CYBER FORENSICS: MANAGING, MODELING, 
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Abstract: This chapter describes a collaborative project between the San Diego 
Supercomputer Center (SDSC) and the Automated Regional Justice 
Information System (ARJIS) entitled P^ELE (Public-Private-Partnership 
Enabling Law Enforcement). The project is focused on developing a model 
research infrastructure for the management, analysis and visualization of 
public and private multidimensional data. This includes addressing the 
technical and analytical models, methods, tools and techniques to effectively 
integrate and correlate law enforcement information with public, cyber-based 
information. This framework will enable researchers to study the impact of 
this expanded dimensional information on the efficient remediation and 
proactive capabilities of law enforcement, and ultimately, will enhance the 
operational capabilities of justice professionals in our digital society. 

Keywords: Cyber forensics, law enforcement, management, analysis, visualization. 

1. INTRODUCTION 

Law enforcement is an information-intensive process in which 
govemment agencies are called upon to collect and interpret large public 
data sets in an effort to serve and protect the citizenry, while at the same 
time maintain trust and reliability in fulfilling its mission. However, law 
enforcement is by its very nature reactionary to information contained within 
and derived from reports of criminal activity. As a result, the effectiveness 
of law enforcement is directly related to the quality of information reported 
and proficiency of the subsequent analyses. The process of law enforcement 
has thus far encountered technical, managerial and socio-legal barriers to 
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integrating, correlating and interpreting intra-agency crime data with public, 
Intemet-based data. The challenge lies in developing a systematic and 
scientifically-based framework to enhance the best available information 
upon which courses of action are based. 

To address this need, collaboration between The San Diego 
Supercomputer Center (SDSC) and the Automated Regional Justice 
Information System (ARJIS), entitled P^ELE (Public-Private-Partnership 
Enabling Law Enforcement), is focused on developing a model research 
infrastructure for the management, analysis and visualization of public and 
private multidimensional data. This includes addressing the technical and 
analytical models, methods, tools and techniques to effectively integrate and 
correlate law enforcement information with public, cyber-based information. 
This framework will enable researchers to study the impact of this expanded 
dimensional information on the efficient remediation and proactive 
capabilities of law enforcement, and ultimately, will enhance the operational 
capabihties of justice professionals in our digital society. 

P^ELE represents a mechanism through which data collection and 
analyses models developed by university-based intermediary researchers can 
facilitate the transfer of technology and knowledge to govemment entities 
seeking to manage, analyze and link public and private multidimensional 
data. This academic research on public and private data integration and 
correlation integrates knowledge in information retrieval, knowledge 
management, information visualization, artificial intelligence, decision 
theory, social informatics, data mining and forensic analysis. 

By designing a path for public, open source data to be input into existing 
models used in investigation planning and decision making, the credibility 
and influence of justice research will be enhanced. P'̂ ELE is an academic 
bridge to transport private sector technology into usable and civilly 
responsible law enforcement. Likewise, it will provide a forum for cross-
pollination of teaching, training and leaming between academia, industry 
and the govemment. Aside from enabling a transparent, reproducible, and 
objective system for integrating models from the public and private sectors, 
academic researchers will gain access to important problems and data in 
real-world large-scale contexts. This is critical to understanding and 
predicting the impact of these technologies on law enforcement agencies and 
services, govemance, and the democratic process. 

The significance of this integration will extend beyond its origins in 
southern Califomia to include other public-private partnerships, 
demonstrating an applied instantiation of how to leverage the strengths of 
individual public, private and academic communities toward a better 
collective whole. 
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1.1 A Cyber Forensics Project: P^ELE: Public-Private-
Partnership Enabling Law Enforcement 

Just as residue from the ridge patterns on our fingers existed before 
science and technology was able to "uncover" them by latent fingerprinting 
methods, digital traces of criminal activities exist on the Internet, and 
consequently lay dormant because we lack the right tools and techniques to 
manage, model and mine answers to probing questions. 

Cyber forensic investigations occur in varying degrees throughout the 
fields of computer security, law enforcement and private investigations and 
involve the recognition, recovery and reconstruction of investigatory leads 
and evidence. In the context of investigations, the sources of evidence and 
investigatory leads are often "siloed" into data from law enforcement 
reports, or data from investigations of individual computers involved in a 
crime. No longer is the stand-alone computer exclusively a target or tool 
used in criminal activity. The Internet itself has become a breeding ground 
for primary and secondary sources of evidence in the search for truth, as well 
as providing the seeds for predicting future malfeasance. Like other forensic 
sciences, fundamental methods of cyber forensics begin by collecting a large 
number of intensely diverse variables or attributes, and culminate in pattern 
matching among these variables to individualize evidence. 

Computer security, network forensics, and increasingly law enforcement 
investigations involve working with heterogeneous datasets that contain 
remnants of human activity, oftentimes occurring across multiple 
environments. Pattern matching in this context consists of the recognition 
and correlation of digital evidence contained within and among various data 
sources such as web pages, computer logs, Internet newsgroups, online chat 
rooms, and corporeal case reports — each with different levels of granularity 
and context. Nevertheless, linkage of this data is becoming more important 
for the efficient administration of jusfice in a 21st Century society that is 
increasingly leading its collective lives in the digital realm. 

2. GAP ANALYSIS: WHAT IS THE PROBLEM AND 
RESEARCH NEEDED? 

One of the most prevalent challenges facing law enforcement (LE) in our 
information society is to integrate public, Internet-based data with existing 
private data sets to enhance its duty to enforce laws as well as its mission to 
protect and serve the public citizenry. Fulfilling this expectation in isolation 
from other law enforcement entities and public data sources is no longer 
tenable, especially in light of information technology advances and pressure 
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to enhance predictive capabilities. Although there have been a handful of 
approaches that allow law enforcement to integrate data within their 
agencies as well as from other jurisdictions, constructing new approaches 
that expand this data integration to encompass public, Intemet-based data to 
produce better actionable information is a mounting priority. 

To address this need, the San Diego Supercomputer Center (SDSC) is 
developing a research infrastructure for the management, analysis and 
visualization of public and private multidimensional data. This will include 
addressing the technical and analytical models, methods, tools and 
techniques to effectively integrate and correlate law enforcement 
information with public, cyber-based information to study the impact of this 
expanded dimensional information on the efficient remediation and 
proactive capabilities of law enforcement. 

Law enforcement is an information-intensive process, beginning with 
initial data collection at the crime scene or via victim reporting, extending 
through evidence and intelligence gathering, and culminating in analysis of 
data to support the prosecution and aid in preventing criminal activities. 
However, LE is by its very nature reactionary to information contained 
within and derived from reports of criminal activity. As a result, the 
effectiveness of law enforcement is directly related to the quality of 
information reported and proficiency of the subsequent analyses. This 
quality is enhanced by collecting, processing, organizing and analyzing 
reports between agencies. 

Nevertheless, there is a chasm between information contained in crime-
related reports and the forensically relevant (who, what, when, where, how, 
why) data that exists independent of crime reports. The breadth of 
forensically relevant data available on the Intemet can impact the quality of 
actionable information contained within existing private records maintained 
byLE. 

The process of law enforcement has thus far encountered barriers to 
recognizing, accessing and utilizing this complementary dimension of 
information because of technical, managerial and socio-legal properties of 
information. The challenge lies in integrating, correlating and interpreting 
intra-agency crime data with public, cyber-based data to enhance the best 
available information upon which courses of action are based. 

2.1 Technical, Managerial and Socio-Legal Problems 

The Intemet has emerged as a mainstream vehicle for global 
communications among persons, informal groups and public organizations, 
corporations and govemments. Over three billion pages of information have 
been posted to the Intemet using various protocols, including http, IRC/DCC 
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(Internet relay chat/direct client communications), ftp (file transfer protocol), 
Usenet (newsgroups), auctions and peer-to-peer services. Unfortunately, the 
same characteristics that have made the Intemet so attractive for business 
and govemment — low cost, high-speed, anonymity, multi-media 
capabilities, etc. — have also made it highly useful for fraudsters, terrorists 
and organized criminal groups. 

LE's exploitation of the Intemet as an intelligence and investigative 
resource has been complicated by the lack of a readily trained cadre of 
govemment collectors and analysts, established operational processes and an 
accessible collection and analysis platform capable of supporting high-
volume content collection, reduction, aggregation, analysis, reporting and 
assessment. The lack of such a platform has relegated cyber forensics to ad 
hoc, "hit-or-miss" efforts. Controlled, systematic collection has typically not 
been performed. 

Technology should be employed to increase the scope and quality of the 
information upon which LE depends to ensure the public safety. As the 
persons engaging in unlawful activities grow increasingly dependent on the 
Intemet as a tool (i.e. communication or transaction mechanism) and/or 
target (i.e. the use of the Intemet to commit new crimes or old crimes in new 
ways) to facilitate their offenses they leave a trail of evidence and 
investigatory leads as a natural byproduct. From this vast and disparate well 
of publicly accessible data much can be uncovered and inferred. 

Currently, the search, collection, and analysis of information evidence 
from the public Intemet have been relegated to a few, highly specialized, and 
usually grant-funded law enforcement projects. It has been addressed, 
conceptually, as a new kind of high technology criminal problem. It is 
indeed that, but also much more. Cyberspace has become the neighborhood 
wherein law enforcement officers must regularly interact with their 
constituency. The previously specialized projects and investigation 
techniques confined to the non-budgeted criminal justice arena will certainly 
be deployed universally. Regular law enforcement reporting and records 
systems, evidence collection and analysis systems, and pro-active crime 
suppression activities must likewise be relocated to the virtual existence of 
cyberspace and scaled well beyond traditional jurisdictional barriers. The 
altemative is failure of law in society. 

Integrating public data with justice data will prove helpful in gathering 
and exchanging information that can provide the hard data needed to assess 
various threats. The frequency (number of occurrences) and severity data 
may not find their way into LE reports because there may be no formal 
reporting requirements, but nonetheless, information needed to provide a 
meaningflil assessment may certainly lurk informally on the Net. 
Furthermore, cases involving events related to the investigation at hand may 
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be inaccessible or unverifiable for reasons ranging from out of court 
settlements to unpubHshed opinions. 

Indeed, traditional investigation of that index on the individual, rather 
than querying on the criminal act itself may be problematic. This is where 
data mining and modeling can significantly enhance the ability to infer 
behavior and intent from pattems of acts (usage signatures). For instance, a 
query on a particular suspect who may carry out identity theft using the 
Intemet under multiple aliases will largely fly under the radar of traditional 
investigations that do not make use of Intemet-based information. 

While models of certain types of criminals have been available for 
sometime, models of how these criminals may utilize the Intemet to commit 
transgressions, as well as composites of persons committing cyber-based 
crimes are very immature. This project will start to collect and populate the 
requisite repository of data that does not yet exist. A corollary challenge that 
will be addressed is compiling the data and constructing the models needed 
for such a repository. 

While the current Intemet offers the benefit of a new dimension of 
information and unprecedented ability to interact with remote groups, it is 
not without potential dangers that must be a consideration in any 
management, analysis and visualization model. For example, the reliability 
and credibility of the links may need some degree of quantification and 
qualification. The credibility of the proposed relational model depends on 
the linkage between Intemet-based data and current corporal-based report 
events. To further illustrate, the collection and entry of crime report data is 
facilitated by trained officers who observe traditional interactions where 
issues of competence, coercion, malice, or willingness are effectively 
evaluated. However, these traditional metrics may not be present when 
considering information obtained from impersonal computer-computer 
interaction on the Intemet. In short, measuring the context of cyber data is a 
growing challenge. 

2.2 The Need To Integrate Public and Private Data Sets 

Recognizing the need to integrate private LE data sets, the Automated 
Regional Justice Information System (ARJIS) was formed and has 
successfully automated access to records and databases among its 50 local, 
state and federal member agencies. The ARJIS Joint Powers Agency 
marries reports from southem Califomia-based LE agencies to effectively 
broker regional enterprise information. ARJIS' integrated database of LE 
records allows real-time data queries and notifications, thus eliminating 
multiple query operations. Furthermore, its knowledge management 
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technology helps eliminate redundant data entry between various LE 
information systems. 

A prominent objective for ARJIS is enhanced intelligence analysis 
through integration of justice and other public data, thus necessitating the 
identification of technologies to jointly analyze structured criminal justice 
data and various structured or unstructured data sets. Correspondingly, there 
is a need to identify analysis models, data sources and standards, and access 
requirements to enable the technical and managerial links between public 
and private (current LE records) data. 

It has become clear that public, cyber-based information is an 
unstructured and dynamic data set where residue and patterns of LE-related 
information are constantly being created. In this respect, Internet-based data 
mirrors the forensic capabilities of corporally derived data: who (the 
person(s) involved or having knowledge of a crime); what (the criminal act 
itself); where (geographic location of the crime event); why (economic, 
political motivations, etc.) and how (method of perpetrating a crime). 
Furthermore, public datasets can create complex and diverse models, and 
large quantities of such data may be essential to a unified and efficient 
remediation of a crime. 

Although ARJIS has made significant progress, the data upon which LE 
is acting is limited to structured, static, historic collections that make use 
only of corporally derived data (i.e. recorded interviews, witness reports, 
criminal records). If law enforcement is to enhance the quality of actionable 
information necessary to reach its goals of more efficient remediation and 
proactive enforcement, it must expand dimensionally and engage in studying 
and developing automated and systematic models and techniques to tap into 
publicly available data. 

Each of the LE user groups- patrol officer, criminal investigator, counter 
intelligence/counter terrorism investigator and crime analyst- has developed 
models to manage and collect private LE data. Effective models define and 
streamline reproducible methodologies and techniques to key on oft times 
isolated and disconnected event data contained in the crime reports. The 
reality of crime, especially as it occurs using the Internet as a target or tool, 
is that artifacts of the crime are not disconnected. Yet, the quality of the data 
sample size and technique is a barrier to coordinated response, scalable 
management of knowledge, timely reaction and predictability. 
Consequently, P'̂ ELE aims to develop a research infrastructure that enables 
the complex feedback among artifacts and user groups at varying scales. 

SDSC's collaboration with law enforcement and exposure to ARJIS thus 
far has revealed several important points: first, academic research on public 
and private data integration would benefit from access to and use of the 
tremendous capabilities that exist for querying and collecting public, 
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Internet-based information; and second, effective deployment of scientific 
research into the broader community depends, in part, on finding 
mechanisms through which data collection models developed by university-
based intermediary researchers can facilitate the transfer of technology and 
knowledge into the models used for managing, analyzing and hnking public 
and private multidimensional data. 

3. BRIDGING THE GAP: CYBER FORENSICS 
APPROACH 

One overarching goal of this P^ELE project is to develop and deploy a 
connectivity framework that will enhance existing information collaboration 
between and among LE agencies, justice-related researchers and the public 
in southern California. Integrating publicly available data with existing 
justice-related data sets may enhance the qualitative and quantitative value 
of information needed to protect and serve our society. To accomplish this 
goal, this project stands on the shoulders of recent advances in Internet 
searching capabilities, and criminal justice networking- pioneered by ARJIS, 
to develop a research infrastructure for the management, analysis and 
visualization of public and private multidimensional data. 

3.1 A Framework For Cyber Forensics 

Although ARJIS offers centralized storage and long-term maintenance of 
LE data, adopting a distributed approach to integrating public data from 
specialized Internet searches allows it to be accessed more dynamically. In 
this way, investigations models can be coupled, while allowing their design 
and maintenance to remain relatively autonomous. In order to accomplish 
integration in this way, the following general architecture will be assessed 
(Figure 12-1). 
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Figure 12-1. General architecture for the integration and analysis of public-private data sets 

3.2 Approach Steps 

3,2.1 Step 1: Identify analysis requirements, data sources and 
model standards 

This step in the activity schema consists of organizing project team 
members from SDSC, industry collaborator(s) and ARJIS who will define 
various problems in conjunction with ARJIS/LE case-based investigative 
needs, and about which open source data artifacts are sought. This will 
include an initial analysis of each entity's respective technical and 
substantive datasets and requirements. This will include an identification of 
some initial query terms and data collection strategies, and result in a set of 
data-input requirements and output products. 

Deployment and feedback will be obtained by utilizing ARJIS member, 
CATCH (Southern California High Tech Task Force) in executing the 
proposed work and serving as a testbed. 
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3.2.2 Step 2. Convert analyses requirements to collaborator 
workflow (search and collection); deflne search strategy and 
collection plan 

This step involves federating the requirements analysis from the ARJIS 
dataset with the Internet query infrastructure to define a search strategy and 
collection plan for Internet-based data. This involves customizing the data 
display configuration and query result report format to fit the specification of 
the ARJIS client. 

3.2.3 Step 3. Identify access needs for ARJIS for each client type 

The compilation of ARJIS data and public data will carry with it the 
more strict legal controls assigned to the ARJIS law enforcement records. 
This project step will identify the access needs of the two kinds of typical 
users within the law enforcement community — investigators and analysts. 

3.2.4 Step 4. Develop an information exchange platform — 
integrate public, Internet data with private, justice data 

This activity involves marrying the query response artifacts from public, 
Internet-procured data with ARJIS client reports. We then develop query 
templates specific to the investigative need and resulting problem statement 
developed at the onset. The value here is in defining a "common currency" 
between structured, justice report data and unstructured, cyber data based on 
model metadata language. 

We will investigate and adapt relevant XML standards for security data 
and analysis. We expect to define model metadata to discover, locate and 
evaluate models suitable for specific LE investigations and intelligence 
needs, and describe the data-input requirements and output products. In so 
doing, we develop searchable models and data requirements using XML 
(extensible Markup Language) schemas for encoding model and application 
metadata, which will allow us to register and document the various models 
that are developed. This step is designed to develop a crosscutting search 
mechanism model that relates structured, LE report data with unstructured, 
Internet data and to identify their function, design, and suitability to answer 
the problem. The teams will identify input requirements of models such as 
type of event variables (person, geography, and/or motivation key words), 
data quality requirements, and classification metrics. 

Where possible, we will leverage the current cyber infrastructure 
developments at SDSC, including exploring the applicability of Web 
Services to LE information integration and analysis. 
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3.2.5 Step 5. Develop operational and technical criteria for analysis 
tools- blending technology with people 

This phase consists of the development of tools to recognize, reconstruct 
and automate domain knowledge decision support patterns. This involves 
recording expert domain knowledge about investigations as scripts that allow 
us to set up expectations and perform inferences. 

In addition, we will investigate supervised and unsupervised machine 
learning approaches to pattern discovery and modeling, including 
probabilistic models, decision trees, and support vector machines. This 
includes research into compute-intensive statistical and machine-learning 
approaches to pattern discovery and modeling, and software development to 
ensure that these results are incorporated into the overall system. 

Tools will be tested and reviewed in an effort to assess reliability and 
establish baseline metrics for the management of public-private data. 
Furthermore, team members will define models for optimal visualization 
schemas of the integrated data set. We will experiment with various visual 
designs to best capture the domain knowledge of the LE investigator/analyst 
in a client interface. 

3.2.6 Step 6. Implement analysis tools in small scale, real-world law 
enforcement environments 

Here the objective is to beta-test the analytical tools in specialized law 
enforcement and intelligence environments capable of evaluating their 
effectiveness by comparison with traditional investigative support tools. 

3.2.7 Step?. Evaluate Findings 

The final step consists of evaluation and iteration of the earlier research 
stages with the intent of refining the templates, models and metrics. As 
described, we will develop the information exchange platform and the model 
metadata standards to include a wide range of data and model types, as well 
as meet the access and security needs of diverse LE agencies. This 
evaluation will encompass the analytical process of identifying the cyber-
based data artifacts, assessing the value of those artifacts as it relates to the 
overall case report, and developing a methodology to extend the 
investigation and collection of justice report data to include cyber-based 
data. 
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3.3 Follow-on Questions and Issues 

Some of the other questions to be posed and potentially answered 
address security and legal concerns. These include, but are not limited to the 
following: 
• What are the benefits (positive consequences) of information integration 

(in the form of data sharing) to the public? What are the warning signals 
about the negative consequences of information integration? 

• How does this information integration affect the public sector concerns 
related to data sharing: Is it restricting/enabling privacy infringement? 
What decision-making processes might profiling information be used? 

• How can existing public data be used to further LE's mission? 
• Will the access to and use of pubHcly available data encourage private 

sector to share higher quality data with LE? 
• What are the relationships between static, law enforcement records 

(ARJIS records), dynamic, public behavioral data (specialized Internet 
searches), and transactional, network history and traffic data (security 
logs)? 

• What is the cost-benefit of integrating public information with LE data 
sets? 
In terms of cost-avoidance related to information location cost (time 

spent identifying potential sources of information, accessing those 
information sources, purchasing external data)? Information interpretation 
costs (cost to follow up and validate; cost of misinterpreting information; 
cost of relying on inaccurate data)? Information integration and 
reorganization costs? 

4. IMPACTS OF CYBER FORENSICS FOR LAW 
ENFORCEMENT 

4.1 Significance of Integrating Information from Public 
and Private Multidimensional Data 

The potential network for collaboration in justice operations and research 
in southern California is extensive. The ARJIS Joint Powers Agency 
represents San Diego and Imperial county regions, and is partially interfaced 
with Los Angeles County. The 50+ ARJIS member agencies that form this 
distinctive justice information brokerage comprise over 7,000 local, state and 
federal LE professionals with a service population of approximately 3.1 
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million people living in a geographical area of nearly 9,000 square miles, 
and with a very active international border and port of entry. 

The resources available within the LE community that are of value to 
investigative officers, analysts, criminal justice administrators and forensic 
researchers include both primary datasets and models. The San Diego 
Supercomputer Center has developed a unique partnership among high 
technology law enforcement by way of knowledge and technology transfer, 
as well as providing a forum for cross-pollination of teaching, training and 
leaming between applied security research and operational law enforcement. 
This institutionalized trust between law enforcement and academia is rare 
and valuable. 

Developing a formal framework for sharing data and models with the 
research, management and investigative operations will benefit ARJIS and 
other SDSC cyber-forensic projects that seek to incorporate dynamic, real-
world, social and economic parameters into data sharing models. As these 
models (tools, techniques, methodologies) mature, the infrastructure will 
make the models accessible and deployable to other researchers, 
policymakers, investigative professionals and justice planners. The 
significance of this integration will extend beyond the southern California 
region to include other public-private partnerships, demonstrating an applied 
instantiation of how to leverage the strengths of individual public, private 
and academic communities toward a better collective whole. 

By designing a path for open source data to be input into existing models 
used in investigation planning and decision making, the credibility and 
influence of justice research is enhanced among audiences that are often 
mislead by erroneous and sensationalized information from the popular 
media. 

4.2 Enabling Public and Private Technology Transfer 

The P^ELE model serves as an academic bridge translating private sector 
technology into usable and civilly responsible law enforcement. Likewise, it 
provides a forum for cross-pollination of teaching, training and leaming 
between academia, industry and the govemment. Aside from enabling a 
transparent, reproducible, and objective system for integrating models from 
the public and private sectors, academic researchers will gain access to 
important problems and data in real-world large-scale contexts. This is 
critical to understanding and predicting the impact of these technologies on 
law enforcement agencies and services, govemance, and the democratic 
process. 
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4.3 Value to Traditional, Broader LE Community 

Although the immediate application of this project is to integrate private, 
LE data with open Internet-wide data within southern California, it is 
expected that the products (tools, techniques, methodologies) developed in 
this project will have much broader applicability. For instance, we anticipate 
that the basic design for implementing data as Web Services will have 
similar portability to other information aggregation, correlation and crime 
mapping research efforts. 

This research empowers LE in its role as a collector, interpreter and 
custodian of large public data sets to manage large-scale data and 
information acquisition. Furthermore, by using open standards it enables a 
more transparent and scientific assessment of technological impact on LE 
investigations and decision-making so that data, networks and architectures 
can interoperate without running afoul of security, privacy and information 
assurance requirements. 

P^ELE will help fulfill the global information needs of LE more 
efficiently to enhance response and proactive protection. Although LE has 
trained public servants skilled in using the Internet and cyber-based data to 
enhance investigations, the problem is these officers represent a small 
fraction of law enforcement. The reality is that the vast bulk of police 
officers do not have the skills, resources, or time to effectively locate data 
from the Internet and integrate it into their investigation. The proposed 
project holds the promise of lowering the barrier to entry for those 
technically challenged investigators, while expanding the scope of public 
servants capable of utilizing digital traces of crime. 

4.4 Significance To Computer Security Community 

The research conducted and goals attained through P^ELE will offer 
complementary benefits to the current computer security and computer 
forensic research within and between academia, the private sector and 
government. Geared toward quantifying various security risks, the 
technology developed will inform better metrics regarding threat assessment, 
operational vulnerabilities and defense-response actions such as: 
• An understanding of system vulnerabilities, including hardware, software 

and human, and particularly as seen through the eyes of known hacker 
communities, 

• An awareness of the relative availability of software tools that present a 
direct threat to codes, content, or network access. 
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• Indications and warnings of specific internal or external hacker 
challenges, or hacker community projects that suggest attacks may be 
imminent or underway. 
Furthermore, P^ELE framework will enable computer security research 

aimed at correlating information security logging data and real world events. 
For instance, the investigation of issues related to windows of vulnerability 
optimal disclosure and release of system patches must be addressed by our 
information society in a more empirical way. By coupling behavioral data — 
public searches of patch releases, vulnerability announcements, and exploit 
releases — with transactional data from security logs showing attempted and 
successful exploits, we can enhance the efficient identification and 
remediation of actual threats to our cyber infrastructure. 

4.5 Comparison to Other Efforts 

There are several projects underway that attempt to integrate and search 
different LE databases to allow LE to share information from their 
operational databases (CopLink, CrimeSoft, ISYS, RISS). Insofar as these 
are valuable efforts, they all lack several features that are defining 
capabilities within the P^ELE infrastructure. None of the aforementioned 
projects are designed to include the domain of open source, public, Internet 
data in pool of justice information used to make associations for 
investigations and intelligence. P^ELE is further distinguishable because it 
stands on the shoulders of an estabHshed framework for integrating justice 
data spanning the breadth of 50+ local, state and federal agencies. Other 
efforts connect only a handful of agencies that share private, structured LE 
data only. 

Furthermore, these efforts do not make significant progress toward 
solving the lack of metrics problem in data sampling: data in reports is 
uncoordinated, unautomated, and not scalable. This resuhs in investigations 
(link analysis) that are limited, remediation (responding to incidents and 
predicting/preventing future incidents) that is suboptimal (uncoordinated), 
and resulting statistical analysis that is inaccurate (gap). P^ELE's data 
mining and web services approach to integrate unstructured, Internet data 
promises a novel approach to this quantification effort. 

Finally, the P^ELE approach enables LE and researchers to correlate 
cyber and real world events by uncovering correlations between static, law 
enforcement records (ARJIS records) with dynamic, public behavioral data 
(Internet data), along with transactional, network history and traffic data 
(security logs). 
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5. CONCLUSION: P^ELE AS A CYBER FORENSICS 
PROJECT FOR MANAGING MODELING AND 
MINING DATA FOR INVESTIGATION 

Cyber crime will not "cease and desist" in deference to LE's ability to 
utilize the artifacts it leaves behind. The rapid pace of technological 
development has not only fostered new criminal acts (i.e. the spread of 
computer virii, unauthorized access to a computer system, possession of 
access control devices, etc.), but in fact has spawned novel means to conduct 
old crimes (i.e. online fraud, internet gambling, copyright infringement, 
etc.). 

Therefore, the question is not whether evidence exists, but rather, 
whether LE can uncover, contextualize and integrate cyber evidence with 
predication data from traditional case reports. P^ELE is focused on 
developing a model research infrastructure for the management, analysis and 
visualization of public and private multidimensional data so as to generate 
more actionable knowledge from various data sets. Ultimately, this research 
will be applied to enhance LE operations to more efficiently serve and 
protect society in our information age. 

NOTES 

1. For the purposes of this Chapter, "public" and "private" are used to distinguish the two 
broad categories of data sets upon which this project focuses. "Pubhc" refers to the 
cyber-based data available openly on the Internet, whereas "private" refers to law 
enforcement-related data sets administered by justice officials. 

2. For the purposes of this Chapter, "cyber forensics" is used by the authors to refer to the 
novel subcategory of "Internet forensics," defined as repeatable techniques and 
methodologies to collect, preserve and analyze digital data on the Internet for 
investigation purposes. Note that, "computer forensics" is the principles applied to the 
collection, preservation and analysis of computer-derived evidence to ensure its 
admissibility as evidence in a legal proceeding. 

3. E-commerce, email and VOIP (voice-over-Intemet-protocol) communications are a few 
prominent examples of the ubiquity of computer-based transactions in modem society. 

4. Computer Science and Telecommunications Board. Cyber-Security and the Insider 
Threat to Classified Information. 2000 December. 

5. Lasser, Jon, Irresponsible Disclosure. Security Focus; 2002 June 26. 
6. Lamont, Judith, KM Aids and Abets Law Enforcement. KM World, 2002 March. 
7. Coplink <http://www.coplinkconnect.com/>; CrimeSoft <http://www.crimesoft.com>; 

RISS — Regional Information Sharing System <http://it.ojp.gov/ 
process_links.jsp?link_id=LI-00245>; ISYS <http://www.isys.com>, 

8. Cisco Systems. Network Based Transformation for Justice Systems. 2002. 
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CYBER FORENSICS: ISSUES AND 
APPROACHES 

Jau-Hwang Wang 
Central Police University, Taiwan, ROC 

Abstract: This chapter introduces the concept of cyber forensics, digital evidence, and 
computer forensic process. Cyber forensics is defined as the application of 
computer science to laws ~ to process and analyze digital evidence, to 
reconstruct a crime, and to provide links among the offender, the victim and 
the crime scene. Basically Digital evidence includes all digital data, which can 
be used to establish that a crime has been committed or can provide a link 
between a crime and its victim or a crime and its perpetrator. The forensic 
process of digital evidences includes evidence recognition, collection, 
preservation, and analysis for crime reconstruction, 

Keywords: Cyber Forensics, Digital Evidence, Crime Investigation. 

1. INTRODUCTION 

Since the introduction of the first electronic computer in 1946, computer 
and its storage devices have created a trend to process and store information 
in digital format. It is relatively easier and less expensive to create and store 
digital information compared to traditional information processing 
techniques, such as writing and punch cards. As a result, more and more 
information is created, processed, and stored on computer storage devices, 
such as magnetic disks. The trend is further accelerated by the introduction 
of computer network in 1969 and personal computer in 1981. Nowadays, 
computer and computer network are ubiquitous within our society and used 
in every facet of modem society. For example, computer and computer 
network are commonly used to edit and send messages, transfer funds, 
purchase stocks, compute financial data, make reservations, and access 
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worldwide information online. Consequently, the amount of information, 
such as financial, mihtary, proprietary business data, and personal 
communications stored and transmitted by computer and computer network 
has increased tremendously. Consider the facts that there are more than 3 
billion indexed Web pages are on the world wide web (WWW), more than 
550 billion documents are available on-line, and billions of messages are 
sent and received daily through computer network [1]. Furthermore, a 
microcomputer nowadays may often have disk with 60-GB or more storage 
capacity and store thousands of files. In general the widely application of 
computer related technologies benefited our society. However it is inevitable 
that computer and computer network may also be used in illegal activities. 

Computer network was originally designed for connecting computers in 
academic environment and thus the security was not among the top design 
issues. Therefore, computer networks are vulnerable to unscrupulous attacks. 
The problem is worsened by the prevalence of the WWW technology. 
Nowadays, computer and computer network have been widely used for 
enterprise information processing and E-Commerce. E-commerce, such as 
business-to-business (B2B), business-to-customer (B2C) and customer-to-
customer (C2C), has become common business practice and Intemet 
connection has become a commodity for general public. Furthermore, the 
efficient computation and the effective control capability of computer have 
made it an excellent mechanism for controlling a wide range of facilities and 
devices, such as power plants, robots, and information appliances (lA). 
Many facilities and assets are controlled either directly or indirectly using 
computers. As a result, the computer and computer network may become 
targets of criminal activities, such as thief, vandalism, espionage, or even 
cyber war^ For example, computer is often used as a weapon to attack other 
computers, such as spreading computer virus and blocking network services. 
Some highlights of the sixth annual "Computer Crime and Security Survey" 
for 2002^ published by the Computer Security Institute are: ninety percent of 
respondents detected security breaches within the year 2002, eighty percent 
acknowledged financial losses, 223 respondents reported $455,848,000 in 
financial losses, and so on. 

The problem will be getting worse as a result of the continuous expansion 
of computer applications. It is often stated that computer crime investigation 
will become one of the top challenges for the law enforcement agencies in 

Cyber war or information warfare is defined as the offensive and defensive use of 
information and information systems to deny, exploit, corrupt, or destroy, an adversary's 
information, information-based processes, information systems, and computer-based 
networks while protecting one's own. Such actions are designed to achieve advantages over 
military or business adversaries. (Ivan K. Goldberg, "Glossary of Information Warfare 
terms'\ http://www.psycom.net/iwar.2.html) 
http://www.gocsi.com/press/20020407.html 
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the 21st century. One of the most fundamental aspects of computer crime 
investigation is computer forensics or cyber forensics, which deals with the 
recognition, collection, preservation, comparison and identification, and 
documentation of digital data from computers and computer networks. This 
chapter introduces the concept of computer forensics and its processes. The 
organization of this chapter is: section 2 gives the concept of computer 
forensics and digital evidence, section 3 describes the computer forensics 
processes, section 4 and section 5 address the evidence searching issues in 
computer systems and computer networks, section 6 discusses the research 
and development issues, and section 7 gives the conclusions. 

2. COMPUTER FORENSICS AND DIGITAL 
EVIDENCE 

2.1 Computer Forensics 

Forensics is defined as the application of science to laws enforced by 
pohce agencies in a criminal justice system [2]. In general, any scientific 
principle or technique that can be used to identify, recover, reconstruct or 
analyze evidence during a crime investigation can be considered as part of 
forensic science. Similarly, computer forensics can be defined as the 
application of computer science to laws — to process and analyze digital 
evidence, reconstruct crime, and provide links among the offender, the 
victim and the crime scene. Although forensic practice can be traced back to 
18th century [3] and comparatively computer forensics has a brief history, 
the basic methodologies in determining the evidential value of crime scene 
and related evidence mostly remain consistent. While traditional forensic 
professionals use fingerprints, DNA typing, and ballistic analysis to make 
their cases, computer forensic professionals have to develop sophisticated 
tools for collecting, preserving, examining, extracting, and evaluating digital 
evidence in an effort to establish intent, culpability, motive, means, methods, 
and loss resulting from cyber crime. According to Locard's Exchange 
Principle [4], any one or any thing, entering a crime scene takes something 
of the scene with him, and leaves something of him behind when he departs. 
An offender might leave fingerprints at the scene in a traditional crime. 
Similarly a computer criminal might inadvertently leave ''electronic trails" in 
computer or computer network storage devices during an offence. 
''Electronic trail" is similar to fingerprint in traditional crime scene — only 
that it is relatively soft, highly volatile, less tangible, and much harder to find 
and recover. 
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2.2 Digital Evidence 

Evidence is defined as "testimony, writing, material objects, or other 
things presented to the scene that are offered to prove the existence or non 
existence of a fact" [5]. Digital evidence is defined as "all digital data that 
can establish that a crime has been committed or can provide a link between 
a crime and its victim or a crime and its perpetrator" [6]. Essentially, digital 
evidences are binary data that present information of various kinds, such as 
text, audio, images and video. For examples, e-mail messages, registry 
entries in Windows systems, system event logs, forged e-mail headers, virus 
codes and infected files, etc, all may provide important clues for crime 
investigation. The evidences recovered can be used to determine the 
relational, functional, and temporal aspects of crime acts. With the 
increasing use of computers and the prevalence of computer networks, it is 
inevitable that people's daily life, so as illegal activities, may be involved 
with computers and computer networks. Furthermore, in this paperless 
information era, the pieces of data stored on a computer disk may often be 
the only information available for a crime investigation. Thus, digital 
evidence has become more and more important to today's investigative 
maneuver. 

3. COMPUTER FORENSIC PROCESS 

Forensic scientist functions include analyzing physical evidence, 
providing expert testimony, and fumishing training in the proper recognition, 
collection, and preservation of physical evidences [2]. According to this 
definition, the techniques used in forensic science can be categorized into 
two aspects: processing of forensic evidences, which includes evidence 
recognition, collection, preservation and analysis; and providing expert 
testimony. Although the traditional forensic principles are still applicable in 
computer forensics, the processing of digital evidence needs more 
precautions. Firstly, digital evidence is binary data stored and represented by 
magnetic domains and can only be interpreted by proper devices, such as 
disk drives. It is less tangible, highly volatile and relatively easier to be 
tampered compared to physical evidence. Secondary, to search for digital 
evidence in a computer system without any tool is similar to find a needle in 
a haystack since a typical hard disk may contain huge amount of data^ 
Finally, due to pervasive Internet connectivity, the scope of computer crime 
incidents is often across enterprise or national boundaries and computer 

A typical hard disk today can store more than 60GB of data and contains thousands of files. 
Furthermore, the capacity of hard disk may increase to terabytes in the near future. 
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forensic professionals often have to trace offenders across the cyber world. 
Thus, computer forensic professionals need to develop new methodologies 
in order to acquire the evidence without damaging the original, to 
authenticate that the evidence as the one originally sized, and to analyze the 
evidence without incurring any alteration or damage [7]. From the forensic 
science perspective, there are four major key aspects to processing and 
examining digital evidences [6,8]: evidence recognition, evidence 
preservation, collection and documentation, evidence classification, 
comparison and individualization, and crime reconstruction. 

3.1 Evidence Recognition 

The crime scene of a computer related crime consists of two spaces: the 
physical world and the cyber world. Thus, the process of recognizing digital 
evidence also includes two folds: firstly to recognize the hardware, such as 
computers, disks, network connections, and printouts for case related 
information, and secondary to search for relevant digital data, such as e-mail 
messages, system log files, web pages, and so on. Since a typical hard disk 
may contain 60GB or more data, in practice it is unlikely to exhaustively 
examine every file stored on the computer system. In addition, the computers 
involved may be located in different locations, such as across networks or 
countries, it may not be possible to collect and search all related information. 
Thus, the scope of examination is limited to well-identified probative 
information, i.e., is the information related to a certain case. Often a list of 
key words are usually created and used to search case related information 
from huge groups of files on a computer system. 

3.2 Evidence Preservation, Collection and 
Documentation 

Videotaping, and photographing are often used to freeze the crime scene, 
such as the relative positions of hardware components, the display on the 
monitor of a workstation, and the status of connections between devices. 
These are all very useful for crime scene reconstruction and evidence 
authentication. Since the hard copy of information is usually more 
admissible in court than the digital file, in practice files are printed out, 
dated, and signed as much as possible. The crime scene and the investigative 
activities should be documented in detail by drawing crime scene diagrams 
and taking notes for each collection, such as the position of the evidence, 
who collects the evidence, and at what time. If an entire computer needs to 
be collected, all of its peripheral devices, such as printers and scanners, 
should be also sized if they were possibly used in committing the crime. If 
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only some hardware components need to be collected, the independent 
component doctrine'* [9] should be followed and the serial number of each 
component should be documented. 

The digital evidence should be unaltered and authentic in order to be 
admissible in court. Thus, the state of digital evidence must be preserved as 
it originally sized. There are commercial available tools and techniques to 
properly collect and preserve digital evidence such that it will be admissible. 
For example, message digests of files can be created to verify that they are 
not altered. A message digest program accepts a digital object and produces 
a number, the message digest, often also called hash value or digital 
fingerprint. If data is shghtly modified or tampered, the message digest thus 
created will be significantly different from the original. The most commonly 
used message digest algorithms are MD5 and SHA\ 

Besides authentication, computer records must also satisfy the following 
criteria to be admissible [10]: (1) they are produced, used, and maintained in 
the regular course of business operation, (2) they must be the best evidence 
available, and (3) they are collected by people who have the necessary 
expertise. For example, if a log file is related to a case, instead of just 
retrieving the related event log entries, the entire log file should be collected. 

Bit-stream copy algorithms are usually desirable to fully backup the 
contents from computer hard disks. Also, all the files collected and the 
message digests for each file should also be listed, printed, and signed. 
Finally, the current date/time and that on the computer, the name of the 
person who collects the file, the operating system used, the software used to 
copy the file, and the type of information possibly contained in the file 
should be documented in detail. 

3.3 Evidence Classification, Comparison and 
Individualization 

Evidence classification refers the process of finding the characteristics of 
the evidence and describing it in general terms, and further determining the 
application software used to create it. Comparison and individualization 
refer to examining and revealing characteristics of digital evidence and 
comparing the evidence with control specimen in order to identify the source 
of the evidence. Individualization is often based on the randomly created 
flaw in particular computer equipment. For example, a document created by 
Word 97 software on a computer contains the computer's Ethemet address 

Independent component refers to the component can articulate an independent basis for 
search or seizure. 
Some other messages digest software are HAVAL, and SNEFRU. 
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(Media Access Control, or MAC address)^ in a line headed by _PID_GUID 
within the document. 

3.4 Crime Reconstruction 

The ultimate goal of a crime investigation is to know what happened, 
when did it happen, who was involved, how it was carried out, and why, for 
each activity in a crime, besides the facts that someone is injured and a 
computer is broken into. Crime reconstruction process includes discovering 
evidences or recovering damaged evidences and determining the actions of a 
criminal act based on the evidences. The evidences recovered can be used to 
determine the relational, functional, and temporal aspects of crime acts. For 
example, the modified, accessed, and created times of a file, the logs of 
system events, the timestamps of e-mail messages, and etc, all can be used to 
reconstruct the sequence of activities of a crime act. 

4. DIGITAL EVIDENCE IN COMPUTER SYSTEMS 

Computer systems are ubiquitous in modem society. The vast varieties of 
network stations are mostly general computer systems. The network nodes, 
such as gateways and routers, are dedicated computers, which control and 
provide the functioning of the network. Both kinds of computers provide 
huge data storage capacity besides their computing power. In general, the 
hierarchy of computer data storage consists of registers in the central 
processing unit (CPU), random access memory (RAM), online secondary 
storage, and offline storage. The data in the CPU registers are highly 
dynamic and volatile. It will be very difficult if not impossible to recover 
data from CPU registers. However, the RAM might keep a copy of some 
register data, which can then be recovered. Modem computers use magnetic 
disks as their primary on-line secondary storage devices. Data are abstracted 
as files and mapped onto physical devices by the operating system. Offline 
magnetic storage devices are rather static and the data recovering techniques 
are very similar to recovering data from on-line magnetic secondary storage. 
In this section, the digital evidence recoverable from the random access 
memory (RAM), the file system, and the physical media are described in 
detail. 

The MAC address is the same as the serial number of the network interface card. Viewing 
the Word 97 document using NotePad or other text editors can easily reveal the information. 



320 Chapter 13 

4.1 Digital Evidence in Random Access Memory 

It may be necessary to recover programs or data from main memory for 
forensic analysis. For example, an intruder may leave a back door process 
with it source codes as well as its executable removed to cover his trails. 
Some modem UNIX systems, such as Solaris, FreeBSD, and Linux, keep a 
copy of the executable files, current directory, and process memory of a 
running process in a /proc file system [11], as shown in Table 13-1. The 
information of a process is stored in the directory /proc/pid, where pid is the 
process identification number and the attribute of the process is specified by 
the /proc/pid/filename. For other systems, the TCT's^ pact utility can be used 
to recover process memory, including code, data, and stack. 

Table 13-1, Process attributes and their correspond files in /proc 
Attribute of Process Solaris FreeBSD UNIX 
Executable Code /proc/pid/object/a.out /proc/pid/file /proc/pid/exe 
Process Image /proc/pid/as /proc/pid/mem /proc/pid/mem 
Memory Map /proc/pid/map /proc/pid/map /proc/pid/maps 

4.2 Digital Evidence in File Systems 

A file system can be divided into two main components: namely the 
logical file system and the physical file system. The logical file system is 
further consisted of two parts: a collection of files and a directory structure. 
A file is the logical storage unit abstracted from the physical properties of its 
storage devices by the logical file system. The directory structure, which 
provides information about files in the system, is also abstracted and mapped 
onto physical devices by the logical file system. From a user's perspective, a 
file is the primitive allotment of secondary storage, and it is a named 
collection of related information that is recorded on secondary storage. The 
name of a file consists of two parts: primary file name and secondary file 
name, separated by "dot". Usually, the primary file name reflects the content 
of the file and the secondary file name indicates its type. Other file attributes 
include identifier, location, size, protection, time, date, and user 
identification [12]. The physical file system consists of the data structures 
recorded on the disk by the operating system for the purpose of disk space 
management. The operating system needs to do two tasks before storing files 
on a disk. Firstly, the operating system partitions the disk into one or more 
groups of cylinders, called partitions, and treats each partition as a separate 
disk. Secondly, the operating system needs to store the initial file system 

^ http:/www.fish.com/forensics 
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data structures onto the disk, such as an initial directory and the map of free 
and allocated space for each partition. Magnetic disk is one of the major 
storage media in computer system. A typical disk set consists one or more 
platters. Each platter surface is further divided into several tracks. Tracks, 
which are at the same position on different platter surfaces, form a cylinder. 
Each track is further divided into many sectors. A typical sector consists of 
512 bytes. The organization of a typical disk platter is shown in Figure 13-1. 

Figure 13-1. The Organization of a Disk Platter 

While disk sector is the basic storage unit, the allotment of disk storage to 
files is often by cluster, which typically consists of several sectors. The 
number of sectors in a cluster is depended on the storage capacity of a disk. 
For example, a cluster in a 256MB disk using FAT16 may have 8 sectors, 
while in a 512MB disk the number of sectors per cluster is 16. 

4.2.1 Recovering Deleted Files 

In a Windows environment, when a file is deleted the first character of 
the directory entry is changed to hex value "E5" for distinction and the 
entries assigned to the deleted file in the FAT are changed to zero. The 
actual data stored on the disk clusters remained intact if the clusters are not 
reassigned and overwritten by other files. Thus, the deleted file can be 
recovered by putting the fragmented clusters together. There are some tools 
available for recovering deleted file in certain operating system. For 
example, PowerQuest's^ Lost & Found utility can be used to recover deleted 
file in DOS FAT systems and RecoverNT^ can be used to recover deleted 
files in Windows NTFS or 2000 systems. 

http://www.powerquest.com/ 
http://www.lc-tech.com/Forensicsuit.asp 
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A typical UNIX system partitions an entire disk into several partitions, 
which is further divided into several zones, and each of which contains its 
block allocation bitmap, data blocks, and I-node blocks, as shown in Figure 
13-2. 

Disk 
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(File system) 

partitiorik 

Super 
block 

I-node 
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Data 
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block 

Data 
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Figure 13-2, Disk Layout for a Typical UNIX File System 

Thus, the data blocks of a small file are normally stored on the same zone 
and good file locality allows the contents of a deleted file to survive long 
after it is deleted. When a file is deleted, the system makes following 
changes [13]: 
• The directory entry is marked as unused, but the name of the file still can 

be found by search the directory with the ''strings" command. 
• The I-node block is marked as unused in the block allocation bitmap. 

Some of the file attributes (information stored in I-node) are destroyed 
but a lot of them are preserved, such as owner, group ID, last read access 
timestamp and last write access timestamp. In particular, Linux also 
preserved the first 12 data block pointers and the deleted file can be 
recovered up to 12 data blocks by chasing the data block pointers. 

• Data blocks assigned to the file are marked as unused in the block 
allocation bitmap. The actual data stored on the data blocks remained 
intact unless the data blocks are reassigned to save other files. Thus, the 
deleted file can still be recovered by putting the fragmented data blocks 
together. 
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The icat utility from the Coroner's Toolkit̂ ^ can be used to recover parts 
of the information from deleted files in UNIX or Linux systems 

4.2,2 Recovering Data on Slack and Unused Disk Space 

The unit allotment of memory chunk that file system allocates to files is 
by block or cluster. A cluster normally consists of several sectors. In general, 
the size of a file is not exact multiple of cluster size, thus the last disk cluster 
allocated to a file may not be fully occupied and overwritten completely. The 
fraction of the last cluster which is not overwritten, often called slack space, 
may contain contents of a preexist file. Similarly, unused disk space may 
contain contents of previously deleted files. Therefore, it is important in 
forensic practice to recover these hidden files. There are several tools 
available for recovering hidden files, such as Guidance's^^ EnCase, NTI's ^̂  
getslack and getfree utilities, and Ontrack^^ 

4.3 Data Recovery from Physical Storage Medium 

The user's view of files and the directory hierarchies and disk blocks are 
all abstractions provided by the operating system. At the physical medium 
level, every bit of information is recorded as a magnetic domain. Although it 
is relatively easy to delete a file from the file system, it is very difficult to 
destroy its contents in physical medium [14,15,16]. Firstly, when data is 
written to the physical medium, the read-write head sets the polarity of most 
of the magnetic domains, but not all, due to the inability for the device to 
precisely position the read-write head at the exactly same location each time 
and the variations in medium sensitivity and field strength difference over 
time and among devices. Secondary, when a ''0" is written to disk the 
medium stores a "0" by setting the strength of the magnetic domain to a 
certain value, say 0, and when a " 1 " is written the strength of the magnetic 
domain is set to 1. However, in reality the actual effect is closer to 1.05 
when a "V is overwritten with a "V\ and 0.95 when a ''0" is overwritten 
with a "V\ Although the read-write head of a disk is set up to read both 
values as a " 1 " , these differences can be detected by using magnetic force 
microscopy (MFM) techniques. It tums out that the magnetic medium 
contains an image of everything ever stored on it. Thus, data can still be 
recovered even after which has been overwritten by an arbitrarily large 
number of times. This makes it very difficult to "truly" remove information 

http://www.porcupine.org/forensics 
http://www.guidancesoftware.com 

12 

http://www.forensics-intl.com 
13 

http://www.ontrack.com 
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from magnetic storage simply by overwriting or disk wiping. Although it is 
possible to recover layers of overwritten data when armed with MFM 
techniques, it is a very complex process to piece bits of information together. 
Thus, MFM is only used as a last resort in computer forensics. 

5. DIGITAL EVIDENCE IN NETWORKS 

The threats to information systems were at approximately 80% intemal 
and 20% extemal in early 1990s. However, with the integration of 
telecommunications and personal computers into the Intemet, the threats 
appeared to be approaching an equal split between intemal and external 
agents in the year of 2000 [17]. Furthermore, the sixth annual "Computer 
Crime and Security Survey '̂̂ " for the year 2002 published by the Computer 
Security Institute showed that 74% of the respondents cited that more attacks 
are from the intemet connections than from their intemal systems. Seeing 
this trend, we believe that in the near future, the Intemet will become one of 
the most important areas for crime investigation, and to search digital 
evidence in the computer networks will also be one of the most challenging 
tasks as well. 

5.1 Network Architecture 

The network subsystem of a modem computer system is designed and 
organized as a series of layers. Each layer offers certain services to the 
higher layer and shields the higher layer from the detail implementation of 
its services. The services between two adjacent layers define an interface 
between them. A computer network is normally characterized by the number 
of layers, the contents, and the functionality of each layer. The 
communication between layer n on two different machines is govemed by a 
set of rules and conventions, collectively csiWcd protocols. The International 
Standard Organization defined an Open Systems Interconnection Reference 
Model [18], which has seven layers, namQly physical, data link, network, 
transport, session, presentation, and application layers. One of the most 
widely implemented network protocols is the TCP/IP suite. TCP/IP is a four-
layer network, as shown in Figure 13-3. The four layers mainly correspond 
to the physical layer, data link, network, and transport layers in OSI 
reference model and above the top TCP/IP layer is the application layer. 

http://www.crime-research.org/eng/library/Cybercrime_Stat.htm 
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Figure 13-3. A Conceptual TCP/IP Architecture 

The functions of the transport layer are managing the delivery of data and 
session management, such as establishing and terminating connections. The 
network layer is mainly responsible for routing message to its destination 
according to its addresses. The data link is responsible for establishing 
connection for data transmission between computers that are connected to 
each other. In addition to provide network functionalities, each layer usually 
maintains some housekeeping data. For example, a router usually keeps a 
routing table for determining the outgoing link for each message it received 
according its destination addresses. 

On top of the network system, various applications are implemented to 
provide interfaces between users and networks. For example, mail server 
enables us to exchange e-mail, web server allows us to view web pages, and 
so on. The architecture of network services is shown in Figure 13-4. 
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Figure J3-4. The Architecture of Network Services 

Since a message needs to travel through many layers before being sent 
through communication media to its destination, it often leaves some trails 
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behind in certain layers. Thus, it is often possible to recover links to network 
from a computer, as shown in Figure 13-5. 

electronic 

trail ^^V^ 
Figure 13-5. The Relationship between a Crime Scene and Network 

5.2 Evidence in Application Layer 

Most people use the network services through application programs, such 
as Internet Explorer (IE) or Netscape Navigator, bulletin board server (BBS), 
world wide web server (WWW), internet relay chat server (IRC), news 
server, e-mail server, and etc. Since the application layer is essentially the 
mostly widely used interface to computer networks, many trails may be left 
in this layer. Also many sources of digital evidence are created by 
applications. For example, the user's workstation may keep a copy of each e-
mail message sent or received by the computer, the Cookies'^ may keep 
records of web sites visited, and so on. 

5.3 Evidence in Transport and Network Layers 

The process in the application layer often generates associated logs on 
the transport and network layers. For example, when a web page is surfed, 
very often the IP address and the connection time are logged on the web 
server. Similarly, the timestamp and IP address used to send an e-mail 
message are usually logged on the e-mail server when a message is sent or 

' Cookie is a file stored within a web browser's file area for a user. Cookie is a text file and 
typically holds the following information: user name and password for a given web site, 
any custom settings for a given web site, the web sites visited by the user, and anything the 
web site has been programmed to store there. 
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received. The log files of a UNIX system normally include acct or pacct, 
aculog, lastlog, loginlog, messages or syslog, sulog, utmp and utmpx, wtmp 
and wtmpx, void Jog, and xferlog. Most of the log files are stored in /var/adm 
or /var/log directories and can be viewed directly with a text viewer, such as 
''more" or "v/". The two log files, utmp and wtmp may be stored in /etc and 
can be viewed by "w/zo" and ''last" commands respectively. The log entries 
in Windows keep records of application usage, activities that have security 
implications, and system events (such as shutdown), and can be displayed by 
using the Event Viewer. Another source of digital evidence in transport and 
network layers is the state tables, which contain information about current or 
recently terminated TCP/IP connections. The list of recently terminated and 
current connections can be listed by typing "netstat" command on UNIX and 
Windows environment. Additionally, RADIUS/DHCP servers usually log 
the records of IP assignment. Firewalls and routers may also be configured 
to keep records of TCP/IP packets passed through them. The logs and state 
tables in computer network are shown in Figure 13-6. These are all wealthy 
sources for digital evidences. 
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Figure 13-6. Network Log files and State Tables 

5.4 Evidence in Data Link Layer 

Data link layer is responsible for enabling communication between 
computers on the same network. A message in this layer is identified by its 
Media Access Control (MAC) address, which is directly associated with the 
identification number of the Network Interface Card (NIC) in a computer. 
However, the source and destination addresses of any outgoing message 
from a network router have to be translated into IP addresses using Address 
Resolution Protocol (ARP) before they are sent to the Internet. Thus, the 
router often caches a MAC/IP address translation table for address 
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resolution. The mapping information can be retrieved by typing "arp -a" 
command on the router console. However, a record in the cache will be 
deleted if it is not used for a period of time between 20 minutes and 2 hours 
[6]. Furthermore, network management software, such sniffers, can be used 
to configure the NIC into ''promiscuous mode" and force it to listen in and 
capture all network packets for forensic analysis. 

6. RESEARCH AND DEVELOPMENT ISSUES 

Recognizing or search crime related information from computer disks 
could be a challenge for cyber forensics. Often a list of key words related to 
a crime are generated and used as the surrogates for the case. A full text 
scanner then searches the disk for matches with the surrogates. However, the 
search results may still contain too much information for human 
examination. Thus, it is critical to develop better search methods to precisely 
search the disk. Furthermore, evidence collected from a computer crime may 
contain a huge number of files. It may take months for human expert to 
classify and analyze these files, thus automatic document clustering and 
analyzing techniques need to be developed for supporting such applications. 

Most of the forensic techniques were designed for known post-attack 
analysis. However, compared to real world, the activities in cyber space are 
less detectable. Automatic detection methods should be developed to address 
this issue. Although there are many researches on intrusion detection and 
related area, most researches focus on the network defense area. The huge 
amount of cyber world activities are mainly left free. Research must be done 
to monitor and detect unknown crime or trans-attacks in computer network. 
The huge amount of web sites, web pages, online documents, and etc, may 
need to be analyzed and monitored by techniques based on data mining 
technology under "right to monitor" environment. Again many of the issues 
remain opened. 

There are a large number of forensic tools developed by individuals from 
academia and law enforcement. However, standards to ensure the quality 
and interoperability of these tools have not been established. Furthermore, 
most of the commercially available tools were designed for gathering 
evidence in a single computer system. The evidence gathering process in 
computer network still mainly relies on the network utilities. Techniques and 
tools for searching and gathering digital evidence from computer network 
shall be developed to address this problem. 

Quick data recovery after attack is also a critical issue. An attack may 
damage a huge amount of files in a computer system or in many computers 
across networks. Efficient techniques, such as integrity checksum, should be 
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developed to quick detect the damages and restore data to their original 
states before the attack. 

7. CONCLUSIONS 

Our society has become more and more dependent on computer and 
computer network as the continuous expansion of computer applications. 
Consequently, more and more information, such as financial, military, 
proprietary business data, and personal communications are stored, 
processed and transmitted electronically. As our day-to-day life becomes 
more dependent on computer and computer network, it is inevitable that 
criminal activities will also be involved with the usage of computer and 
computer network. As a result, effective computer crime investigation will 
become an important challenge for law enforcement agencies. It is 
fundamental to develop valid and robust methods to recover digital 
evidences from computers for crime investigation. The methods must ensure 
that all probative information is collected in a way such that it is admissible, 
and ensure that nothing was added, altered and deleted from the evidence 
originally sized in the forensic processes. Furthermore, current commercially 
available forensic tools were designed for post attack analysis, and only 
good for searching case related information from a single computer system. 
Forensic tools in the future should also be able to detect unknown attacks, 
search across computer networks, monitor on-line traffics, and recover data 
from attacks in a timely manner. Standards to ensure the quality and 
interoperability of these tools should also be established. 
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